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ABSTRACT

A computational model is presented that extends prior work on unsteady natural convection in a tall rectangular cavity with aspect ratio 10 and
applies Proper Orthogonal Decomposition to the results. The solution to the weakly compressible Navier-Stokes equation is computed for a range of
Rayleigh numbers between 2 × 107 and 2.2 × 108 with Prandtl number 0.71. A detailed spectral analysis shows dynamic system behavior beyond
the Hopf bifurcation that was not previously observed. The wider Rayleigh range reveals new dynamic system behavior for the rectangular geometry,
specifically a return to a stable oscillatory behavior that was not predicted in prior work. Proper Orthogonal Decomposition (POD) has been used to
analyze the computational results. Five eigenvalue modes were required to capture correctly the basic flow structure. The POD failed to capture subtle
aspects of the flow structure at high Rayleigh numbers for the model, indicating that a POD and Galerkin projection for several Rayleigh numbers will
be needed to reproduce the complex behavior of the system.
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1. INTRODUCTION

Natural convection in a tall cavity with non-isothermal vertical walls
has many applications including optical fiber manufacturing, optimizing
computer component locations, and composite building walls. Computa-
tional work has explored a wide variety of boundary conditions, however
the case of non-uniform wall temperatures has only been explored by a
small group.

For the case of isothermal walls in tall cavities the flow will tran-
sition from the conduction regime to the convection regime at the crit-
ical Rayleigh number (Rac). As the Rayleigh number (Ra) is further
increased, the system will transition to chaotic behavior. The chaotic be-
havior of the system has been shown to exhibit hysteresis, intermittency,
a supercritical Hopf bifurcation, and period doubling. Several parameters
are used to classify the systems. The geometry of the cavity is represented
by the aspect ratio (A), where A = H/W . H is the height of the cavity
and W is the width.

Convection in a tall cavity has been studied by many authors in the
last 30 years as summarized in Table 1. The work of Reeve et al. (2004)
is the only prior work to consider the same boundary conditions as in the
present work. Here, the range of Rayleigh numbers has been extended.
The boundary conditions for the system are specified as adiabatic on the
upper and lower cavity boundaries as shown in Figure 1. The temper-
ature on the right and left walls are constrained to vary linearly in the
y-direction as shown in Figure 2. Reeve et al. (2004) observed that these
boundary conditions, at low Rayleigh number, create a steady bi-cellular
flow in contrast to uni-cellular flow for isothermal vertical walls.

†Corresponding author. Email: emery@u.washington.edu

Fig. 1 Schematic of the computational domain.

All of the authors summarized in Table 1 considered isothermal
vertical walls except Reeve et al. (2004). Some authors (Paolucci and
Chenoweth (1989) and Haldenwang and Labrosse (1986)) predict an os-
cillatory instability for tall cavities. Chenoweth and Paolucci (1996) ob-
served that as the temperature difference in the cavity is increased, a
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Table 1 Summary of computational work for rectangular natural convection systems.

Author Year Ra Pr A Description
Vest and Arpaci (1969) 1969 7× 103 − 3× 105 0.71, 1000 20-33 Galerkin method.
Korpela et al. (1973) 1973 1× 102 − 1× 104 0-50 ∞ Report Rac as a function.
Lee and Korpela (1983) 1983 3× 104 − 2× 105 0-1000 15-40 Report Nusselt and streamfunctions.
Chenoweth and Paolucci (1996) 1986 1× 105 − 1× 106 0.71 1-10 Compare ideal gas and Boussinesq.
Chait and Korpela (1989) 1989 5× 102 − 1.5× 104 0.71, 1000 ∞ Pseudospectral method. Reported Rac.
Paolucci and Chenoweth (1989) 1989 0.71 0.5-3 Frequency results, bifurcation

and phase diagrams.
LeQuere (1990) 1990 7× 103 − 4× 104 0.71 16 Explored return to uni-cellular pattern.
Liakopoulos et al. (1990) 1990 0.71 10-25 Included flux wall conditions.
Suslov and Paolucci (1995) 1995 6× 103 − 1× 104 0.71 ∞ Non-Boussinesq impact on stability

and considered Rac with ∆T .
Xin and LeQuere (2002) 2002 3× 105 − 5× 105 0.71 8 Benchmark study reports Rac.
Reeve (2003) 2003 2× 107 − 1× 108 0.71 10 Commercial code FIDAP.

lower critical Rayleigh number is found. Related work in annular geome-
tries has been explored in prior work experiementally and compuationally
(Dillon et al., 2011b). Early computational results for the geometry con-
sidered are presented in Dillon et al. (2011a) and extended with reduced
order analysis in this paper.

Fig. 2 Linear temperature profile boundary conditions applied to the ver-
tical walls of the cavity.

2. METHODS

This problem was analyzed using a traditional computational tools like
COMSOL and an analysis technique called proper orthogonal decompo-
sition.

2.1. Computational Tool

The computational tool COMSOL was used to perform the simulations.
Prior to this investigation the computational tool was benchmarked with
experimental results from the literature, specifically Vest and Arpaci (1969),
and compared to other models (Lee and Korpela (1983), Liakopoulos
et al. (1990), Xin and LeQuere (2002), Reeve (2003)). The benchmark-
ing work is documented in Dillon (2011).

The buoyancy driven flow is modeled as a coupled system with fluid
motion (Navier-Stokes) and heat transfer. The model equations are given
in Equations 1-3.

In this form u represents the velocity vector of the fluid, ρ is the fluid
density, µ is the dynamic viscosity of the fluid, and f is the body force

applied to the fluid. The heat transfer is governed by Equation 3. For this
equation k is the thermal conductivity, cp is the specific heat at constant
pressure, and T is the temperature.

ρ
∂u

∂t
+ ρ(u · 5)u = 5 · (−pI + µ(5u+5uT )

−(2µ/3 · 5 · u)I) + f (1)

∂ρ

∂t
+5 · (ρu) = 0 (2)

ρcp
∂T

∂t
+5 · (−k5 T ) = −ρcpu · 5T (3)

The boundary conditions for the system are specified as no slip and
adiabatic on the upper and lower cavity boundaries. The right and left
wall temperatures have a linear profile given by T (y) = Th · (1− y) and
T (y) = Tc · y.

A grid resolution study was conducted to determine the required
mesh density and to compare the results with those computed by Reeve
et al. (2004) using FIDAP. Results for a 1120 element triangular mesh
were consistent with the results of Reeve and this triangular mesh was
used for computations. This is documented in more detail in Dillon
(2011) and Dillon et al. (2009).

The density of the fluid is represented with the Boussinesq approxi-
mation to simplify the formation of the coupled Navier-Stokes equations.
The height of the cavity H is the characteristic length and the temper-
ature difference between Th and Tc is the characteristic temperature,
∆T = (Th − Tc). From this the dimensionless temperature becomes
Θ = (T − Tc)/(∆T ). The dimensionless time is τ = t

√
gβ∆TH−1.

The dimensionless velocity was chosen based on the work of Reeve et al.
(2004) as u/

√
gβ∆TH . Aspects of the dimensionless parameters are

discussed in more detail in Dillon et al. (2010) and Dillon (2011).

2.2. Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) is based on the diagonalization
of a matrix. The mathematical procedure linearly transforms the number
of possibly correlated variables into a smaller number of uncorrelated
variables. The first component contains as much of the variation in the
system as possible. Assume a matrix X is an m× n matrix composed of
multiple observations from a simulation.

For the POD analysis the data is centered by the mean of each row.
Then the covariance matrix Cx is calculated. The covariance matrix is a
square, symmetric m×m matrix whose diagonal represents the variance
of particular measurements. Small diagonal terms indicate the variables
are statistically independent.
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Cx =
1

n− 1
XXT (4)

Singular Value Decomposition (SVD) is used to diagonalize the ma-
trix. The SVD diagonalization is shown in Equation 5, where U ∈
Cm×m is unitary, V ∈ Cn×n is unitary, and Σ ∈ Rm×n is diagonal.
If full SVD is used for calculations it may be applied to rank deficient
matrices as described by Trefethen and Bau (1997).

X = UΣV ∗ (5)

V ∗ is the hermitian conjugate or adjoint of the matrix V . This means
that the complex conjugate of each entry in the matrix is calculated and
then the matrix is transposed.

Theorem: Every matrix X ∈ Cm×n has a singular value
decomposition. Furthermore, the singular values {σj} are
uniquely determined, and if X is square and the σj dis-
tinct, the singular vectors {uj} and {vj} are uniquely de-
termined up to complex signs (complex scalar factors of ab-
solute value 1) as described by Trefethen and Bau (1997).

A visual representation of the SVD process is shown in Figure 3.
The following theorems Trefethen and Bau (1997) illustrate the way SVD
is linked to POD, where the first confirms that the basis vectors are unique
and the second theorem allows determination of N such that the Nth par-
tial sum captures as much of matrix X as possible.

Fig. 3 Visual representation of the SVD diagonalization. Adapted from
Trefethen and Bau (1997).

Theorem: X is the sum of r rank-one matrices.

X = Σr
j=1σrujv

∗
j (6)

Theorem: For any N such that 0 ≤ N ≤ r, we can define
the partial sum

X = ΣN
j=1σrujv

∗
j

And if N = min{m,n}, define σN+1 = 0. Then

‖X −XN‖2= σN+1

The SVD gives a type of least-square fitting algorithm, allowing us
to project the matrix onto low-dimensional representations in a formal,
algorithmic way as shown by Trefethen and Bau (1997). The matrix may
also be projected onto other basis as considered by other authors in the
literature. For this work, the matrix is projected back onto the data to
investigate the contribution of each mode to the observed data to augment
the frequency analysis.

2.3. Galerkin Projection

Many authors use the POD to build more elaborate models based on
the calculated modes. The most common is a Galerkin projection, but
some authors explored alternatives like Method of Polyargumental Sys-
tems (MPS), Blinov et al. (2004), Linear Stochastic Estimation (LSE),
Bonnet et al. (1994), Equation Free (EF) modeling, Sirisup et al. (2005),
and balanced truncation, Rowley (2005); Rowley and Marsden (2000).

For transient natural convection the Galerkin projection has been
used frequently. The formulation of the Galerkin projection for natural
convection problems is based on the Boussinesq equations. The Galerkin
method is used to simplify the equations to a set of non-linear ordinary
differential equations based on the orthogonal nature of the POD.

If Û is the vector of the radial and axial velocities the Boussinesq
approximation may be expressed in terms of the Grashof number (Gr)
and the Prandlt number (Pr).

∂Û

∂t
+ (Û · ∇)Û +∇P = Θ +

1√
Gr
∇2Û (7)

∂Θ

∂t
+ Û · ∇Θ =

1

Pr
√
Gr
∇2Θ (8)

∇ · Û = 0 (9)

Using the derivation of Liakopoulos et al. (1997), the stationary em-
pirical eigenfunctions for the temperature (φk) and flow field (ϕk) are
determined for a specific Gr and Pr, (equivalent to a specific Ra) using
POD. The input temperature (Θ) and flow field (Û) are separated into
time varying (Θ′, Û ′) part and time averaged components prior to per-
forming the POD, and can then be expanded in terms of the calculated
eigenfunctions.

Û ′ =

M∑
k=1

ak(t)ϕk (10)

Θ′ =

M∑
k=1

bk(t)φk (11)

The expansion coefficients (ak, bk) are calculated via integration
over the spatial domain from the known eigenfunctions.

ak(t) =
∫ ∫

Û ′ · ϕkdΩ k = 1, 2, ...,M

bk(t) =
∫ ∫

Θ′ · φkdΩ k = 1, 2, ...,M

(12)

Substitution of the expansion coefficients into the Boussinesq equa-
tions provides a simplified model for the system based on a set of coef-
ficients (Ak, Bk, Ck, ...Kk) for k = 1, 2, ...,M which are determined
from inner products of the eigenfunctions and the flow properties.

dak
dt

= Ak+
1√
Gr

Bk+Ckiai+
1√
Gr

Dkiai+Ekijaiaj+Rkibi (13)

dbk
dt

= Fk +
1

Pr
√
Gr

Gk +Hkiai+
1

Pr
√
Gr

Ikibi+Jkijaibj +Kkibi

(14)
This set of equations has been used by authors to represent the flow

and explore the dynamic system properties. The key limitation to this
approach is the restriction of the POD to a calculation at one specific
Rayleigh number. The exploration of the flow near that Rayleigh number
is likely to be well captured by the set of derived equations, but accurate
representation of the system using the simplified expressions over a large
range of Rayleigh numbers is unlikely.
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Fig. 4 Sequential contour plot of the temperature Θ (upper) and stream
function ψ (lower) for the rectangular cavity illustrating oscil-
lation of the natural convection cells through one period (Π).
Ra = 2.5× 107, A = 10.

3. COMPUTATIONAL RESULTS

For the rectangular cavity, the results for Rayleigh number below Ra =
1.0 × 108 are consistent with the results from Reeve. A transition from
steady to oscillatory flow is observed at Ra = 2.2 × 107 as the system
undergoes a supercritical Hopf bifurcation. Figure 4 shows one period of
oscillations at Ra = 2.5× 107, after the bifurcation results in oscillatory
flow. A second transition from oscillatory to chaotic flow is observed at
Ra = 4.5× 107.

In the rectangular cavity as the Rayleigh number is increased the
frequency of the oscillations increases. Figure 5 shows the amplitude of
the temperature oscillations at the center of the cavity at several Rayleigh
numbers. The local region of the oscillations near the center of the cavity
also becomes smaller as the the Rayleigh number increases.

A second, unexpected, transition back to oscillatory flow is predicted
at Ra = 1.27 × 108. Figure 9 shows one period of oscillations for
Ra = 1.7× 108 where the behavior is again oscillatory with a third cell
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(b) Ra = 10× 107
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(c) Ra = 17× 107

Fig. 5 Temperature oscillations in the center of the cavity for A = 10
showing the increase in the frequency of the oscillations and the
effect of the harmonics in the oscillations.
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formation near the center of the cavity. In Reeve’s previous research of
the rectangular geometry, a tri-cellular solution path was not predicted;
however, Reeve observed a similar phenomena at high Rayleigh numbers
in an annular cavity.

Fig. 6 Frequency summary of the temperature oscillations in the center of
the rectangular cavity, A = 10 (listing the number of frequencies
observed).
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Fig. 7 Sequential contour plot of the stream function for the rectangu-
lar cavity illustrating oscillation of the natural convection cells
through one period (Π) in the chaotic region. Ra = 10 × 107,
A = 10.

The most interesting aspects of the solution are visible when the the
full frequency spectrum is shown. The peak frequencies were calculated
and are shown in Figure 6. The frequency analysis reveals that the lower
frequency (near 0.05 Hz) has more power than the higher frequencies in
the oscillations. The initial transition to chaotic behavior is observed to
occur via period halving, where two frequencies are first seen at 0.051 Hz
and 0.164 Hz (Ra = 2.2×107). Then atRa = 3.6×107 four frequencies
are visible at 0.078, 0.160, 0.238 and 0.320 Hz. The transition to chaotic
behavior at Ra = 4.5 × 107 is shown by a collection of frequencies in
the spectrum. This region ends abruptly at Ra = 13.8 × 107 with the
appearance of two frequencies at 0.129 and 0.371 Hz. The frequencies
may exhibit period doubling but the Rayleigh number resolution does not
show a second bifurcation, rather the system jumps to six frequencies at
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(b) POD ψ

Fig. 8 Temperature (a) and streamfunction (b) maximum difference be-
tween the POD and original solution for Ra = 17× 107.

Ra = 16.3× 107. The highest frequency (0.465 Hz) bifurcates again at
Ra = 19.3× 107 as shown in the upper right of Figure 6.

The nature of the chaotic behavior is dominated by the formation of
the third cell in the cavity. Figure 7 shows an example of behavior in the
chaotic region (Ra = 10× 107). The center region of the cavity experi-
ences chaotic temperatures and velocities but the upper and lower regions
of the cavity remain relatively stable. Eventually, at higher Rayleigh num-
ber, the third cell stabilizes as shown in Figure 4 with six frequencies in
the system.

4. POD RESULTS

To quantify the dynamic behavior of the system Proper Orthogonal De-
composition (POD) was applied to the temperature and velocity field of
the simulation solution set. At specific Rayleigh numbers the time de-
pendent velocity streamfunction (ψ) and temperature (Θ) data are used
to calculate stationary empirical eigenfunctions (modes). The modes are
determined from M snapshots representing at least four periods of oscil-
lation based on the technique of Sirovich (1987).
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Table 2 Summary of modes and energy for the POD. Eigenvalues for the five most energetic modes and the contribution to the system energy at
Ra = 2.5× 107 and Ra = 17× 107 in the rectangular cavity.

Ra = 2.5× 107 Temperature Eigenvalues Streamfunction Eigenvalues

Mode eigenvalue Total Energy eigenvalue Total Energy
σ percent σ percent

1 0.59292 47.0954 0.012625 38.4593
2 0.34788 68.9592 0.0047368 76.9099
3 0.07136 93.6327 0.0018725 90.8724
4 0.056986 94.9153 0.00077265 96.2336
5 0.024877 97.7803 0.00024232 98.8188

Ra = 17× 107 Temperature Eigenvalues Streamfunction Eigenvalues

Mode eigenvalue Total Energy eigenvalue Total Energy
σ percent σ percent

1 0.71757 68.2151 0.029221 51.1865
2 0.57901 74.3525 0.015352 74.3544
3 0.22331 90.1084 0.0063467 89.3977
4 0.19776 91.2402 0.003891 93.5001
5 0.13517 94.0127 0.0015179 97.4643

X =


Θ1,1(t1) Θ1,2(t1) . . .
Θ1,1(t2) Θ1,2(t2) . . .

...
...

Θ1,1(tm) Θ1,2(tm) . . .


The eigenvalues were calculated forRa = 2.5×107 in the Cartesian

geometry and are shown in Table 2. The 90% threshold suggested by
Holmes is reached with the third eigenvalue for both parameters.

The first five modes are shown in Figure 11. These modes indicate
that most of the variation in the system occurs near the center of the cav-
ity. The structure of the modes is quantitatively similar to eigenmodes
represented in prior work Liakopoulos et al. (1997). ForRa = 2.5×107

the first five modes are used to calculate the temperature and streamfunc-
tions of the system to visualize the error in using a reduced set of modes.

A higher Rayleigh number solution in the tri-cellular region was also
analyzed. The modes are shown in Figure 12 and Table 2. The calculated
temperature and streamfunction are shown in Figure 10. When compared
with Figure 9 it is clear that key structures in the flow are not captured,
specifically the third cell in the cavity center and the additional cell forma-
tion in the upper cavity (Π) and lower cavity (4Π/8). For complex fluid
behavior in this region the POD does a relatively poor job even when 97%
of the eigenvalue energy is used. The maximum differences are shown in
Figure 8. In cases of very fine structure it may require retaining modes
that represent as much as 99.5% of the total energy.

5. CONCLUSIONS

For natural convection with moderate driving force, COMSOL predicts
the stable region of the flow and a transition to oscillatory flow as well
as other computational tools do. The results for natural convection in
a tall cavity with linear boundary conditions agree well with the results
of Reeve et al. (2004) at low Rayleigh numbers. At higher Rayleigh
numbers, the natural convection creates a multi-cellular flow pattern and
temperature oscillations in the cavity.

These simulations over a wider Rayleigh number range show that
the system transitions back to a stable oscillatory behavior as a third con-
vection cell is formed in the cavity. The spectral analysis confirms that

the system is undergoing a frequency doubling route to chaos following
a supercritical Hopf bifurcation.

A POD analysis of this type has never been performed for this nat-
ural convection system. In general the 90% cumulative energy threshold
for POD as suggested by other authors is not sufficient to characterize the
flow or temperature structure of a system of this type. For the oscillatory
region five modes were sufficient to reproduce key flow structures but at
high Rayleigh numbers where the flow is more complex the POD was
not able to capture the flow behavior. This indicates the need for a more
robust approach to reduced order modeling for a system of this type. The
limitations of POD in this problem may be reduced in part in future work
by increasing the resolution of the CFD code in the time domain, but this
change was not possible for consideration in the present work.

A traditional Galerkin projection was not calculated for this prob-
lem because of the dynamic system complexity. For example, if the
Ra = 2.5× 107 results had been used as the base for a Galerkin projec-
tion it seems clear from examination of the modes that theRa = 18×107

would be poorly captured by the projection. In this case, future work
based on the Galerkin projection outlined by Liakopoulos et al. (1997)
will be modified for this problem. A projection will be derived for mul-
tiple Rayleigh numbers, representing the two cell, chaotic, and three cell
regions of the flow. The authors believe that a Galerkin projection that
crosses multiple Rayleigh numbers may be a robust way to represent the
flow characteristics.

The POD results do provide an elegant method for understanding the
complex flow behavior in the system. Future work may examine a wider
Ra range for the annular geometry and additional radius ratios.
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(b) ψ

Fig. 9 Sequential contour plot of the temperature Θ (upper) and stream
function ψ (lower) for the rectangular cavity illustrating oscil-
lation of the natural convection cells through one period (Π).
Ra = 17× 107, A = 10.
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(b) POD ψ

Fig. 10 Temperature (a) and streamfunction (b) values calculated by the
POD forRa = 17×107 with 5 modes. These should be compared
with the computational results shown in Figure 9.
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(a) Θ Modes
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(b) ψ Modes

Fig. 11 Temperature (a) and streamfunction (b) modes calculated by the
POD for Ra = 2.5× 107.
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(b) ψ Modes

Fig. 12 Temperature (a) and streamfunction (b) modes calculated by the
POD for Ra = 17× 107.
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NOMENCLATURE

g acceleration of gravity
H height of the cavity
k thermal conductivity
Pr Prandlt number (Pr = cpµ/k)

Ra Rayleigh number (Ra =
ρ2gcpβ(∆T )H3

kµ
)

p, P dimensioned and dimensionless pressure
u, U dimensioned and dimensionless velocity (U = u/

√
gβ∆TH)

W width of the cavity
Greek Symbols
β coefficient of thermal expansion
µ dynamic viscosity
ρ density
Θ dimensionless temperature (Θ = T−Tc

∆T
)

t, τ dimensioned and dimensionless time (τ = t
√
gβ∆TH−1)
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