
Frontiers in Heat and Mass Transfer (FHMT), 4, 013002 (2013)
DOI: 10.5098/hmt.v4.1.3002

Global Digital Central
ISSN: 2151-8629

1 
 

 

               

INVESTIGATION OF PARTICULAR FEATURES OF THE 
NUMERICAL SOLUTION OF AN EVAPORATING THIN FILM IN A 

CHANNEL 

Greg Ball, John Polansky, Tarik Kaya* 

Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario, K1S 5B6, Canada 

ABSTRACT 

The fluid flow and heat transfer in an evaporating extended meniscus are numerically studied.  Continuity, momentum, energy equations and the 
Kelvin-Clapeyron model are used to develop a third order, non-linear ordinary differential equation which governs the evaporating thin film.  It is 
shown that the numerical results strongly depend on the choice of the accommodation coefficient and Hamaker constant as well as the initial 
perturbations.  Therefore, in the absence of experimentally verified values, the numerical solutions should be considered as qualitative at best.  It is 
found that the numerical results produce negative liquid pressures under certain specific conditions. This result may suggest that the thin film can be 
in an unstable state of tension; however, this finding remains speculative without experimental validation.  Although similar thin-film models proved 
to be very useful in gaining qualitative insight into the characteristics of evaporating thin films, the results shown in this study indicate that careful 
experimental investigations are needed to verify the mathematical models. 
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1. INTRODUCTION 

The study of thin films is important in many technological 
applications, including the cooling of electronics, evaporation, 
condensation, boiling, drying etc.  The film dynamics are governed 
by various complex physical mechanisms such as surface tension, 
disjoining pressure, thermal conduction and phase change. Because 
of its importance, thin films have been widely studied.  

The problem of modelling an evaporating thin film has been 
investigated by many authors using various techniques.  Solutions 
governed by 3rd and 4th order Ordinary Differential Equations 
(ODE) have been proposed.  In addition to the problem formulation 
(3rd versus 4th order), the existing models used different boundary 
conditions, and different techniques in the calculation of the mass 

transport across the interface.  More recently, simulations based on 
the molecular dynamics were also attempted.  Because of the very 
small length scales involved, few experimental works have been 
completed and majority of the models do not have the necessary 
validation required for providing further insight into whether the 
models produce accurate physical solutions.   

Several authors have expanded upon current works by imposing 
different boundary conditions and observing the corresponding effect.  
Table 1 provides a sample of common variations undertaken by 
various authors.  Note that the varying thermophysical properties, 
refers to whether the numerical model updates the fluid properties as 
a function of temperature in generating a solution. 

 
Table 1 Comparison of some earlier works on modelling an evaporating meniscus. 

Authors Non-isothermal 
Interfacial 
Condition 

Varying Thermophysical 
Properties 

Slip Boundary 
condition 

Polarity Effect Superheat Effect 
(at least 5 K range) 

Potash and Wayner (1972)  - - - - 

Wayner et al. (1976)  - - - - 

Moosman and Homsy (1980)    - - - - 

Hallinan et al. (1994)  - - - - 

Park et al. (2003) - -  - - 

Qu et al. (2002)  - -  - 

Zhao et al. (2011)   - -  
Wee et al. (2005)     - 

Wang et al. (2007)  - - -  
Present Study    -  
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Of the parameters listed on Table 1, the following general trends 
were observed. Potash and Wayner (1972) were the first to show that 
both pressure gradient and evaporative mass flux reach a maximum 
within the thin-film region.  Moosman and Homsy (1980) 
implemented a mathematical model to describe the thin-film 
characteristics using perturbation analysis.  The effect of including an 
interfacial temperature gradient term, as well as varying 
thermophysical properties allowed for much more pronounced effects 
to be seen when superheat is varied (Zhao et al., 2011).  An increased 
superheat serves to lessen the adsorbed film thickness, and creates a 
much more aggressive curvature increase as the film transitions from 
the adsorbed region through the thin-film region.  In general, for 
higher superheats the film length is decreased, creating a much 
‘steeper’ thin-film profile (Zhao et al., 2011).  When polar effects 
were considered on the disjoining pressure model, the thin-film 
length was extended, all the while reducing the evaporative heat 
transfer (Wee et al., 2005).  The wall slip boundary condition as 
introduced by Park et al. (2003), serves to elongate the thin film 
while yielding a lower pressure gradient (Wee et al., 2005). 

In addition to the above trends, variance in channel width has 
also been studied, such as in Wang et al. (2007).  The effect of an 
increasing channel width, was an increased thin-film length (Qu et al. 
2002; Zhao et al., 2011).  Du and Zhao (2012) attempted to quantify 
the effects of using altered evaporation models.  They concluded that 
neglecting disjoining pressure terms have less of an effect than 
neglecting capillary pressure terms.  They also concluded that the 
substrate thickness does have a minor effect on the total heat transfer.   

Kou and Bai (2011) related wall slip to a temperature jump at 
the solid-liquid interface.  They concluded that the presence of a 
temperature jump at the interface can reduce heat and mass transport 
characteristics. 

It is important to mention that in the above works, solution 
methodology is similar.  As such, the governing ODE is found to 
have a highly non-linear characteristic behaviour, regardless of order.  
If the initial conditions, such as slope and curvature, are assigned 
values of zero in the beginning of the thin film as one would assume, 
a constant thickness thin-film solution is obtained.  As a result, 
perturbations must be applied in order to obtain a physical solution of 
interest.  Considering the highly non-linear behaviour, it is difficult to 
identify a set of suitable perturbations that will yield a satisfactory 
solution.  Most published works did not include their applied 
perturbations.  Du and Zhao (2012) stated that the thickness 
perturbation, ε1, should be set sufficiently close to zero and the slope 
perturbation, ε2, should be set slightly larger than zero.  Furthermore, 
altering parameters of the problem alters boundary conditions, which 
in turn have a profound effect on the perturbations.  The solutions are 
also extremely sensitive to boundary conditions as noted in DasGupta 
et al. (1993).   

Of note is the lack of relationship between the derivative 
perturbations and the magnitude of the applied superheat or channel 
width (Wang et al., 2007 and 2008; Park et al., 2003).  These are not 
the only parameters that have an effect on applied perturbation.  This 
research also notes extreme sensitivities to the slope perturbation, ε2, 
as accommodation coefficient is altered. 

Panchamgam et al. (2008) is the only work where the high-
resolution data for thickness, slope and curvature were 
experimentally obtained and used as inputs to a macro-micro 
numerical model.  Thus, the thin-film characteristics of a constrained 
vapour bubble - such as interfacial temperature profile, evaporative 
heat and mass flux – were directly calculated. 

Morris (2003) presented a different and more rigorous approach 
to the same problem by matching the asymptotic solutions. He 
pointed out that the above methods divide the meniscus at an 
arbitrarily chosen point: nonlinear small region close to the apparent 
contact angle and relatively undisturbed region determined from the 
hydrostatics. In this work, it was shown that the above methods 

implicitly assume that the capillary number (ܽܥ = (ߪ/ܸߤ of the 
induced flow is small. 

In addition to the points raised by Morris (2003), we also 
identified that effects of certain variables often overlooked in these 
solutions, including the accommodation coefficient and Hamaker 
constant. It was found that these variables play a large role in the 
resulting thin-film characteristics.   

In this paper, a mathematical model based on the augmented 
Young-Laplace and Kelvin-Clapeyron equations is studied.  The 
main goal of our study is to investigate the effects of various 
parameters and identify the limits of the mathematical model in order 
to better understand the thin-film dynamics.  A deliberate attempt is 
made to list the various parameters of the solution such as 
perturbations imposed and discuss in detail the validity limit of the 
solutions. 

2. MATHEMATICAL MODEL 

The meniscus is confined by a narrow channel with immiscible walls 
and of infinite depth, as illustrated in Fig. 1.  The model developed 
herein, describes a thin film of non-polar fluid, evaporating in a 
steady-state condition, for a given superheat.  The model proposed, 
follows a similar approach used in previous related works, e.g. Wee 
et al. (2005) and Panchamgam et al. (2008). 
 

 
Fig. 1 Meniscus as it contacts a rigid and planar immiscible 

substrate. 
 

The evaporating thin-film region of a meniscus is governed by 
the augmented Young-Laplace equation, as proposed by Wayner Jr. 
(1991), where the vapour pressure field is assumed uniform and 
constant. 

௩ܲ = ௟ܲ + ௗܲ + ௖ܲ (1) 
 

The vapour pressure is balanced by the liquid, disjoining and 
capillary pressures found in the thin-film region. Of these pressures, 
the disjoining pressure for a pure, non-polar fluid is expressed as a 
function of the dispersion constant, A, and film thickness, δ, as 
follows 

 

ௗܲ =  ଷ (2)ߜܣ

 
The dispersion constant, A, is related to the Hamaker constant, ܣு, by the following relation: ܣ =  Note that in some works  .ߨு/6ܣ

both terms were alternatively used for the same value, leading to 
confusion in reproducing the results.  The importance of the Hamaker 
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constant and its effect on the results will be discussed later in the 
paper.  

The capillary pressure is expressed as the product of the surface 
tension and the local curvature. The surface tension is assumed to 
vary linearly with the local interfacial temperature. 

 ௖ܲ =  (3) ߢߪ
 
where,  
ߪ  = ܽ + ܾ ௟ܶ௩ (4) ߢ = ᇱᇱ൫1ߜ + ᇱଶ൯ଷ/ଶߜ =  ଷ/ଶ (5)ߙᇱᇱߜ

 
Combining Eqs. (1-5) and differentiating with respect to x, the 

following third-order differential equation is obtained. 
ᇱᇱᇱߜ  = ߙᇱᇱଶߜᇱߜ3 + ߪଷ/ଶߙ ൬3ߜܣସ ᇱߜ − ݀ ௟ܲ݀ݔ ൰ − ߪܾ ൬݀ ௟ܶ௩݀ݔ ൰  ᇱᇱ (6)ߜ

 
Equation (6) captures the pressure gradient and thermocapillary 

effects present in the thin film. Both the liquid pressure and 
interfacial temperature gradients are needed to solve the governing 
equation. 

As the film is evaporating, fluid must flow into the thin-film 
region from the bulk meniscus, so as to maintain steady state. The 
flow field in the thin-film liquid is solved with the use of the 
lubrication approximation, given by Eq. (7) and associated boundary 
conditions at the wall, Eq. (8), and the liquid-vapour interface, Eq. 
(9). 

 ݀ ௟ܲ݀ݔ = ߤ ݀ଶݕ݀ݑଶ (7) ݑ = ߚ− ߬ (8) ݕ݀ݑ݀ = ᇱߪ = ߤ  (9) ݕ݀ݑ݀

 
In Eq. (8), the slip length coefficient β, is carried through the 

derivation for completeness, though later set to zero to produce a no-
slip condition. The second boundary condition, Eq. (9), captures the 
Marangoni effects at the free liquid-vapour interface.  Integrating Eq. 
(7), the thin-film liquid velocity is obtained as a function of the liquid 
pressure and interfacial temperature gradients. 

ݑ  = ߤ1 ݀ ௟ܲ݀ݔ ൭ݕଶ2 − ݕ)ߜ − ൱(ߚ + ߤܾ ݀ ௟ܶ௩݀ݔ ݕ) −  (10) (ߚ

 
With the velocity of the liquid in the thin film described by Eq. 

(10), the mass flow rate can be obtained through the application of 
continuity. After integrating over the film thickness, the mass flow 
rate at any point along the thin film is obtained as, 

 ሶ݉ = ߥ1 ݀ ௟ܲ݀ݔ ቆ−ߜଷ3 + ଶቇߜߚ + ߥܾ ݀ ௟ܶ௩݀ݔ ቆߜଶ2 −  ቇ (11)ߜߚ

 
The temperature of the channel walls is assumed be constant and 

uniform with heat being conducted through the film thickness normal 
to the planar wall. Reflecting this, the energy equation and boundary 
conditions take the following form, 

ݕ߲߲  ൬݇௟ ൰ݕ߲߲ܶ = 0 (12) 

 

At ݕ = 0, 
 ܶ = ௪ܶ (13) 
 
At ݕ =  ,ߜ
 −݇௟ ݕ߲߲ܶ = ሶ݉ ᇱᇱℎ௙௚ (14) 

 
Integrating the energy equation, Eq. (12), and applying the 

appropriate boundary conditions, Eqs. (13) and (14), an expression 
for the evaporative mass flux is obtained. 

 ሶ݉ ᇱᇱ = ݇௟( ௪ܶ − ௟ܶ௩)ߜℎ௙௚  (15) 

 
The evaporative mass flux can be related to the liquid mass flow 

by,  
 ሶ݉ ᇱᇱ = −݀ ሶ݉ ᇱᇱ݀ݔ  (16) 

 
Integrating Eq. (16) with respect to film length ݔ, the mass flow 

rate in the thin film is described as, 
 ሶ݉ = −න ݇௟( ௪ܶ − ௟ܶ௩)ߜℎ௙௚ ௫ݔ݀

଴  (17) 

 
From Eqs. (11) and (17), a relation between the liquid pressure 

gradient and interfacial temperature gradient is obtained. 
 ݀ ௟ܲ݀ݔ = ܾ ସܥହܥ ݀ ௟ܶ௩݀ݔ + ସℎ௙௚ܥ௟݇ߥ න ௪ܶ − ௟ܶ௩ߜ ௫ݔ݀

଴  (18) 

 
where, 

ସܥ  = ଷ3ߜ −  ଶߜߚ
(19) 

ହܥ = ଶ2ߜ −  (20) ߜߚ

 
To form a closed solution to the governing equation, the Kelvin-

Clapeyron evaporation model, introduced by Wayner Jr. (Wayner Jr., 
1991), is used. 

 ሶ݉ ᇱᇱ = 1ℎ௙௚ ቀℎ௟௩௖௟( ௟ܶ௩ − ௩ܶ) − ℎ௟௩௞௟( ௗܲ + ௖ܲ)ቁ (21) 

ℎ௟௩௖௟ = ߟ ൬ 1ܶ௟௩൰ଷ/ଶ ቆܯℎ௙௚௩ܶ ቇ (22) 

ℎ௟௩௞௟ = ߟ ൬ 1ܶ௟௩൰ଷ/ଶ ௟ܸ (23) 

ߟ = ቆܥଶܴߨ2ܯቇଵ/ଶ ቆ ௩ܲℎ௙௚ܴ ቇ (24) ܥ = 2ߛ2 −  (25) ߛ

 
By equating the evaporative mass flux expressions, Eqs. (15) 

and (21), a relation is obtained where the interfacial temperature is 
described independently of the liquid pressure. Differentiating with 
respect to the thin-film length x, the interfacial temperature gradient 
is obtained as follows:  

 



Frontiers in Heat and Mass Transfer (FHMT), 4, 013002 (2013)
DOI: 10.5098/hmt.v4.1.3002

Global Digital Central
ISSN: 2151-8629

4 
 

݀ ௟ܶ௩݀ݔ = 2 ௩ܶߜଷ ቆ߯ + ௟ܸߜߪߟସߢᇱ߱ ቇ (26) 

 
where, 

 ߯ = ᇱߜ ቂ݇௟ߜଶቀ ௟ܶ௩ହ/ଶ − ௪ܶ ௟ܶ௩ଷ/ଶቁ − ܣ3 ௟ܸߟቃ (27) ߱ = ݇௟ ௩ܶቀ5 ௟ܶ௩ଷ/ଶ − 3 ௪ܶ ௟ܶ௩ଵ/ଶቁ + ℎ௙௚ܯ൫ߟߜ2 − ௟ܸ ௩ܾܶߢ൯ (28) 

 
Collecting Eqs. (6, 18, 26) and rearranging for ߜᇱᇱᇱ,  the 

governing equation for the evaporating thin film is described as, 
ᇱᇱᇱߜ  = ߙᇱᇱଶߜᇱߜ3 − ቌ ଷ/ଶߙଷଶ߱ߙ߱ + 2 ௩ܶ߰ ௟ܸߜߪߟቍ 

቎2 ௩ܶ߰߯߱ߜଷ − ߪଷଶߙ ቆ3ߜܣସ ᇱߜ − ସℎ௙௚ܥ௟݇ߥ න ௪ܶ − ௟ܶ௩ߜ ௫ݔ݀
଴ ቇ቏ (29) 

where, 
 ߰ = ߪܾ ൬ܥହܥସ ଷ/ଶߙ +  ᇱᇱ൰ (30)ߜ

 
Thus, the governing equation is obtained as a function of film 

thickness and associated derivatives, fluid properties and the 
interfacial temperature.  

2.1 Initial conditions and limitations 

To obtain the adsorbed film thickness, it is assumed that no 
evaporation is taking place in the adsorbed region. Thus, the 
evaporative mass flux from the Kelvin-Clapeyron model, Eq. (21), is 
set to zero and the interfacial temperature is assumed to be that of the 
wall in the adsorbed region.  This yields the following equation for 
the adsorbed film thickness. 
଴ߜ  = ቈ ܣ ௟ܸܯℎ௙௚ ൬ ௩ܶ௪ܶ − ௩ܶ൰቉ଵ/ଷ (31) 

 
As it was discussed previously, to avoid a trivial solution of 

constant thin film thickness, small perturbations need to be applied to 
the initial conditions (ߜ, ᇱߜ  and ߜᇱᇱ).  As a goal to obtain accurate 
solutions for thin-film region, the perturbations must be sufficiently 
small to ensure proximity to the adsorbed region as perturbations 
serve to effectively shift the coordinate system away from the 
adsorbed region.  To avoid violating the evaporative mass flux 
balance, the possible limits of important parameters are searched.  
Thus, a maximum and minimum value range for ߜᇱᇱ is obtained as a 
function of ߜ and ߜᇱ. 

On the lower end of the perturbation applied to ߜᇱᇱ,  the 
replacement of the interfacial temperature with that of the vapour 
temperature gives 

௠௜௡ᇱᇱߜ  = ଷ/ଶߙ− ቈ݇௟( ௪ܶ − ௩ܶ)௟ܸߟߜߪ ௩ܶଷ/ଶ + ௗܲߪ ቉ (32) 

 
Upon inspection, it is seen that ߜ௠௜௡ᇱᇱ < 0 for all cases. Thus, it is 

imposed that the minimum value be set to	ߜ௠௜௡ᇱᇱ > 0, so as to ensure a 
non-trivial solution of monotonically increasing film thickness. 

Conversely, the upper bound for ߜᇱᇱ is obtained by equating the 
interfacial temperature to that of the wall temperature. Solving for ߜ௠௔௫ᇱᇱ , 

௠௔௫ᇱᇱߜ  = ߪଷ/ଶߙ ቆܯℎ௙௚௩ܶ ௟ܸ ( ௪ܶ − ௩ܶ) − ௗܲቇ (33) 

 
Inspecting Eq. (33), it is observed that the following inequality 

must be satisfied so as to ensure a monotonic increase in thin film 
thickness. 

ℎ௙௚௩ܶܯ  ௟ܸ ( ௪ܶ − ௩ܶ) ≥  ଷ (34)ߜܣ

 
Thus, only solutions satisfying the aforementioned perturbation 

limits are valid.  A check must be performed when specifying the 
initial conditions so as to avoid any inadvertent violations of the mass 
flux balance or assumptions made in the analysis. 

3. NUMERICAL SOLUTION PROCEDURE 

The governing equation, Eq. (29), is solved with the use of a Runge-
Kutta RK5 (4) 7M method, as proposed by Dormand and Prince 
(1980). The RK5 (4) 7M method is a modified 5th order technique 
designed to produce small principal truncation terms.  The solution 
procedure is iterative.  At a given solution step, the integral term 

contained in Eq. (29), ׬ ்ೢ ି்೗ೡఋ ௫଴			,ݔ݀ needs to be solved, which 

requires the knowledge of the current film thickness and interfacial 
temperature.  These values are unknown at the current position step 
and need to be guessed.  As a first guess, the values from the previous 
step are used, and the calculated values are returned from the Runge-
Kutta solver and compared to the guess values.  A comparison of the 
guess and calculated values is performed and looped until 
convergence criteria for both film thickness, Eq. (35) and interfacial 
temperature Eq. (36), are satisfied. The numerical solver is coded in 
MATLAB, and follows the simplified flowchart shown in Fig. 2. 
 ቤߜ௚௨௘௦௦ − ௦௢௟௩௘ௗߜ௦௢௟௩௘ௗߜ ቤ ≤ 0.1% (35) 

 ቤ ௟ܶ௩೒ೠ೐ೞೞ − ௟ܶ௩ೞ೚೗ೡ೐೏௟ܶ௩ೞ೚೗ೡ೐೏ ቤ ≤ 0.1% (36) 

 
The code solves the governing equation and returns a solution 

when the far field curvature of the thin film has achieved the constant 
curvature convergence criteria (±0.01 %).  The code terminates when 
the convergence criteria for constant curvature has been satisfied for 
ten consecutive steps.  Though a constant curvature solution may be 
obtained, the desired curvature of Young-Laplace (1/H) is sought.  
Thus, an upper and lower bound are searched out, after which the 
search is completed by algorithm until the desired far field constant 
curvature condition (ߢ = 1 ܪ ± 0.01%⁄ ) is achieved. Due to the 
highly non-linear nature of the governing equation and the 
convergence criteria (±0.01 %), the perturbation value (ε2), required a 
case specific precision as denoted in Table 2. 

4. RESULTS AND DISCUSSION 

A typical set of results obtained for pentane in a channel of 20 µm 
width and superheats of ( ௪ܶ − ௩ܶ)= 0.01 K and 0.1 K at Tv = 300 K 
is presented in Fig. 3.  This type of behaviour is representative of the 
thin-film development observed in other previous works, for example 
in Wee et al. (2005).  Similarly, it is found that the numerical solution 
is very sensitive to the initial conditions and applied perturbations.  
Specifically, the results were extremely sensitive to the value of ߜᇱ 
and its associated perturbation ε2. Increasing the superheats 
effectively steepens the thin-film profile and decreases the thin-film 
length.  As a result of the thin-film geometry, the perturbation 
magnitude and sensitivity increases at larger superheats.  In our 
solutions, we found that ε1 had to be increased in order to seek an 
appropriate ε2. However, it should be noted that applied perturbations 
must be sufficiently small such as to not shift the origin of the 
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coordinate system too far into the thin-film region.  A large 
perturbation may lead to exclusion of the near adsorbed region and 
thus the loss of important information for the entire solution. 

Figure 4 provides a comparison to the thin-film profile 
generated in this study to that of Wang et al. (2007), where the 
thickness perturbation ε1, was provided for one of the cases 
presented.  Observing Fig. 4, it is seen that the profiles have the same 
general trend.  It is of note that Wang et al. (2007) used a 4th order 
ODE as opposed to the 3rd order used in this study.  In the 4th order 
model, the main sensitivity lies on the perturbation on ߜᇱᇱ(ߝଷ)	, which 
needs to be iteratively determined.  In a 3rd order model, the 
sensitivity falls on the slope perturbation, ߜᇱ(ߝଶ) , which was 
determined by the numerical model to match the far field boundary 
condition.  In the 4th order model, the slope perturbation is not 
sensitive so ߜᇱ= 1×10-11 was used in Wang et al. (2007).  In our case, 
the solutions were not sensitive to ߜᇱᇱ	so it was set at 1×10-3. Note 
that the evaporation models were also different between Wang et al. 
(2007) and the work presented here. 

In many other works, the perturbations used are not provided.  
As a result, a direct comparison was not possible.  Table 2 provides a 
list of parameters used in generating the solutions including the 
applied perturbations to Figs. 3 and 4 so that the future works can be 
directly compared against our work. 
 

 
 
Fig. 2 Simplified flowchart outlining the solution procedure. 
 
 
 

Table 2 Input parameters used in generating thin-film solutions. 

Input Fig. 3 Fig. 4 

Fluid Pentane Octane 

Superheat 0.01 K, 0.1 K 1 K 2H 20 µm 5 µm Tv 300 K 343 K δ0@0.01	K 4.68376868475136×10-9 m 1.70×10-3 m δ0@0.1	K 2.950758143324543×10-9 m  ε1 δ0 × 0.01% m 1.70×10-3 m ε2@0.01	K 2.5205788×10-6 1.477109375×10-2 ε2@0.1	K 2.637589900102466×10-6  ε3 1×10-3 m-1 1×10-3 m-1ε4 0 0 

 
 

 
Fig. 3 Thin-film profile of pentane in a channel of 20 µm width at 

different superheats. 
 
 

 

Fig. 4 Thin-film profile comparison to Wang et al. (2007). 
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4.1 Accommodation coefficient 

The variable ߛ in Eq. (25) represents the accommodation coefficient.  
The accommodation coefficient is often used as unity in majority of 
the previouslsy published works: Wang et al. (2007); Wee et al. 
(2005); Qu et al. (2002); Schonberg et al. (1995); Stephan et al. 
(1992), without much discussion.  An accommodation coefficient of 
unity implies that for every liquid molecule emitted, none are 
rebounded and re-absorbed, giving a perfect evaporative capacity.  
Mills (1965) notes that in cases of extreme fluid purity, this value 
should tend to unity.  However, extreme purity may be unrealistic to 
obtain, as such the value should be lower than unity.   

The effect of the accommodation coefficient is mostly omitted 
in the previously published thin-film solutions, yet in the case of 
numerically modelling a thin-film meniscus, alters the results 
noticeably. In some works, Wee et al. (2005); Du and Zhao (2011), ܥ = 2)/ߛ2 −  was defined as accommodation coefficient and a	(ߛ
value of 2.0 was assigned to C, resulting in the true accommodation 
coefficient, 1.0 = ߛ.  Panchamgam et al. (2008) referred to this ܥ as 
the constant of proportionality.  Thus, there is an ambiguity in the 
general use of this term. 

Figure 5 demonstrates how the thin-film profile alters with 
decreasing accommodation coefficient.  This analysis was performed 
with pentane as the working fluid in a 20 µm channel and a 0.01 K 
superheat.  It is clear that with a decreasing value of accommodation 
coefficient, the film growth is delayed, resulting in a longer thin film 
and consequently a modified thin-film interface shape.  This result 
was expected as a smaller accommodation coefficient would suggest 
less evaporative mass flux, thus extending adsorbed region of the 
film.  The seemingly abrupt end of the thin-film profiles for 0.4 = ߛ 
and 0.3 = ߛ was due to the constant curvature termination condition.  
At these lower values of accommodation coefficient, the curvature 
profile loses the associated overshoot, as shown in Fig. 6. 

Evaporative mass flux can be seen in Fig. 7 with decreasing 
accommodation coefficient.  Not only does the peak magnitude of 
mass flux decrease, but the location is shifted along the length of the 
film.  This corresponds with the extension of the thin-film profiles, 
thus the disjoining pressure decrease is retarded along the length of 
the film. 

Observing the end of the evaporative mass flux profiles, it is 
clear in all cases, that evaporative mass flux at the constant curvature 
condition is non-zero.  As mentioned earlier this deals with the use of 
the augmented Young-Laplace equation which entails some residual 
mass flux towards the intrinsic meniscus.  In addition, retarding the 
evaporation by implementing a lower value of accommodation 
coefficient leaves an increased residual mass flux in order to satisfy 
the mass flux balance used in the derivation. 
 

 
Fig. 5 Effect of accommodation coefficient on thin-film profile 
(Results presented in decrements of 0.1 from γ =1.0 to 0.3). 

 
 

 
Fig. 6 Effect of accommodation coefficient on curvature (Results 

presented in decrements of 0.1 from 1.0= ߛ to 0.3). 
 

 
Fig. 7 Effect of accommodation coefficient on evaporative mass flux 

(Results presented in decrements of 0.1 from 1.0= ߛ to 0.3). 
 

From these plots it is clear that altering the accommodation 
coefficient does indeed have a significant effect on the evaporative 
characteristics of the thin film. 

It should be noted that the origin of the coordinate system is 
arbitrary for the shooting techniques used in this work. However, 
when the accommodation coefficient was varied not only the origin 
but also the overall shape of the solutions was also altered.  As a 
result, without sufficient knowledge of accommodation coefficient, 
results are at best qualitative.  

4.2 Hamaker constant 

A similar ambiguity exists for the Hamaker constant, which had 
been estimated by using different methods.  A survey of thin film 
works indicates a range of values were used for differing 
arrangements.  This can be attributed to the many different relations 
proposed to estimate the Hamaker constant value for a given set of 
materials.   

In our analysis, the Tabor-Winterton approximation is used to 
obtain a value for the Hamaker constant as outlined in Butt and Kapl 
(2010), and Israelachvili (1991).  In this method, the Hamaker 
constant for the solid-liquid-vapour system (132) is given as a 
function of temperature, absorption frequency, index of refraction 
and dielectric constant by the following equation, 
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ுܣ = ଵଷଶܣ = ݇஻ܶ ൬ߦଵ − ଵߦଷߦ + ଷ൰ߦ ൬ߦଶ − ଶߦଷߦ + ଷ൰ߦ 34 + 3ℎߥ௘8√2 × 

 (݊ଵଶ − ݊ଷଶ)(݊ଶଶ − ݊ଷଶ)(݊ଵଶ + ݊ଷଶ)ଵ/ଶ(݊ଶଶ + ݊ଷଶ)ଵ/ଶሼ(݊ଵଶ + ݊ଷଶ)ଵ/ଶ + (݊ଶଶ + ݊ଷଶ)ଵ/ଶሽ (37) 

 
Of the functional terms in Eq. (37), the absorption frequency for 

the working fluid, ߥ௘ , comes into question, as more than one 
absorption peak exists for any given material, or combination of 
materials.  As a result of this uncertainty, a parametric study was 
conducted to determine the effect of variability in the Hamaker 
constant on the thin-film profile.  By using an absorption frequency 
value of ߥ௘  = 1.7635×1015 Hz from Costner et al. (2009), the 
dispersion constant was calculated to be A = 2.013×10-21 J using Eq. 
(37), which was consistent with the values provided in Israelachvili 
(1991). 

For the parametric study, the dispersion constant was set for a 
range of values around the calculated dispersion constant (1×10-21 ≤ A ≤ 10×10-21) in an effort to illustrate its effect on the thin-film 
profile and evaporation.  The geometry of the thin film, as shown in 
Fig. 8, illustrates that an increasing dispersion constant results in a 
thickening of the adsorbed layer and an elongation of the thin film 
length. 
 

 
Fig. 8 Thin film profiles for increasing dispersion constants in 

increments of 1×10-21. 
 
 
 

 
Fig. 9 Local curvature profiles for increasing dispersion constants in 

increments of 1×10-21. 
 

It is important to note that the thin-film termination location 
changes significantly for higher values of the dispersion constant.  
This termination can be explained by the reduction in the local 
curvature overshoot with increasing dispersion constant, shown in 
Fig. 9, similar to the trend observed previously in Fig. 6.  Thus it is 
evident, that changes in the dispersion constant can significantly 
affect the thin film profile and evaporation capacity.  In regards to 
evaporation, it can be seen in Fig. 10 that the peak evaporation rate 
decreases slightly with increasing dispersion constant. 

 
Fig. 10 Evaporative mass flux in the thin film region with increasing 

dispersion values in increments of 1×10-21. 

4.3 Absolute negative liquid pressure 

At higher superheats, near the adsorbed region, disjoining effects are 
so pronounced that in satisfying the force-balance, Eq. (1), an 
absolute negative liquid pressure is generated.  In the previously 
published thin-film solutions, the absolute negative liquid pressures 
were not explicitly discussed. For example, in Wang et al. (2007), a 
liquid pressure change (ΔP) was defined with respect to the pressure 
obtained in the assumed starting point of the thin-film solution 
instead of plotting the liquid pressure directly.  Figure 11 shows a 
composite pressure profile at Tv = 300 K for a 1 K superheat, a 
channel width of 5 μm, and octane as the working fluid.  The 
absolute negative liquid pressure inside the thin-film can be clearly 
seen in Fig. 11.  As the film thickness decreases, the disjoining 
pressure quickly increases, leading to a decrease in the liquid 
pressure.  For very thin films, the liquid pressure becomes negative to 
satisfy Eqs. (1) and (2).   

 
Fig. 11 Composite pressure profile for 1 K superheat, a channel 

width of 5 μm, and octane as the working fluid. 
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Maroo and Chung (2010) also reported a negative absolute 
liquid pressure in their analysis of evaporating meniscus using 
molecular dynamics.  They speculated that this negative liquid 
pressure occurs in regions where the liquid film is being pulled by the 
relatively cooler liquid in the meniscus, and also towards the centre 
due to high disjoining pressure.  The negative liquid pressures, where 
liquid is in a highly unstable state of tension, have been previously 
experimentally observed as explained in Batchelor (1979).  It is 
possible that thin films can sustain negative pressures as the film 
thickness can be smaller than the critical cavitation radius.  However, 
it is open to debate whether the negative liquid pressure originates 
from the simplified nature of the thin-film mathematical model or the 
model correctly predicts the liquid pressure in a thin film. 

5. CONCLUSIONS 

The non-linear ODE representing the evaporating thin film in a 
channel was numerically solved and the results were discusses in 
detail.  A summary of the fundamental findings are as follows: 

The numerical solution is very sensitive to the initial conditions 
and the applied perturbations.  In particular extreme sensitivity was 
found with the applied value of ߜᇱand its associated perturbation 2ߝ.  
In addition, applied perturbations must be small enough such as to 
not shift the origin of the coordinate system to far into the thin-film 
region.  Using too large of perturbations can result in omission of key 
attributes near the adsorbed region. 

The accommodation coefficient and Hamaker constant had a 
pronounced effect on thin-film geometry and associated 
characteristics.  Although the starting point of the solution is subject 
to an arbitrary shift due to the shooting techniques used, it is clear 
that varying these coefficients affect not only the origin but also 
overall shape of the resulting profiles.  

Decreasing accommodation coefficient shallowed the thin-film 
profile.  This shallowing resulted in a retardation of the decline in 
disjoining pressure.  This corresponded in delaying the increase in 
liquid pressure and shifting the peak evaporative mass flux along the 
length of the film.  The magnitude in evaporative mass flux also 
decreased with decreasing accommodation coefficient.  Curvature 
overshoot was also observed to diminish with decreasing 
accommodation coefficient.   

The variance in the Hamaker constant modified the profiles and 
physical characteristics of the thin film.  As the Hamaker constant 
was increased, the thin-film length was extended, the peak 
evaporative mass flux was shifted towards the intrinsic meniscus, and 
the evaporative mass flux magnitude decreased. 

Disjoining pressure effects are much more pronounced near the 
adsorbed layer, creating absolute negative liquid pressures.  The thin 
films can theoretically sustain negative liquid pressures due to their 
small thicknesses.  However, without experimental validation, the 
presence of negative pressures in thin films remains controversial. 

It is important to highlight that from the above analyses, the 
current results of thin-film studies are very significant in gaining 
insight into the heat transfer characteristics of an evaporating thin-
film.  However, with the above inconsistencies identified, results can 
only be regarded as qualitative trends.  With the ambiguity that exists 
within these parameters such as accommodation coefficient, Hamaker 
constant and applied perturbations, experimental investigation is 
necessary to verify the numerical results. 
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NOMENCLATURE 

a Surface tension coefficient (N/m) 
A Dispersion constant (J) 
AH, A132 Hamaker constant (J) 
b Surface tension temperature coefficient (N/m·K) 
C Constant of proportionality 
C4 Slip length relation coeff (m3) 
C5 Slip length relation coeff (m2) 
Ca Capillary number 
h Plank’s constant (J·s) 
hfg Latent heat of vapourization (J/kg·K) ℎ௟௩௖௟  Clapeyron evaporative mass flux coeff (kg/m2·s·K) ℎ௟௩௞௟ Kelvin evaporative mass flux coeff (s/m) 
H Channel height (m) 
kl Liquid conductivity (W/m·K) 
kB Boltzmann’s constant (J/s·m2·K4) ሶ݉  Mass flow rate (kg/s) ሶ݉ ᇱᇱ Evaporative mass flux (kg/m2·s) 
M Molecular mass (kg/kmol) 
n Index of refraction 
P Pressure (N/m2) 
R Universal gas constant (J/mol·K) 
T Temperature (K) 
u Axial velocity (m/s) 
Vl Molar volume (m3/mol) 
V Liquid velocity (m/s) 
x x direction (m) 
y y direction (m) 
 
Greek symbols 
α Local curvature term 
β Wall slip length (m) 
γ Accommodation coefficient 
δ Thin film thickness (m) 
ε1 Thickness perturbation (m) 
ε2 Slope perturbation 
ε3 Perturbation applied to δ’’ (1/m) 
η Kelvin-Clapeyron mass flux coeff (mol·K3/2/s·m2) 
κ Local curvature (1/m) 
μ Dynamic viscosity (Pa·s) 
ν Kinematic viscosity (m2·s) 
νe Main absorption frequency (1/s) 
ξ Dielectric constant 
σ Surface tension (N/m) 
τ Liquid-vapour interfacial shear stress (N/m2) 
χ Collection of terms in ODE (W·m·K3/2) 
ψ Collection of terms in ODE (1/m·K) 
ω Collection of terms in ODE (W·K3/2/m) 
 
Subscripts 
c Capillary 
d Disjoining 
l Liquid 
lv Liquid-vapour interface 
v Vapour 
w Wall 
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