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ABSTRACT 

This paper presents an exact solution for the magnetohydrodynamic (MHD) flow of an incompressible generalized Oldroyd-B fluid due to an infinite 

accelerating plate. The fractional calculus approach is introduced to establish the constitutive relationship of the Oldroyd-B fluid. The solutions in 

terms of Fox H-function are obtained by using the Laplace transform. When 0=N the solutions corresponds to the generalized Oldroyd-B fluids, 

while 0→θ  and 0→λ  describes the Maxwell fluid and the generalized second fluid, as limiting cases of our general results, respectively.   
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1. INTRODUCTION 

Non-Newtonian fluids are now considered to play a more important and 

appropriate role in industrial and technological applications. An 

important class of non-Newtonian fluids is viscoelastic fluids which 

exhibit both elastic and viscous property and many models of constitutive 

equations have been proposed to describe the transport behavior of these 

fluids. The Oldroyd-B fluid is a special viscoelastic non-Newtonian 

fluids, it has been especially applied to the problems of having small 

dimensionless relaxation and retardation times. 

Recently, the fractional derivatives (Podlubny, 1999) are found to be 

quite flexible for describing the behaviors of viscoelastic fluids. Many 

researchers have studied different problems related to such fluids. In their 

works, the constitutive equations for generalized non-Newtonian fluids 

are modified from the well known fluid models by replacing the time 

derivative of an integer order by the so-called Riemann-Liouville 

fractional calculus operators. Haitao and Xu (2007) investigated the 

Stokes’ problem for a viscoelastic fluid with a generalized Oldroyd-B 

model. Khan et al. (2009) and Hyder et al. (2009) considered some 

accelerated flows and due to pressure gradient flows of generalized 

Oldroyd-B fluid, respectively. Hyder (2009) discussed the flows of 

generalized Oldroyd-B fluid between two side walls perpendicular to the 

plate. Fetecau, Prasad and Rajagopal (2007), Con. Fetecau et al. (2009) 

and Vieru et al. (2008) investigated some accelerated flows of a 

generalized Oldroyd-B fluid. Hayat et al. (2007, 2009) studied the flow 

of a Maxwell fluid between two side walls. Khan et al. (2006) studied the 

MHD flow of a generalized Oldroyd-B fluid in a circular pipe. 

Analytic solutions are important than numerical solutions because 

these are valid on the whole domain of definition whereas the numerical 

solutions are only valid at chosen points in the domain of definition. In 

this paper, we consider the MHD flow of an incompressible generalized 

Oldroyd-B fluid due to an infinite accelerating plate. The exact solutions 

for the velocity and shear stress fields are obtained by using the discrete 

Laplace transform technique for the fractional calculus. Moreover, the 
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solutions for generalized Oldroyd-B fluid, fractional second grade fluid 

and fractional Maxwell fluid can be recovered by the current analysis. 

2. GOVERNING EQUATIONS 

We consider the MHD flow of an incompressible generalized Oldroyd-

B fluid due to an infinite accelerating plate. Assuming the velocity field 

and stress of the form 

 

  ( , )i=V u y t , ( , )=S S y t                                   (1)

      

where u is the velocity and i  is the unit vectors in the x -direction, 

taking account of the initial condition 

 

( ,0) 0=S y , 0>y                                         (2) 

 

the fluid being at rest up to the time 0=t , we get 

 

r(1 λ ) (1 λ ) ( , )t xy t yD S D u y t
α βµ+ = + ∂                           (3) 

 

0= = = =yy zz xz yzS S S S , =xy yxS S . Consider that the conducting fluid 

is permeated by an imposed magnetic field 0B which acts in the positive 

y - coordinate. In the low- magnetic Reynolds number approximation, 

the magnetic body force is represented
2
0B uσ . Then, in the absence of a 

pressure gradient in the x -direction, the equation of motion yields the 

following scalar equations:  

 

        2
0

∂ ∂
= −

∂ ∂
xy

u
S B u

t y
ρ σ                    (4) 
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where ρ  is the constant density of the fluid. Eliminating xyS between 

Eq. (3) and Eq. (4), we arrive at the following fractional differential 

equation 

 
2

2
r 2

( , ) ( , )
(1 λ ) (1 λ ) (1 λ ) ( , )t t t

u y t u y t
D D M D u y t

t y

α β αν
∂ ∂

+ = + − +
∂ ∂

    (5) 

         

where tD
α

and tD
β

are based on Riemann- Liouville’s definition is 

defined as (Podlubny, 1999), /ν µ ρ=  is the kinematic viscosity and 

2
2 0=

B
M

σ

ρ
. The associate initial and boundary conditions as follow: 

 

Initial condition: 
( ,0)

( ,0) 0
∂

= =
∂

u y
u y

t
， 0>y                (6) 

Boundary conditions:  (0, ) =u t At , 0>t                    (7) 

( , )u y t , 
( , )

0
∂

→
∂

u y t

y
 as → ∞y , 0>t                       (8) 

 

where u is velocity in the x -coordinate direction.  

3. EXACT SOLUTIONS 

Employing the non-dimensional quantities in Eqs. (5)-(8): 

 

* u
u

A
= , * yA

y
ρ

µ
= ,

2
* tA

t
ρ

µ
= ,

2
*
λ λ

A
α

ρ

µ

 
=   

 
,

2
*

r rλ λ
A

β
ρ

µ

 
=   

 
   (9) 

 

Dimensionless motion and equations can be given (for brevity the 

dimensionless mark “*” is omitted here) 

 
2

*
r 2

( , ) ( , )
(1 λ ) (1 λ ) (1 λ ) ( , )t t t

u y t u y t
D D M D u y t

t y

α β α∂ ∂
+ = + − +

∂ ∂
     (10) 

 

where
2

*

2 2
=

M
M

Aρ
. Using Laplace transforms principle of sequential 

fractional derivatives, yields 

 
2 *

2
r

( , ) ( )(1 λ )
( , ) 0

(1 λ )

U y t p M p
U y t

y p

α

β

∂ + +
− =

∂ +
                    (11) 

Boundary conditions：
2

1
(0, ) =U t

p
                        (12) 

( , )U y t , 
( , )

0
U y t

y

∂
→

∂
 as y → ∞                           (13)  

Solving Eqs. (11)- (13), one obtains 
1*

2
2

r

1 ( )(1 λ )
exp[ ( ) ]

1 λ

p M p
U y

p p

α

β

+ +
= −

+
                       (14) 

 

The stress field can be calculated from Eq. (3). Taking the Laplace 

transform of Eq. (3) and introducing Eq. (14), obtain    

1 1 1*
* 2 2 2

2
r r

1 1 λ ( )(1 λ )
( , ) ( ) ( ) exp[ ( ) ]

1 λ 1 λ

p p M p
y p p M y

p p p

α α

β β
τ

−+ + +
= − + −

+ +
   

(15) 

 

where ( , )y pτ is the Laplace transform of ( , )y tτ  and 

2( , ) / ( )= xyy t S Aτ ρ . 

   In order to avoid the burdensome calculations of residues and contour 

integrals, we will apply discrete inverse Laplace transform to get to the 

velocity and the stress fields. Writing Eq. (14) as series forms 

 

* 2
1

r2
1 0 0 0r

1 ( ) ( ) λ ( λ)
( , ) ( λ )

! ! λ !

k
k l m

n

k l m n

y M
U y p

k l mp

∞ ∞ ∞ ∞
−

= = = =

 − − −
= + − 

 
∑ ∑ ∑ ∑  

 
( 1) 2

2

( ) ( ) ( )
1 12 2 2

!
( ) ( ) ( )

2 2 2

k
m n l

k k k
l m n

k k kn
p

β α α β− − + + + +

Γ − Γ − Γ +
×

Γ − Γ − Γ

          (16) 

 

Then, applying the inversion formulae term by term for the Laplace 

transform, yields 

 

* 2
1

r

1 0 0 0r

( ) ( ) λ ( λ) 1
( , ) ( λ )

! ! λ ! !

k
k l m

n

k l m n

y M
u y t t t

k l m n

β
∞ ∞ ∞ ∞

−

= = = =

 − − −
= + − 

 
∑ ∑ ∑ ∑  

( 1) 1
2( ) ( ) ( )

2 2 2

( ) ( ) ( ) ( ( 1) 2)
2 2 2 2

k
m l

k k k
l m n

t

k k k k
m n l

β α α

β α α β

− − + + +Γ − Γ − Γ +
×

Γ − Γ − Γ Γ − − + + + +
.  (17) 

 

In terms of Fox H-function, we rewriting the above equation as the 

simpler form 

 

* 2 ( 1) 1
2

1 0 0r

( ) ( ) λ ( λ)
( , )

! ! λ !

k
kk l m m l

k l m

y M
u y t t t

k l m

β α α∞ ∞ ∞ − − + + +

= = =

 − − −
= +  

 
∑ ∑ ∑  

1,3 1
3,5 r

(1 ,0),(1 ,0),(1 ,1),
2 2 2

λ

(0,1),(1 ,0),(1 ,0),(1 ,0),( ( 1 ) 1, )
2 2 2 2

k k k
l m

H t
k k k k

m l

β

α β α β

−

 
− + − + − 

 ×
 

+ + − + − − − −  

     

                                                 (18) 

 

where the property of the Fox H-function is 

 

1 11 1,
, 1

1 10 1

(1 , ), (1 , )( ) ( )

(0,1), (1 , ), (1 , )! ( )

n p
p pj j j p

p qq
q qn j j j

a A a Az a A n
H z

b B b Bn b B n

∞
=

+
= =

 − −− Π Γ +
=  

− −Π Γ +   
∑

⋯

⋯

 
                                      (19) 

 

Similarly with the velocity field, we write Eq. (15) as the series form 

 
1

2
*

0 0 0r

( ) 1 λ ( λ)
( , ) ( )

! ! λ !

k
k m

l

k l m

y
y p M

k l m
τ

−
−∞ ∞ ∞

= = =

 − −
= − −  

 
∑ ∑ ∑  

r

0

1 1 1
( ) ( ) ( )

( λ ) 2 2 2
1 1 1!

( ) ( ) ( )
2 2 2

n

n

k k k
l m n

k k kn

−∞

=

+ − −
Γ − Γ − Γ +

−
×

+ − −
Γ − Γ − Γ

∑  

1
( 1) 1

2

1
k

m n l

p
β α α β

−
− − + + + +

×                                   (20) 

 

And using the discrete inverse Laplace transform, yields 

 
1

2
*

0 0 0r

( ) 1 λ ( λ)
( , ) ( )

! ! λ !

k
k m

l

k l m

y
y t M

k l m
τ

−
−∞ ∞ ∞

= = =

 − −
= − −  

 
∑ ∑ ∑  
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r

0

1 1 1
( ) ( ) ( )

( λ ) 2 2 2
1 1 1!

( ) ( ) ( )
2 2 2

n

n

k k k
l m n

k k kn

−∞

=

+ − −
Γ − Γ − Γ +

−
×

+ − −
Γ − Γ − Γ

∑  

1
( 1)

2

1
( ( 1) 1)

2

k
m n l

t

k
m n l

β α α β

β α α β

−
− − + + +

×
−

Γ − − + + + +

                      (21) 

 

In terms of the Fox H-function, we obtain 

 
1

1
2 ( 1)

* 2

0 0 0r

( ) 1 λ ( )
( , ) ( )

! ! λ !

k
kk m m l

l

k l m

y
y t M t

k l m

β α αλ
τ

−
−−∞ ∞ ∞ − − + +

= = =

 − −
= − −  

 
∑ ∑ ∑

1,3 1
3,5 r

1 1 1
(1 ,0),(1 ,0),(1 ,1),

2 2 2
λ

1 1 1 1
(0,1),(1 ,0),(1 ,0),(1 ,0),( ( 1 ) , )

2 2 2 2

k k k
l m

H t
k k k k

m l

β

α β α β

−

 + − −
− + − + − 

 ×
+ − − − 

+ + − + − − −  

     

                                                 (22) 

 

4. SPECIAL CASES 

(i) When * 0M = , our solution reduced to the generalized Oldroyd-B 

fluid, as obtained by Khan et al. (2009). We attain to the velocity field 

 

2 ( 1) 1
2

1 0r

( ) λ ( λ)
( , )

! λ !

k
kk m m

k m

y
u y t t t

k m

β α α∞ ∞ − − + +

= =

 − −
= +  

 
∑ ∑  

1,2 1
2,4 r

(1 ,0),(1 ,1),
2 2

λ

(0,1),(1 ,0), (1 ,0),( ( 1 ) 1, )
2 2 2

k k
m

H t
k k k

m

β

α β α β

−

 
− + − 

 ×
 

+ − + − − −  

 (23) 

and the associated shear stress 
1

1
2 ( 1)

2

0 0r

( ) λ ( λ)
( , )

! λ !

k
kk m m

k m

y
y t t

k m

β α α
τ

−
−−∞ ∞ − − +

= =

 − −
= −  

 
∑ ∑  

1,2 1
2,4 r

1 1
(1 ,0),(1 ,1),

2 2
λ

1 1 1
(0,1),(1 ,0),(1 ,0),( ( 1 ) , )

2 2 2

k k
m

H t
k k k

m

β

α β α β

−

 − −
− + − 

 ×
− − − 

+ − + − −  

                                                      

(24) 

 

 (ii) If 0α ≠ , 0λ → , then Eqs.(18) and (22) can be simplified as 

 

2 ( 1) 1
* 2

1 0 r

( ) 1 1
( , ) ( )

! ! λ

k
kk l

l

k l

y
u y t t M t

k l

β∞ ∞ − + +

= =

 −
= + −  

 
∑ ∑  

1,2 1
2,4 r

(1 ,0),(1 ,1)
2 2

λ

(0,1), (1 ,0),(1 ,0),( (1 ) 1, )
2 2 2

k k
l

H t
k k k

l

β

β β

−

 
+ − − 

 ×
 

+ − − − −  

     (25) 

1
1

2 ( 1)
* 2

0 0 r

( ) 1 1
( , ) ( )

! ! λ

k
kk l

l

k l

y
y t M t

k l

β
τ

−
−∞ ∞ − +

= =

 −
= − −  

 
∑ ∑  

1,2 1
2,4 r

1 1
(1 ,0),(1 ,1)

2 2
λ

1 1 1
(0,1),(1 ,0),(1 ,0),( (1 ) , )

2 2 2

k k
l

H t
k k k

l

β

β β

−

 + −
− + − 

 ×
+ − − 

+ − − −  

 (26) 

which represent the velocity and the stress fields for a generalized second 

grade fluid. 

(iii) If 0≠β , rλ 0→ , then Eqs. (19) and (22) can be simplified as 

 

* ( 1) 1
2 2

1 0

( ) ( )
( , ) λ

! !

k kk l l

k l

y M
u y t t t

k l

α∞ ∞ − + + +

= =

− −
= +∑ ∑  

1,2 1
2,4

(1 ,0),(1 ,1)
2 2

λ

(0,1),(1 ,0), (1 ,0),( ( 1) 1, )
2 2 2

k k
l

H t
k k k

l

α

α α

−

 
+ − + 

 ×
 

+ + + − −  

      (27) 

1 1
( 1)

* 2 2

0 0

( ) 1
( , ) ( ) λ

! !

k kk l
l

k l

y
y t M t

k l

α
τ

− −∞ ∞ − + +

= =

−
= − −∑ ∑  

1,2 1
2,4

1 1
(1 ,0),(1 ,1)

2 2
λ

1 1 1
(0,1),(1 ,0),(1 ,0), ( ( 1) , )

2 2 2

k k
l

H t
k k k

l

α

α α

−

 + −
+ − + 

 ×
+ − − 

+ + + −  

  (28) 

 

which correspond to the similar solutions for a generalized Maxwell fluid. 

 

Fig. 1 Velocity fields for different values of t and
*

M when keepingα ,

β , rλ , λ fixed.  

 

Fig. 2 Stress fields for different values of t and
*

M when keeping α ,

β , rλ , λ fixed. 
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Fig. 3 Velocity fields for different values of 

*
M when keeping α , β ,

rλ , λ , t fixed. 

 
Fig. 4 Stress fields for different values of 

*
M when keepingα , β , rλ ,

λ , t fixed. 

 
Fig. 5 Velocity fields for three types fluids when keepingα , β , rλ , λ ,

t fixed. 

 
Fig. 6 Stress fields for three types fluids when keepingα , β , rλ , λ , t

fixed. 

5. NUMERICAL RESULTS AND DISCUSSION  

In this section, we analyze the characteristics of the velocity field and the 

stress fields by the presented figures. We can see from these figures that 

the magnetic body force is favorable to the velocity decays, and the more 

the values of
*

M , the more rapidly the velocity decays.  

Figures 1 and 2 indicate that the flow velocity as well as the shear 

stress increase with time or the magnetic body force increase. The 

strongest shear stress occurs near the plate and the shear stress decreases 

rapidly with the increase of distance from the plate. If
* 0M = , the fluid 

not influenced by magnetic field. Figs.3 and 4 demonstrate the influence 

of MHD on the velocity and the shear stress, respectively. Fig.3 shows 

the smaller the values of
*

M , the more slowly the velocity decays for 

the flow. Furthermore, with the increase in magnetic field the velocity 

decreases. Fig.4 shows the maximum stress occurs near the wall and 

decreases far away from the wall. Figs. 5-6 illustrate the velocity fields 

and shear stresses of the generalized Maxwell fluid, second grade fluid 

and Oldroyd-B fluid. From the figures, we can see that shear stress 

directly influence velocity field, the Maxwell fluid velocity is the fastest, 

the next is Oldroyd-B, and second grade fluid velocity is the slowest. 

6. CONCLUSIONS 

The purpose of this paper is to provide exact solutions for the unsteady 

flow of a generalized Oldroyd-B fluid due to an infinite accelerating plate. 

The exact solutions for the velocity and shear stress fields in terms of Fox 

H-function are obtained by using the Laplace transform. Some previous 

and classical results, such as the velocity distribution for a viscous 

Maxwell, Oldroyd-B, and second grade fluid, can be considered as 

particular cases of our results. It is shown that the fractional constitutive 

relationship model is more useful than conventional model for describing 

the properties of viscoelastic fluid.  
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