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ABSTRACT 
The numerical solution of transient natural convection MHD flow past a vertical cylinder embedded in a porous medium with surface temperature 
and concentration along with thermal radiation is presented. The temperature and concentration level at the cylinder surface are assumed to vary as 
power law type functions, with exponents m and n respectively in the stream wise co-ordinate. The governing boundary layer equations are 
converted into a non-dimensional form. A Crank-Nicolson type of implicit finite-difference method is used to solve the governing non-linear set of 
equations. Numerical results are obtained and presented with various thermal and mass Grashof numbers and power law variations. Transient effects 
of velocity, temperature and concentration are analyzed. Local and average skin-friction, Nusselt number and Sherwood number are shown 
graphically. The numerical predications have been compared with the existing information in the literature and good agreement is obtained.    
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1. INTRODUCTION 
Natural convection flows are frequently encountered in nature. They 
have wide applications in Science and Technology. These types of 
problems are commonly encountered in start-up of a chemical reactor 
and emergency cooling of a nuclear fuel element. In the case of power 
or pump failure, similar conditions may arise for devices cooled by 
forced circulation, as in the core of a nuclear reactor. In the glass and 
polymer industries, hot filaments, which are considered as a vertical 
cylinder, are cooled as they pass through the surrounding environment. 
The analytical methods fail to solve the problems of unsteady natural 
convection flows past a semi-infinite vertical cylinder. The advanced 
numerical methods and computer technology have shown the way in 
which such difficult problems can be solved. Finite difference methods 
play a major role in solving partial differential equations. Several 
investigators under different boundary conditions have analyzed steady 
free convection along vertical cylinders. Convective flow through 
porous media is a branch of research undergoing rapid growth in fluid 
mechanics and heat transfer. This is quite natural because of its 
important applications in environmental, geophysical and energy 
related engineering problems. Tien and Vafai (1990) have presented an 
excellent review of natural convection flow in porous media and have 
stressed the importance of the non-Darcy effects such as the inertia and 
boundary effects. 

Unsteady natural convection flow of a viscous incompressible 
fluid over a heated vertical cylinder is an important problem relevant to 
many engineering applications. In the glass and polymer industries, hot 
filaments, which are considered as vertical cylinders, are cooled as they 
pass through the surrounding environment. For these types of non-
linear problems, the exact solution is not possible. Sparrow and Gregg 
(1956) provided the first approximate solution for the laminar buoyant 
flow of air bathing a vertical cylinder heated with a prescribed surface 
temperature, by applying the similarity method and power series 

expansion. Lee et al. (1988) investigated the problem of natural 
convection in laminar boundary layer flow along slender vertical 
cylinders and needles for the power-law variation in wall temperature. 
Velusamy and Grag (1992) presented the numerical solution for 
transient natural convection over heat generating vertical cylinders of 
various thermal capacities and radii. The rate of propagation of the 
leading edge effect was given special consideration by them. 

The effects of heat and mass transfer on the flow near vertical 
circular cylinder have been realized in many engineering and physical 
problems such as transport processes industry, ocean circulations due to 
heat current and difference in salinity etc. Combined buoyancy effects 
of thermal and mass diffusion along vertical cylinders have been given 
scant attention in the literature. Experimental results of pure and 
simultaneous heat and mass transfer by free convection along a vertical 
cylinder for Pr 0.71= and Sc = 0.63 are given by Bottemanne (1972). 
Rani (2003) studied the transient natural convection along a vertical 
cylinder with variable temperature and mass diffusion, by employing an 
implicit finite-difference method of Crank-Nicolson type. Chen and 
Yuh (1980) considered the effects of heat and mass transfer on natural 
convective flow along a vertical cylinder, where the surface of the 
cylinder was either maintained at a uniform temperature/concentration 
or subjected to uniform heat/mass flux. They concluded that the 
combined buoyancy force from thermal and species diffusion provide 
larger Nusselt and Sherwood numbers for uniform surface heat/mass 
flux. Ganesan and Rani (1999) analyzed the unsteady free convection 
on vertical cylinder with variable heat and mass flux.  

The study of flow problems, which involve the interaction of 
several phenomena, has a wide range of applications in the field of 
science and technology. One such study is related to the effects of free 
convection MHD flow, which plays an important role in agriculture, 
engineering and petroleum industries. The problem of free convection 
under the influence of a magnetic field has attracted the interest of 
many researchers in view of its application in geophysics and in 
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astrophysics. The problem under consideration has important 
applications in the study of geological formations; in the exploration 
and thermal recovery of oil; and in the assessment of aquifers, 
geothermal reservoirs and underground nuclear waste storage sites. 
Results obtained from this study will be helpful in the prediction of 
flow, heat transfer and solute or contaminant dispersion about intrusive 
bodies such as salt domes, magnetic intrusions, piping and casting 
systems. Ganesan and Rani (2003) analyzed the magnetic field effect on 
a moving vertical cylinder with constant heat flux.  Elbashbeshy (1997) 
studied heat and mass transfer along a vertical plate with variable 
surface temperature and concentration in the presence of magnetic field. 
Agarwal et al. (1989) considered the effect of MHD free convection 
and mass transfer flow past a vibrating infinite vertical circular 
cylinder. Combined heat and mass transfer effects on moving vertical 
cylinder that of steady and unsteady flow were investigated by Takhar 
et al. (2000), by using an implicit finite-difference scheme of Crank-
Nicolson type. A numerical solution for the transient natural convection 
flow over a vertical cylinder under the combined buoyancy effect of 
heat and mass transfer was obtained by Ganesan and Rani (1998), by 
means of an implicit finite-difference scheme. Gnaneswara Reddy 
(2012) have analyzed unsteady free convective flow past a semi-infinite 
vertical plate with uniform heat and mass flux. 

Heat transfer by simultaneous radiation and convection has 
applications in numerous technological problems, including 
combustion, glass production, furnace design, the design of high 
temperature gas cooled nuclear reactors, nuclear reactor safety, 
fluidized bed heat exchanger, fire spreads, advanced energy conversion 
devices such as open cycle coal and natural gas fired MHD, solar fans, 
solar collectors natural convection in cavities, turbid water bodies, 
photo chemical reactors and many others when heat transfer radiation is 
of the same order of magnitude as by convection, a separate calculation 
of radiation and their superposition without considering the interaction 
between them can lead to significant errors in the results, because of the 
presence of the radiation in the medium, which alters the temperature 
distribution within the fluid. Therefore, in such situation heat transfer 
by convection and radiation should be solved for simultaneously. In this 
context, Abd El-Naby et al. (2003) considered the effects of the 
radiation on unsteady free convective flow past a semi-infinite vertical 
plate with variable surface temperature using Crank-Nicolson finite 
difference method. The combined radiation and free convection flow 
over a vertical cylinder was presented by Yih (1999). Radiation and 
mass transfer effects on flow of an incompressible viscous fluid past a 
moving vertical cylinder was studied by Ganesan and Loganathan 
(2002). Gnaneswara Reddy and Bhaskar Reddy (2009) presented the 
radiation and mass transfer effects on unsteady MHD free convection 
flow past a moving vertical cylinder. The chemically reactive species 
and radiation effects on MHD convective flow past a moving vertical 
cylinder studied by Gnaneswara Reddy (2013). 

No analytical or numerical work on transient natural convection 
along a vertical cylinder embedded in a porous medium of thermal and 
mass diffusion with power law variation in wall temperature and 
concentration with thermal radiation has been reported. This type of 
problem has non-similar boundary layers, governed by unsteady, non-
linear, coupled equations. Hence, it is proposed to study the effects of 
variable surface temperature and concentration along a vertical cylinder 
by an implicit finite-difference scheme of Crank-Nicolson type. The 
behavior of the velocity, temperature, concentration, skin-friction, 
Nusselt number and Sherwood number has been discussed for 
variations in the governing thermophysical and hydrodynamical 
parameters. 

2. MATHEMATICAL ANALYSIS 
Consider an unsteady two-dimensional laminar free convective heat and 
mass transfer flow of a viscous incompressible electrically conducting 
and radiating optically thick fluid past a vertical cylinder of radius 0r  
embedded in a porous medium. The x -axis is taken along the axis of 

the cylinder and the radial coordinate r is taken normal to the cylinder. 
Initially, the fluid and the cylinder are at the same temperature T∞′  and 
the concentration C∞′ . At time 0t′ > , the temperature and concentration 

of the cylinder are raised to ( ) ,m
wT T T T x∞ ∞′ ′ ′ ′= + −  

( ) n
wC C C C x∞ ∞′ ′ ′ ′= + − respectively and are maintained constantly 

thereafter. A uniform magnetic field is applied in the direction 
perpendicular to the cylinder. The fluid is assumed to be slightly 
conducting, and hence the magnetic Reynolds number is much less than 
unity and the induced magnetic field is negligible in comparison with 
the applied magnetic field. It is further assumed that there is no applied 
voltage, so that electric field is absent. It is also assumed that the 
radiative heat flux in the x -direction is negligible as compared to that 
in the radial direction. The viscous dissipation is also assumed to be 
negligible in the energy equation due to slow motion of the cylinder. 
Also, it is assumed that there is no chemical reaction between the 
species and the fluid. The foreign mass present in the flow is assumed 
to be at low level and hence Soret and Dufour effects are negligible. It 
is also assumed that all the fluid properties are constant except that of 
the influence of the density variation with temperature and 
concentration in the body force term (Boussinesq’s approximation). 
Then, under the above assumptions the governing boundary layer 
equations are 
Continuity equation 

( ) ( ) 0ru rv
x r

∂ ∂
+ =

∂ ∂
                                                            (1) 

Momentum equation 

2
* 0( ) ( )

u u uu v
t x r

Bug T T g C C r u u
r r r K

σν νβ β
ρ∞ ∞

∂ ∂ ∂
+ +
′∂ ∂ ∂

∂ ∂ ′ ′ ′ ′= − + − + − −  ′∂ ∂ 

   (2) 

Energy equation 

( )1 1
r

p

T T T Tu v r rq
t x r r r r c r r

α
ρ

′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ + + = − ′∂ ∂ ∂ ∂ ∂ ∂ 
         (3) 

 Mass diffusion equation 

C C C D Cu v r
t x r r r r
′ ′ ′ ′∂ ∂ ∂ ∂ ∂ + + =  ′∂ ∂ ∂ ∂ ∂ 

   (4) 

The initial and boundary conditions are 

0: 0 , 0, ,t u v T T C C∞ ∞′ ′ ′ ′ ′≤ = = = =  for all 0x ≥  and 0r ≥  

( )
( )

0: 0 , 0, ,m
w

n
w

t u v T T T T x

C C C C x
∞ ∞

∞ ∞

′ ′ ′ ′ ′> = = = + −

′ ′ ′ ′= + −
 at  0r r=   (5) 

            0, ,u T T C C∞ ∞′ ′ ′ ′= = =    at   0x  =  and 0r r≥    

            0 , ,u T T C C∞ ∞′ ′ ′ ′→ → →    as   r →∞   

By using the Rosseland approximation (Brewster (1992)), the radiative 
heat flux rq  is given by 

44
3

s
r

e

Tq
k r
σ ′∂

= −
∂

                                         

 (6) 

where sσ  is the Stefan-Boltzmann constant and ek - the mean 
absorption coefficient. It should be noted that by using the Rosseland 
approximation, the present analysis is limited to optically thick fluids. If 
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the temperature differences within the flow are sufficiently small, then 
Equation (6) can be linearized by expanding 4T ′  into the Taylor series 
about T∞′ , which after neglecting higher order terms takes the form  

4 3 44 3T T T T∞ ∞′ ′ ′ ′≅ −     (7) 

In view of Equations (6) and (7), Equation (3) reduces to  

316 1
3

s

e p

TT T T T Tu v r r
t x r r r r k c r r r

σα
ρ

∞′′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂   + + = +   ′∂ ∂ ∂ ∂ ∂ ∂ ∂   
  (8)  

In order to write the governing equations and the boundary conditions 
in dimensionless form, the following non-dimensional quantities are 
introduced. 

( )
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∞
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∞
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   (9) 

In view of the Equation (9), the Equations (1), (2), (8) and (4) reduce to 
the following non-dimensional form  

( ) ( ) 0RU RV
X R

∂ ∂
+ =

∂ ∂
           (10) 

1 1U U U UU V GrT Gc C R M U
t X R R R R K

∂ ∂ ∂ ∂ ∂   + + = + + − +   ∂ ∂ ∂ ∂ ∂   
 

 

(11) 

1 4 11
Pr 3

T T T TU V R
t X R N R R R

∂ ∂ ∂ ∂ ∂   + + = +   ∂ ∂ ∂ ∂ ∂   
  (12) 

1 1 1C C C CU V R
t X R Sc R R R

∂ ∂ ∂ ∂ + + =  ∂ ∂ ∂ ∂ ∂ 
            (13) 

The corresponding initial and boundary conditions are  

0: 0 0 0 0t U , V , T , C≤ = = = =   for all 0X ≥  and 0R ≥  

0 : 0 , 0 , ,m nt U V T X C X> = = = =  at 1R =  

         0, 0 , 0U T C= = =   at   0X =  and 1R ≥              (14) 

         0 , 0, 0U T C→ → →  as    R →∞   

Knowing the velocity, temperature and concentration fields, it is 
interesting to find the skin-friction, Nusselt number and Sherwood 
numbers are defined as follows. 

Local and average skin-frictions in non-dimensional form are 

1
X

R

U
R

τ
=

 ∂
= − ∂ 

                                                 

(15) 

1

10 R

U dX
R

τ
=

 ∂
=−  ∂ ∫

                                

(16)

 

Local and average Nusselt numbers  in non-dimensional form are 

1
X

R

T
RNu X

T =

∂  
  ∂  = −
 
  

                                              (17)  

1
1

10

R

R

T
R

Nu dX
T

=

=

∂  
  ∂  = −
 
  

∫
                                         

(18) 

Local and average Sherwood numbers  in non-dimensional form are 

1

1

R
X

R

C
R

Sh X
C

=

=

∂  
  ∂  = −
 
  

                                        

(19) 

1
1

10

R

R

C
R

Sh dX
C

=

=

∂  
  ∂  = −
 
  

∫
                                         

(20) 

3. NUMERICAL TECHNIQUE 
 
In order to solve the unsteady, non-linear, coupled Equations (10) - (13) 
under the conditions (14), an implicit finite difference scheme of Crank-
Nicolson type has been employed.  

 The finite difference equations corresponding to Equations (10) - (13) 
are as follows:   

   

1 1 1 1
, 1, , 1, , 1 1, 1 , 1 1, 1

1 1 1, , 1 , , 1 ,
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0
2 1 ( 1)
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∆
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      (24) 

The region of integration is considered as a rectangle with sides 
maxX (=1) and maxR (=14), where maxR corresponds to R  = ∞ , which 

lies very well outside the momentum, energy and concentration 
boundary layers.  The maximum of R was chosen as 14 after some 
preliminary investigations, so that the last two of the boundary 
conditions (14) are satisfied. Here, the subscript i - designates the grid 
point along the X - direction, j - along the R - direction and the 
superscript n along the t - direction. The appropriate mesh sizes 
considered for the calculation are  X∆  = 0.05, R∆  = 0.25, and time 
step t∆  = 0.01. During any one-time step, the coefficients ,

n
i jU  and 

,
n

i jV  appearing in the difference equations are treated as constants.  The 

values of  and  U, V, T C are known at all grid points at t = 0 from the 
initial conditions.  The computations of  and  U, V, T C at time level 
(n+1) using the known values at previous time level (n) are calculated 
as follows. 

The finite difference Equation (24) at every internal nodal point on 
a particular i - level constitute a tri-diagonal system of equations.  Such 
a system of equations is solved by Thomas algorithm as described in 
Carnahan et al. (1969). Thus, the values of C are found at every nodal 
point on a particular i at (n+1)th time level.  Similarly, the values of T 
are calculated from the Equation (23).  Using the values of C  and T at 
(n+1)th time level  in the Equation (22), the values of U at (n+1)th time 
level are found in a similar manner.  Thus the values of and C, T U are 
known on a particular i - level. The values of V are calculated explicitly 
using the Equation (21) at every nodal point on a particular i - level at 
(n+1)th time level.  This process is repeated for various i - levels.  Thus, 
the values of C, T, U and V are known at all grid points in the 
rectangular region at (n+1)th time level. Computations are carried out 
till the steady state is reached. The steady state solution is assumed to 
have been reached, when the absolute difference between the values of 
U as well as temperature T and concentration C at two consecutive time 
steps are less than 10-5 at all grid points.   

After experimenting with few sets of mesh sizes, they have been 
fixed at the level X∆ =0.05, R∆ =0.25, and the time step t∆ =0.01.In 
this case, spatial mesh sizes are reduced by 50% in one direction, and 
then in both directions, and the results are compared. It is observed that, 
when the mesh size is reduced by 50% in X - direction and R - 
direction, the results differ in the fourth decimal places. The computer 
takes more time to compute, if the size of the time-step is small. Hence, 

the above mentioned sizes have been considered as appropriate mesh 
sizes for calculation.  

The local truncation error in the finite-difference approximation is 

( )2 2O t R X∆ + ∆ + ∆  and it tends to zero as X∆ , R∆ and t∆  tend to 

zero. Hence the scheme is compatible. Stability and compatibility 
ensures convergence (1967).  The derivatives involved in the Equations 
(15) - (20) are evaluated using five-point approximation formula and 
the integrals are evaluated using Newton-Cotes closed integration 
formula.  

4. RESULTS AND DISCUSSION 

A representative set of numerical results is shown graphically in Figs. 
1-12, to illustrate the influence of governing parameters viz., radiation 
parameter N , thermal Grashof number Gr , solutal Grashof number Gc , 
magnetic parameter M , permeability parameter K , Prandtl number 
Pr , Schmidt number Sc , exponent in the power law variation of the 
wall temperature m , exponent in the power law variation of the wall 
concentration n  on the velocity, temperature and concentration, skin-
friction, Nusselt number and Sherwood number. Here the value of Pr is 
chosen as 0.71, which corresponds air. The values of Sc are chosen 
such that they represent water vapour (0.6) and Ammonia (0.78). 

In order to ascertain the accuracy of the numerical results, the 
present study is compared with the previous study. The velocity profiles 
for Gc = 2.0, N = 0.0, M = 0.0, Pr = 0.7, X = 1.0, Sc =0.6 are compared 
with the available solution of Rani (2003), in Fig.1. It is observed that 
the present results are in good agreement with that of Rani (2003).  

 

 
The transient and steady state velocity profiles at X=1.0 for different 
values Gr , Gc , M , K and Sc  are shown in Fig. 2. The thermal 
Grashof number signifies the relative effect of the thermal buoyancy 
(due to density differences) force to the viscous hydrodynamic force in 
the boundary layer flow. Here the positive values of Gr correspond to 
cooling of the cylinder. As expected, it is noticed that an increase in Gr 
leads to a rise in the values of velocity due to enhancement in the 
buoyancy force. The solutal Grashof number Gc defines the ratio of the 
species buoyancy force to the viscous hydrodynamic force. It is found 
that the fluid velocity increases and the peak value become more 
distinctive due to an increase in the concentration buoyancy force 
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represented by Gc (Fig.2.). The contribution of mass diffusion to the 
buoyancy force increases the maximum velocity significantly. The time 
required to reach the steady state velocity increases as Gr or 
Gc increases. It is observed that an increase in the magnetic field 
parameter leads to a decrease in the velocity field. It is because that the 
application of transverse magnetic field will result in a resistive type 
force (Lorentz force) similar to drag force which tends to resist the fluid 
flow and thus reducing its velocity. Also, the boundary layer thickness 
decreases with an increase in the magnetic parameter. A rise in 
permeability parameter accompanying a decrease in porous resistance 

in the momentum equation (11) i.e. – 1 U
K
 
  

 , induces a substantial rise 

in transient velocity, U. The Schmidt number Sc signifies the ratio of 
the momentum diffusivity to the mass (species) diffusivity. It physically 
relates the relative thickness of the hydrodynamic boundary layer and 
mass-transfer (concentration) boundary layer. It is noticed that as the 
Schmidt number increases the velocity decreases. It is observed that the 
time required to reach the steady state velocity increases with an 
increase in M or Sc .   

 
 
Figure 3 depicts the transient and steady state velocity profiles for 

different values of radiation parameter N , m  and n . The radiation 
parameter N (i.e., Stark number) defines the relative contribution of 
conduction heat transfer to thermal radiation transfer. It can be found 
that an increase in N  leads to a decrease in the velocity within the 
boundary layer as well as decreased thickness of the hydrodynamic 
boundary layer. It is also noticed that the velocity decreases with an 
increase in m or n . The time required to reach the steady state velocity 
increases as N  or m  or n  increases. 

The transient and steady-state temperature profiles at X=1.0 for 
different values of m , n and N  are shown in Fig.4. It is found that as 
N increases from 2.0 to 5.0, the temperature decreases markedly 
throughout the length of the cylinder. As a result the thermal boundary 
layer thickness decreases due to a rise in N values. Also, it is noticed 
that the temperature decreases as m  or n  increases. The effect of m is 
more important on temperature than n. It is also seen that the time taken 
to reach the steady state temperature increases with an increase in m  
or n  or N.  

 

 
 

 
The concentration profiles for different values of m  and n  are 

shown in Fig. 5. It is found that the concentration decreases with an 
increase in m  or n . Here, the effect of n  is more important than the 
effect of m . The time required to reach the steady state concentration 
increases with an increase in m  or n . The transient and steady-state 
concentration profiles at X=1.0 for different values of N  and Sc  are 
shown in Fig.6. It is seen that the concentration increases with an 
increase in N . As Sc increases the mass transfer rate increases. Hence, 
the concentration decreases as Sc increases. The time required to reach 
the steady state concentration increases with an increase in Sc or N . 
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The effects of m , n , N  and Sc  on the local skin-friction ( xτ ) 

are shown in Fig. 7. It is observed that, the local skin-friction decreases 
with an increase in n  or N or Sc , while it increases with an increase 
in m . Fig. 8 displays the effects of m , n , N and Sc on the average 
skin-friction (τ ). The average skin-friction decreases with an increase 
in n or N or Sc , while it increases with an increase in m .  The local 
Nusselt number ( XNu ) for different values of m , n , N  and Sc  are 
shown in Fig. 9. It is noticed that, the local Nusselt number decreases 
with an increase in m or n  or Sc , while it increases with an increase 

in N . Fig.10 shows the effects of m , n , N and Sc on the average 
Nusselt number ( Nu ). The average Nusselt number decreases with an 
increase in m  or n  or Sc , while it increases with an increase in N . 
The effects of m , n , N and Sc on the local and average Sherwood 
numbers are shown in Figs. 11 and 12 respectively. It is seen that both 
the local and average Sherwood numbers increase with an increase in 
n  or Sc , while they decrease with an increase in  m  or N . 
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5. CONCLUSIONS 

A numerical study has been carried for the thermal radiation unsteady 
MHD natural convection past a vertical cylinder with variable surface 
temperature and mass diffusion. The fluid is gray, absorbing-emitting 
but non-scattering medium and the Rosseland approximation is used to 
describe the radiative heat flux in the energy equation. The 
dimensionless governing equation is derived. A Crank-Nicolson type of 

implicit method is used to solve these equations. This study is 
compared with the available solution in the literature and good 
agreement is found to exist.  

1. As the magnetic field parameter M increases, the transient 
velocity decreases. 

2. A rise in permeability parameter induces a substantial rise in 
transient velocityU . 

3. The transient velocity increases with an increase in Gr or Gc. 

4. At small values of the radiation parameter N , the velocity and 
temperature of the fluid increases sharply near the cylinder as the 
time t increase. 
5. The concentration reduces with an increase in m or n or Sc. 

6. The local and average skin-frictionτ   decreases with an 
increase M and increases with increasing value of N  and Sc .  
7. The average Nusselt number Nu increases with increasing value 
of radiation parameter N and decreasing values of Sc . 
8. The Sherwood number Sh increases as Sc increases. 
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NOMENCLATURE   

0B   magnetic field strength 
C ′   species concentration 
C    dimensionless species concentration 
D  the species diffusion coefficient 
Gr     thermal Grashof number   
Gc     modified  Grashof number 

    7 



Frontiers in Heat and Mass Transfer (FHMT), 5, 4 (2014)
DOI: 10.5098/hmt.5.4

Global Digital Central
ISSN: 2151-8629

 
g       acceleration due to gravity 

 i      grid point along the X - direction 
j      grid point along the R - direction 
m     exponent in power law variation of     
         wall temperature 
n      exponent in power law variation of    
         wall concentration 
K     permeability parameter 
M    magnetic parameter 
N     radiation parameter 
Nu   average Nusselt number 

xNu   local Nusselt number 
Pr      Prandtl number 

rq      radiative heat flux 
R     dimensionless radial co-ordinate 
r       radical co-ordinate 
0r      radius of cylinder 
Sc    Schmidt number 
Sh     average Sherwood number 

XSh   local  Sherwood number 
T      temperature 
x    axial co-ordinate measured vertically upward direction 
t        time 
X      dimensionless axial co-ordinate 

,U V  dimensionless velocity components in  ,X R  directions               
           
Greek symbols 
α    thermal diffusivity 
β     volumetric coefficient of thermal expansion 

*β   volumetric coefficient of expansion with concentration 
t∆    grid size in time 
R∆   grid size in radical direction 

X∆   grid size in axial direction 
ek      mean absorption coefficient 

ν       kinematic viscosity 
ρ      density 

sσ     Stefan-Boltzmann constant 

xτ      local skin-friction 
τ       average skin-friction 
Subscripts 
w     condition on the wall 
∞      ree-stream condition 
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