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 ENTROPY GENERATION IN BOUNDARY LAYER FLOW OF A MICRO 
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ABSTRACT 

An analytical study of entropy generation in steady boundary layer flow, heat and mass transfer characteristic of 2D convective flow of a micro polar 
fluid over a stretching sheet embedded through a highly absorbing medium is performed. The governing equations are continuity, momentum 
boundary layer, micro rotation, and energy takes into account of Rosseland approximation for thermal radiation sources are solved analytically. The 
governing system of partial differential equations is first transformed into a system of non-linear ordinary differential equations using similarity 
transformation. The transformed equations are non-linear coupled differential equations which are then linearized by quasi-linearization method 
and solved very efficiently by the Homotopy analysis method. The special case of the first branch (K = 0, classical Newtonian fluid) is compared with 
the existing numerical results of stretching flow in good agreement. In addition, favorable comparisons with previously published work on various 
special cases of the problem are obtained. The effects of various physical parameters of entropy generation are presented graphically and in tabular 
form.   
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1. INTRODUCTION 

Most phenomena in heat and fluid flow are essentially nonlinear and are 
described by nonlinear equations. Heat transfer in free and mixed 
convection by simultaneous radiation take place in many applications 
such as the design of cooling systems for electronic devices (Barletta 
1999), solar energy (Barletta 2002), combustion flows (Kandlikar  2005), 
furnaces (Zhao and Lu 2002), thermal radiative loading (Abdollahzadeh 
et al. 2012, Abdollahzadeh et al. 2013, Abdollahzadeh et al. 2014a), and 
many others (Abdollahzadeh et al. 2014b, Azizah et al. 2013,Shadloo et 
al. 2015). Furthermore, there is a considerable increase in the research 
interest in the flows of micro-polar fluids over the past few decades due 
to the occurrence of these fluids in industrial processes such as exotic 
lubricants (Khonsari 1990) the flow of colloidal suspensions or 
polymeric fluids and liquid crystals (Busuke 1969). The boundary layer 
flow over a continuously stretching surface finds many important 
applications in engineering processes, such as polymer extrusion and 
drawing of plastic films, and the applied magnetic field may play an 
important role in controlling momentum and heat transfers in the 
boundary layer flow of different fluids over a stretching sheet. Hoyt and 
Fabula (1964) have shown experimentally that fluids containing minute 
polymeric additives display a considerable reduction in the skin friction 
(about 30%). The theory of micro polar fluids, which display the effect 
of local rotary inertia and non-symmetrical stress tensor, was initially 
introduced and investigated by Eringen (2001), takes into account fluids 
consisting of randomly oriented particles suspended in a viscous 
medium. Extensive reviews of the theory and its applications could be 
found in the review article by Ariman et al. (1973). As well the flow 
induced by a stretching boundary is important in the extrusion processes 
in plastic and metal industries.  

Recently, extensive attentions have been attracted to the flow 
induced by a shrinking sheet. Fang et al. (2011) investigated the steady 

momentum and heat transfer of a viscous fluid flow over a linearly 
stretching/shrinking sheet and then a convective boundary condition 
were further studied analytically. There are some analytic techniques for 
nonlinear problems, such as perturbation techniques (essentially based 
on the existence of small or large parameters) that are well known and 
widely applied. One of the semi-exact methods to solve PDE equations, 
called the Homotopy Analysis Method (HAM), first proposed by Liao in 
1992 in his Ph.D thesis (Liao 1992,Liao 2003). Neither perturbation 
techniques, nor non-perturbation methods such as the artificial small 
parameter methods, the δ-expansion method, and Adomian’s 
decomposition method can provide us with a convenient way to adjust 
and control convergence region and rate of approximation series. This 
method has already been applied successfully to solve many problems in 
fluid mechanics (Yun 2013, Rajeev 2014, Yan 2013). In this method, it 
is possible to adjust and control the convergent region, and this is the 
most important feature of this technique in comparison to other 
techniques. In all the previous investigations, the effects of radiation on 
the flow and heat transfer have not been provided analytically. In the last 
decade, many researchers have studied the entropy generation in fluid 
flow and heat transfer over surfaces.  

Aiboud and Saouli (2010) presented the application of second law 
analysis of thermodynamics to viscoelastic flow over a stretching 
surface. They analytically obtained the velocity and temperature profiles 
using the Kummer’s functions and computed the entropy generation 
number. Makinde (2011) analyzed the inherent irreversibility in the 
boundary layer flow of variable viscosity fluid over a semi-infinite flat 
plate under the influence of thermal radiation. Using local similarity 
solution technique and shooting quadrature, he numerically obtained the 
velocity, temperature and entropy generation number. Dehsara et al. 
(2012) numerically analyzed entropy generation for the mixed 
convection flow over a nonlinear stretching inclined transparent plate 
embedded in a porous medium due to solar radiation. Butt et al. (2012a) 
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discussed the boundary layer flow and heat transfer analysis of a second 
grade fluid over a stretching sheet through a porous medium and 
investigated the effect of viscoelasticity on entropy generation using the 
Homotopy analysis method (HAM). Butt et al. (2012b) reported the 
effects of velocity slip on entropy generation in the boundary layer flow 
over a vertical surface with convective boundary condition. They 
numerically solved the governing equations using the shooting method 
and presented expressions for the entropy generation number and Bejan 
number. Malvandi et al. (2012) analytically studied the steady two-
dimensional boundary layer flow over an isothermal flat plate by 
homotopy perturbation method (HPM) and analyzed the entropy 
generation inside the boundary layer. Galanis and Rashidi (2012) studied 
the entropy generation in non-Newtonian fluids due to heat transfer in 
entrance region of ducts. Butt et al. (2012c) made an investigation on 
entropy generation within a steady laminar mixed convective flow of an 
over a stretching sheet. They solved the governing equations using the 
homotopy analysis method and obtained expressions for local entropy 
generation number, Bejan number, and average Bejan number. Butt and 
Ali (2013) analyzed the effects of entropy generation in flow over a 
permeable stretching sheet embedded in a porous medium. They 
obtained analytical solutions of momentum and energy equations in 
terms of Kummer’s functions and computed the entropy generation 
number and Bejan number. Noghrehabadi et al. (2013) analyzed the 
boundary layer heat transfer and entropy generation over an isothermal 
linearly stretching sheet with heat generation/absorption. They took into 
account the development of concentration gradient due to slip and the 
effects of Brownian motion and thermophoresis. Dehsara et al. (2014) 
investigated the entropy generation of mixed convection flow over a 
nonlinear stretching inclined transparent plate embedded in a porous 
medium. Using a numerical algorithm, they solved the governing 
equations, in the presence of the effects of viscous dissipation, variable 
magnetic field and solar radiation. More literature survey makes it clear 
that the entropy generation has not been investigated for the flow and 
heat transfer of a micropolar fluid over a stretching surface. 

Motivated by the works mentioned above, in this paper the HAM is 
used to find an analytical solution to the velocity and temperature fields 
with the radiation effect in stretching sheet immersed in micro polar fluid. 
The purpose of this attempt is to analyze the entropy generation of 
micropolar flow over a flat plate. Therefore, the local similarity solutions 
will be found and then the series solution will be first computed using 
HAM and then its convergence will be discussed in detail. Afterward, the 
results for the entropy generation profiles will be calculated and 
discussed from the physical point of view. The entropy generation is 
calculated using the entropy relation by substituting the velocity and 
temperature fields obtained from the momentum and entropy equations. 

2. GOVERNING EQUATIONS AND NUMERICAL 
METHOD 

Consider a steady laminar two-dimensional mixed convection thermal 
boundary layer flow of an incompressible, electrically conducting, 
viscous,  and incompressible micro polar fluid towards a stretching 
surface coinciding with the plane y=0, the flow region y>0. The origin 
(x=0) fixed as shown in Fig. 1. The x -axis is taken in the direction along 
the sheet and the y -axis is taken perpendicular to it. With these 
assumptions the governing equations are given by (Nazar 2004) as 
follow: 
The equation of continuity 

0,
u

x y

 
 

 
                                         (1) 

The equation of momentum 
2

2
,

u u u N
u

x y y y

  
 

    
        

                              (2) 

The equation of angular momentum 

 
Fig. 1 Schematic of the boundary layer induced by stretching sheet. 
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                         (3) 

The equation of energy 
2

2

1
,r

P P

T T k T q
u

x y c y c y


 
   

  
   

                          (4) 

 
The equation of mass diffusion 
 

2

2
,

C C C
u D

x y y
  

 
  

                           (5) 

where u   and v   are the velocity components along 
the x   and y   directions, ρ is the density of the liquid, T   is the temperature 
of the fluid,  Cp is the specific heat at constant pressure, ν is the kinematic 
viscosity, σ is the electrical conductivity of the fluid, N   is the 
components of micro-rotation or angular velocity whose rotation is in the 
direction of the x –y   plane and j,γ and κ are the micro inertia per unit 
mass, spin gradient viscosity and vortex viscosity, respectively. 
Furthermore, the spin gradient viscosity γ, which defines the relationship 
between the coefficient of viscosity and micro inertia as follows (Ahmadi 
1976): 

 
( 2) (1 2) ,j K j                                (6) 

where   is the dynamic viscosity and K   is the dimensionless 

viscosity ratio and is called the material parameter. It is worth mentioning 
here that relation (6) is invoked to allow equations (1)–(4) to predict the 
correct behavior in the limiting case when microstructure effects become 
negligible, and the micro rotation, N, reduces to the angular velocity 
(Yücel 1989). It is also worth mentioning that the case K = 0 describes 
the classical Navier–Stokes equations for a viscous and incompressible 
Newtonian fluid. The flow is generated by the action of two equal and 
opposite forces along the x -axis and the sheet is stretched in such a way 
that the velocity at any instant is proportional to the distance from the 
origin (x-component of the velocity varies linearly along it).  

 0 wu y U x                                  (7) 

Furthermore sheet kept at constant temperature Tw. 

 0 wT y T                                  (8) 

which is important parameter throughout the boundary layer (Hadjadj et 
al. 2015). The other physical boundary conditions for the problem under 
study are given by: 

 

 0 0,y                                  (9) 
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 
0

0
y

u
N y m

y 


  


                           (10) 

        0 ,wC y C                               (11) 

 

  0,u y                                     (12) 

 

  0,N y                                     (13) 

 

  ,T y T                                   (14) 

 

  ,C y C                                 (15) 

 
where Tw is the wall temperature of the fluid and T∞ is the temperature 
of the fluid far away from the sheet, Cw is the wall concentration of the 
solute and C∞ is the concentration of the solute far away from the sheet 

and m  is the boundary parameter. It should be mentioned that m   is a 
constant such that 0⩽m⩽1. The case when m=0, is called strong 
concentration, which indicates N=0 near the wall characterizes 
concentrated particle flows in which the micro-elements close to the wall 
surface are unable to rotate. The case when m=1/2 indicates the 
disappearing of anti-symmetric part of the stress tensor and means weak 
concentrations whereas m=1 is used for modelling of turbulent boundary 
layer flows. This assumption is entreated to permit the field of equations 
to predict the correct behavior in the limiting case when the 
microstructure effects become negligible, and the micro rotation N, 
reduces to the angular velocity. Following Rosseland approximation 
(Brewster 1992) with radiative heat flux qr in equation (4) is modeled as: 

 
* 4

*

4
,

3r

T
q

k y

 
 


                                    (16) 

where σ* and *k  are the Stephan–Boltzman constant and the mean 
absorption coefficient, respectively. As the differences within the flow 
are such that T4 can be expressed as a linear function of temperature,

 4 4 34 ...T T T T T      , expanding T4  in a Taylor series about T∞ 

and neglecting higher order terms thus, 
 

4 3 44 3 .T T T T                                       (17) 

By substituting equations (16) and (17) in equation (4), one obtains: 
 

2

2
(1 ) ,R

T T T
u N

x y y
   

  
  

                              (18) 

where ( )Pk c  is the thermal diffusivity, * 3 *16 (3 )RN T kk  is 

the radiation parameter (Datti et al. 2004), and k  is the thermal 
conductivity. Introducing the stream function ( , )x y  such that: 

,u
y





                                          (19) 

,
x

 
 


                                          (20) 

The governing Eqs. (2) and (3) admit a self-similar solution of the 
form: 

 
0.5( , ) ( ) ( ),wx y xU f                                    (21) 

where f is the dimensionless stream function and η is the similarity 
variable: 

 

0.5( ) ,wU
y

x



                                        (22) 

Note that the definitions of ψ, u and v in the above expressions satisfy the 
continuity equation (1) identically. Also for micro rotation: 

 

0.5( ) ( ),w
w

U
N U h

x



                                   (23) 

The thermal boundary conditions for solving Eq. (18) depend on the type 
of heating process considered. Now the non-dimensional temperature 
and concentration are defined as 

 

( ) .
w

T T

T T
  







                                     (24) 

 

( ) .
w

C C

C C
  







                                    (25) 

Substituting equations (21) through (25) into the equations (2), (3), 
(5) and (18), the resulting non-linear third-order ordinary differential 
equations are:  

 
2(1 ) 0,K f f f f Kh                                       (26) 

 

(1 ) (2 ) 0,
2

K
h fh f h K h f                               (27) 

 
1

(1 ) 2 0,
Pr RN f f                                      (28) 

 

 2 0,Sc f f                                       (29) 

where the prime denotes the derivative with respect to the similarity 
variable (defined in Eq . 22).The Equations (26)-(29) are subject to the 
following reduced boundary conditions at the wall: 

                 
(0) 0,f                                        (30) 

(0) 1,f                     (31) 

(0) (0),h m f                                      (32) 

(0) 1,                                    (33)  

         (0) 1,                                            (34) 
and at the free stream : 

 
( ) 0,f                                            (35) 

 
( ) 0,h                                            (36) 

 
( ) 0,                                            (37) 

 
( ) 0,                                            (38) 

In the above equations, primes denote differentiation with respect to 
η and Pr is the dimensionless Prandtl number and is equal to: 

 

Pr .pC

k





                                        (39) 

and also the Sc is the dimensionless Schmidt number is equal to: 

.Sc
D


                                    (40) 

It is noted that K=0 is corresponded to viscous fluid case, which is 
studied before without consideration of the thermal radiation effect 



Frontiers in Heat and Mass Transfer (FHMT), 6, 7 (2015)       Global Digital Central 
DOI: 10.5098/hmt.6.7                  ISSN: 2151-8629 
 

 
   

4

(Grubka and Bobba 1985). Furthermore It is worth mentioning that when 
m = 1/2, one can take g(η)=-1/2f”(η), so combining Eqs. (26) and (27) to 
reduce to a single non-linear ordinary differential equation as 

 
2(1 / 2) 0,K f f f f                              (41) 

subject to the appropriate boundary conditions 
 

(0) 0,f                                         (42) 

 
(0) 1,f                                          (43) 

 
( ) 0,f                                        (44) 

The physical quantities of most interest are the skin friction coefficient 

fC  and the local Nusselt number xNu , which are defined respectively 

as:  
 

2
,w

f
w

C
U




                                         (45) 

 

,
( )

w
x

w

xq
Nu

k T T




                                    (46) 

where the wall shear stress w and the surface heat flux wq  for micro 

polar boundary layer flow are given by: 
 

0

( ) ,w

y

u
N

y
   



 
    

                                 (47) 

 

0( ) ,w y

T
q k

y 


 


                                        (48) 

Substituting (26) and (27) into (45) through (48), the following obtain: 
 

0.5Re (1 ) (0) (0),f xC K f Kh                                (49) 

 
0.5Re (0),x xNu                                       (50) 

where Rex wU x   is the local Reynolds number. 

 
 

3. APPLICATION OF HOMOTOPY ANALYSIS 
METHOD 

The governing equations for heat transfer of continuous stretching sheet 
immersed in a micro polar fluid are expressed by equations (26) through 
(29). For brevity, the complete operators are defined as follows: 
 

3

3

2 2

2

( ; )
[ ( ; )] (1 )

( ; ) ( ; ) ( ; )
( ; )

f

f q
N f q K

h q f q f q
K f q




  
  


  



   
     

,   (51) 

2 2

2 2

( ; ) ( ; )
[ ( ; )] (1 ) ( 2 ( ; ))

2

( ; ) ( ; )
( ; ) ( ; ) ,

h

K h q f q
N h q K h q

f q h q
h q f q

  
 

  
 

 
   

 
 

 
 

 (52) 

2

2

1 ( ; )
[ ( ; )] (1 )

Pr

( ; )
( ; ) ,

R

q
N q N

q
f q


  


 



 







                  (53) 

2

2

1 ( ; )
[ ( ; )]

( ; ) ( ; )
( ; ) 2 ( ; ) ,

q
N q

Sc

q f q
f q q


  


    
 





 

 
 

        (54) 

where [0, 1]q  is the embedding parameter. As the embedding 

parameter increases from 0 to 1, the parameters expressed by U(η; q),  
V(η; q),  Y(η; q) and Z(η; q) vary from the initial guess, U0(η), V0(η) Y0(η),  
and Z0(η),  to the exact solution, U(η), V(η),  Y(η) and Z(η). For q = 0  

0( ;0) ( ),f U                                        (55) 

0( ;0) ( ),h V                                         (56) 

0( ;0) ( ),Y                                          (57) 

0( ;0) ( ),Z                                         (58) 

and at q = 1 
( ;1) ( )f U  ,                                       (59) 

( ;1) ( )h V  ,                                       (60) 

( ;1) ( )Y   ,                                       (61) 

( ;1) ( )Z   .                                       (62) 

As the embedding parameter q increases from 0 to 1, functions 
varies from the initial guess to the exact solution. Expanding ( ; )f q , 

( ; )h q ,  ( ; )q   and ( ; )q   in a power series of q in by Taylor’s 

theorem; Similar to the Blasius which provided a solution in power 
series, using Taylor series with respect to q results in: 

0
1

( ; ) ( ) ( ) m
m

m

f q U U q  




   ,                             (63) 

0
1

( ; ) ( ) ( ) m
m

m

h q V V q  




   ,                             (64) 

0
1

( ; ) ( ) ( ) m
m

m

q Y Y q   




   ,                              (65) 

0
1

( ; ) ( ) ( ) m
m

m

q Z Z q   




   ,                           (66) 

where, 

0

1 ( ; )
( ) ,

!

m

m m
q

f q
U

m q








                                (67) 

0

1 ( ; )
( ) ,

!

m

m m
q

h q
V

m q








                                (68) 

0

1 ( ; )
( ) ,

!

m

m m
q

q
Y

m q

 






                               (69) 

0

1 ( ; )
( ) .

!

m

m m
q

q
Z

m q

 






                               (70) 

Note that the zero-order deformation equations (63-66) contain the 
auxiliary parameter and the auxiliary function. Assuming that both 
auxiliary parameter and the auxiliary function are properly chosen so that 
the series is convergent at q = 1.  

It is known from Liao (2003) that if the solution series (63-66) 
converges, where the functions are governed by Equations (26-29) under 
the definitions (67-69), it must be the solution of Equations (26-29). 
Therefore According to Liao (2003), it is needed only to focus on the 
convergence of the solution series by properly choosing of q. Homotopy 
analysis method can be expressed by many different base functions (Liao 
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1992), according to the governing equations; it is straightforward to use 
a base function in the form of: 

1 1

( ) p m
pm

m p

U b e  
 



 

  ,                                 (71) 

1 1

( ) p m
pm

m p

V k e  
 



 

  ,                                 (72) 

1 1

( ) p m
pm

m p

Y d e  
 



 

  ,                                 (73) 

1 1

( ) p m
pm

m p

Z c e  
 



 

  ,                                 (74) 

where bpm, kpm,  dpm and cpm are the coefficients to be determined, and m 
is the so-called spatial-scale parameter. When the base function is 
selected, the auxiliary functions Hf (η), Hh (η), Hθ (η), and Hφ(η), initial 
approximations U0(η), V0(η),  Y0(η) and Z0(η) and the auxiliary linear 
operators Lf,  Lh,  Lθ and  Lφ must be chosen in such a way that the 
corresponding high-order deformation equations have solutions with the 
functional form similar to the base functions. It is worth mentioning that 
the presence of expressions such as ηsin(mη) prevents the convergence 
of the analytical solution. This method is referred to as the rule of solution 
expression (Liao 2003). In the first step the zeroth-order solutions 
deformation of equations of (26)–(29) are estimated by using HAM. 
Although the solution series (63-69) given by power functions may be 
valid in the whole region η∈ [0,+∞), it is still an analytic-numerical 
solution, because the initial condition had to be given by numerical 
techniques. Their convergence regions are dependent on q, and when η 
is small, a large number of terms are needed to gain an accurate 
approximation for a large η. Therefore, they are not efficient solution 
expressions of Equations (26-29). This is mainly because the base 
functions defined by (63-69) do not automatically satisfy the boundary 
conditions at infinity. Choosing exponential function as the base 
functions to express, the auxiliary linear operators Lf, Lh, Lθ and Lφ are 
chosen through: 

3

3

( ; ) ( ; )
[ ( ; )]f

f q f q
L f q

 
 

 
 

 
,                         (75) 

2

2

( ; ) ( ; )
[ ( ; )]h

h q h q
L h q

 
 

 
 

 
,                         (76) 

2

2

( ; ) ( ; )
[ ( ; )]

q q
L q

    
 

 
 

 
.                        (77) 

2

2

( ; ) ( ; )
[ ( ; )]

q q
L q

    
 

 
 

 
.                        (78) 

According to the rule of solution expression, Equations 
corresponding to the auxiliary linear operators in Equations (75) through 
(78) result in the following properties: 

1 2 3[ ] 0fL c c e c e    ,                              (79) 

4 5[ ] 0,hL c c e                                     (80) 

6 7[ ] 0,L c c e 


                                    (81) 

8 9[ ] 0,L c c e 


                                    (82) 

According to the rule of solution expression and the initial 
conditions, the initial approximations U0, V0, Y0, and Z0, as well as the 
integral constants, c1 through c9, are expressed as: 

 0 1 2 3 1 2 3, 0, 0,U c c e c e c c c        ,               (83) 

 0 4 5 4 5, 0, 2 ,V c c e c c m                                (84) 

 0 6 7 6 7, 0, 1,Y c c e c c     ,                             (85) 

 0 8 9 8 9, 0, 1,Z c c e c c                                   (86) 

Let us denote a nonzero auxiliary parameter and H(η) a nonzero 
auxiliary function. Then one can construct the so-called zero-order 

deformation equation for any constants C1- C9.The zeroth order 
deformation equation and their boundary condition for f (η), h(η), θ(η), 
and φ(η) are constructed as the following equations: 

0(1 ) [ ( ; ) ( )] ( ) [ ( ; )]f f f fq L f q U q H N f q       ,                    (87) 

0(1 ) [ ( ; ) ( )] ( ) [ ( ; )]h h h hq L h q V q H N h q       ,                      (88) 

0(1 ) [ ( ; ) ( )] ( ) [ ( ; )]q L q Y q H N q             .                    (89)

0(1 ) [ ( ; ) ( )] ( ) [ ( ; )]q L q Z q H N q             .                    (90) 

subject to the boundary conditions similar to (30)-(38).Those must be the 
exact solution of Equations (26-29) as long as it is convergent. Note that 

the solution (87-90) contains three auxiliary parameters q, η, and  . It 
should be emphasized that, for any given values of q and η, we still have 

the freedom to choose a proper value of the auxiliary parameter   to 
control and adjust the convergence region and rate of the solution (87-
90), when necessary. According to the rule of solution expression and 
from equations (87) through (90), the auxiliary functions Hf (η), Hh (η) ), 
Hθ(η) and Hφ(η)can be chosen as follows: 

( ) ,p m
fH e                                          (91) 

( ) ,p m
hH e                                          (92) 

( ) .p mH e 
                                          (93) 

( ) .p mH e 
                                         (94) 

the nth-order deformation equations is obtained by differentiating 
equations (87) through (90), m times, with respect to the embedding 
parameter q and then setting q=0 in the final expression and dividing it 
by m!,  are reduced to: 

1 1 2 3

1

0
10

( ) ( )

( ) ( )
1

( ,12 ( ) ( )
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q
m m m

f m m

q q
f m m

U U c c e c e
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  
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
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


   


 
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                     (95) 

1

1 4 50 0

( ) ( )

( ) ( ) ,

m m m

m m

V V

H e R V d d c c e
   



  

  






 

  
         (96)                 

1

1 6 70 0

( ) ( )

( ) ( ) .

m m m

m m

Y Y

H e R Y d d c c e
   



  

  






 

  
      (97) 

1

1 8 90 0

( ) ( )

( ) ( ) .

m m m

m m

Z Z

H e R Z d d c c e
   

  

   






 

  
      (98) 

Equations (95)-(98) is the mth order deformation equation for f(η), 
h(η), and ߠ(η), where 

       
0, 1

.
1, 1m

m

m



  

                                      (99) 

and : 
3

1 1
1 3

21 1
1 1

2
0 0

( ) ( )
( ) (1 )

( ) ( ) ( )
                ( ) ,

m m
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z m z m z
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d d d

 
 

  
  

 


 
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  
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(100) 
2 2

1 1
1 12 2

1 1
1 1

0 0

( ) ( )
( ) (1 ) ( 2 ( ))

2

( ) ( )
              ( ) ( ) ),

m m
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d d
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d d

  
 

  
 

 
 

 
   

 

   

  
                

(101) 
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2 1
1 1
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0

1
1

0

1 ( ) ( )
( ) (1 ) ( )

Pr
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m m z

m m R z
z
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m z

z
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R Y N U
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dU
Y

d
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 



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  
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


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

  
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           (102) 

2 1
1 1

1 2
0

1
1

0

1 ( ) ( )
( ) ( )

( )
                 2 ( ) ,

m
m m z

m m z
z

m
m z
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z

d Z dZ
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Sc d d

dU
Z

d

 
 





  





 



 






                     (103) 

The rate of convergence can be increased when suitable values are 
selected for m and p. According to the rule of solution expression, the 
suitable values for m and p are {p=0, m=1}. Consequently, the 
corresponding auxiliary functions were determined as Hf(η)= Hh(η) = 
Hθ(η) = Hφ(η)= e-η. As a result of this selection, the first and second terms 
of the solution’s series are as follows: 

0 ( ) ,U e                                          (103) 

1

2 2

( ) (9 12 9 5
12

3 9 3 )

h
U K Km e e

e e K e K

 

  

 

  

 

  

    

  
            (104) 

0 ( ) ,Y e                                          (105) 

1

2

1
( ) 0.0104166 ( 32 32

Pr

12 Pr 32 32 )

R

R

Y he e N e

e N

  







  



   

  
    (106) 

0 ( ) 2 ,V me                                       (107) 

1

1
( ) ( 18 81 8

36

24 36 12 )

V he m Km K

me Kme Ke



  







  

     

  
  (108)  

0 ( ) ,Z e                                           (109) 

1

2

1
( ) 0.0104166

(12 )

Z he
Sc

e Sc
















                    (110) 

The above Equations are the semi-analytical results of the homotopy 
analysis method (HAM) to the nonlinear coupled partial differential 
equations of a boundary layer flow of a micro polar fluid over a stretching 
sheet embedded in a highly absorbing medium system. Here the concept 
of the homotopy from topology is employed to generate a convergent 
series solution for nonlinear systems. This was enabled by utilizing a 
homotopy-Mclaurin series to deal with the nonlinearities in the system. 

4. ACCURACY AND CONVERGENCE  

The system of coupled non-linear ordinary differential equations (26–29) 
together with the boundary conditions (30-38) is solved by converting it 
to an initial value problem. The analytical solution should converge. As 
pointed out by Liao (2003), the convergence and rate of approximation 
for the HAM solutions strongly depend on the value of auxiliary 
parameter h. For simplicity, first the convergence of that is dependent on 

   and q is considered. By means of the so-called h-curve, it is 
straightforward to choose a proper value of h which ensures that the 
solution series is convergent. It should be noted that the auxiliary 

parameter  , as pointed out by Liao (2003) controls the convergence and 
accuracy of the solution series. In order to define a region such that the 

solution series is independent on  ,   -curves are plotted as shown in 
Figure 1. The influence of _ on the convergence of f(0) can be 
investigated by plotting the so-called h-curves of  f(0), as shown in Figure 
1.The region where the distribution of f , f  , f  , ,h h , ,    versus 

  is a horizontal line is known as the convergence region for the 
corresponding function. It is seen that the interval between -0.2 and -0.9 

can be chosen as the convergence region. Since the interval for the 
admissible values of hg corresponds to the line segments nearly parallel 
to the horizontal axis. For example, it was known that the admissible 
values for the parameter hg are -1.7 < h< -0.5 in the first branch of 

solution for the stretching case from Fig. 1. In this paper 1.5  . 
According to Liao (2003), it is needed only to focus on correctly 
choosing the auxiliary parameter and the spatial-scale parameter so that 
the solution is convergent. The homotopy-Pad´e technique is applied to 
accelerate the convergence of f”(0). For given q and η, by means of 

plotting the corresponding h-curves of f (0), a negative   with a small 
enough value of   may be chosen to ensure that the corresponding 

solution series converge.  

 
Fig. 2  -curves to show the convergence region. 

 
Table 1. Values of (0)f   for various values of m when K = 0. 

m Cortell (2007) 
Present with 15th 
order 

0.2 0.766758 0.766991 

0.5 0.889477 0.889634 

1 1 1 

1.5 1.061587 1.061643 

3 1.148588 1.148635 

 
The values of f’’(0) for m <1 and m > 1 results in the classical 

Newtonian fluids case (K = 0) are compared with existing one branch of 
the numerical results of Cortell (2007) in the case of stretching flow. 
From the comparison listed in Tables 1, it is found that they are in good 
agreement. Physically, f”(0) is related to the friction of the fluid on the 
plate and therefore has important physical meanings. It is found that the 
[m,m] homotopy-Pad´e approximants of f”(0) do not depend upon the 
auxiliary parameter. Besides, the convergence rate of the [m,m] 
homotopy-Pad´e approximants of f”(0) is not sensitive to auxiliary 
parameter η, as shown in Table 1. Furthermore in Table 2, a comparison 
has been made with previous works to show the influence of the iterations 
order in accuracy. It can be easily seen that, by increasing the number of 
iterations in series solution, the accuracy increases, which are in very 
good agreement with other works. Note that the solution (103-110) is 
explicit, purely analytic, and uniformly valid in the whole region η ∈ 
[0,+∞). Thus, it can be regarded as a definition of the solution of 
Blasius’ viscous flow problems governed by Equations (26-29). As 
shown using the homotopy analysis method, one can obtain many 
different solution expressions of a nonlinear problem, even if the solution 
is unique.

h
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Table 2. Values of (0)  for different Pr (m = 0.5, NR = 0, K = 0) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. ENTROPY GENERATION 

It is easy to show that the rate of a one-way destruction of useful work in 
an engineering system Wlost  is directly proportional to the rate of entropy 
generation: 
 

0lost gW T S                      (111) 

 
where T0 is the absolute temperature of the ambient. Assuming a finite 
size control volume at an arbitrary point in a two dimensional convection 
flow field and applying the second law of 
Thermodynamics, as Bejan (1996) suggested entropy generation per 
unit time and per unit volume equation is: 
 

22 2

g

T u v
S k

T T y x

                       

                     (112) 

Substituting Eqs. (21), (22) and (24) into Eq. (111) a relation for 
entropy generation for the flow over a horizontal flat plate is 

obtained: 

2 2

2

1
1

2Pr Re 2Re

1

2Re

g
total

r

r

S
S

S Ec

f

 
 

 

    
         
 
 

 



       (113) 

where S is  

 
2 4

w

w

U
S

T T


 




                                         (114) 

Temperature ratio is 

r
w

T

T T
 






                                                 (115) 

and the Eckert number (Ec) is a dimensionless number which 
characterize dissipation by express the relationship between a flow's 
kinetic energy and enthalpy as 

 
4
w

p w

U
Ec

C T T




                                         (116) 

Equation (112) denotes the entropy generation in terms of similarity 
parameters as well as similarity functions. So, it is straightforward to 
calculate the entropy generation with the aid of similarity solution. It 
must be noted that in Eq. (112) the first term is because of heat transfer 
and the latter one is due to fluid friction; Bejan number is defined as 
follows:  

2 21
1

2Pr Re 2Retotal r

Be
EcS

 
 
   

       
             (117) 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

As is obvious, Be   yields the share of S  h and S  f in total generated 
entropy, Be   = 1 is the limit at which the heat transfer irreversibility 
dominates, Be   = 0 is the opposite limit at which the irreversibility is 
dominated by fluid friction effects and Be=1/2 is the case that the heat 
transfer and fluid friction entropy generation rates are equal. 

6. RESULTS AND DISCUSSION ERRORS 

In order to study the effects of governing parameters on the flow and heat 
transfer characteristics, the graphical presentation of analytical results is 
presented in this section. Figure 3 presents the f profiles for various 
values of K (1, 10, 100, and 1000) when m = 0.9, Pr = 1 and NR = 1.From 
this Figure it is obvious that the f profiles increase as values of K 
increase. By observation of the increase in the curvature, it can also be 
noticed that the velocity gradient at the surface f″(0) decreases (in an 
absolute sense) as K increases. The same trend in similar fixed values is 
seen in Figure 4 for the dimension-less velocity. From this, it can be 
concluded that micro polar fluids exhibit drag reduction compared to 
viscous fluids. The negative velocity gradient at the surface, f″(0), as 
shown in Figure 4 reveals that a drag force is exerted by the stretching 
sheet on the fluid. This outcome is expected, because the development of 
the boundary layer is only induced by velocity profile.  

Figure 5 shows the variations of the angular velocity profile with 
respect to K (5, 10, 30, 50, and 500) when m = 0.1, Pr = 1 and NR = 1 
parameter. It can be seen that as K increases, the profiles decrease at the 
beginning (near the surface) and then (as η increases) increase smoothly. 
The effect of NR parameter over the temperature distribution when m = 
1, Pr = 0.7 and K = 100 is represented in Figure 6. The choice of such 
high K is to increase the convective effect and signify the thermal 
radiation heating. It is clear that the temperature is reduced due to the 
increase in K values. This claim is in agreement with the results presented 
in Table 3, which shows that as the value of K  increases, the values of 
skin friction factors  decreases (in an absolute sense) and subsequently a 
decrease in the temperature profiles occurs. Here the NR values are 0, 1, 
2, 5, and 10. As revealed in the Figure 6 by increase of NR the 
dimensionless temperature increases. It can be observed that the 
temperature distribution increases in the flow region as values of NR 
increase. This is due to the heat energy stored in the liquid because of 
frictional heating. It is also seen that the temperature gradient at the 
surface decreases (in an absolute sense) as NR increases. This observation 
is evidence that values of being lower for NR > 0 compared to NR = 0 as 
it presented in Table 4. Thus, the heat transfer rate at the surface is lower 
in the presence of radiation. However, it can also expect that the heat 
transfer rate at the surface is increased as K increases. This observation 
is in agreement with the results of Table 4.  

Figure 7 shows a different trend when the effect of Pr on the 
temperature distribution was explored as m and K values were kept 
constant at 0.5 and 100, respectively, and NR = 0. Here the Pr values are 
0, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 2, and 10. From Figure 7 it can be seen that 
increasing Pr leads to decrease the temperature distribution which 

Pr 
Grubka and Bobba 
(1985) 

Ali (1994) 
Chen 
(1998) 

Present with 6th order Present with 15th order 

0.01 0.0099 - 0.00991 0.0089 0.00991 

0.72 0.4631 0.4617 0.46315 0.4595 0.04631 

1 0.582 0.5801 0.58199 0.5793 0.0582 

3 1.1652 1.1599 1.16523 1.16381 1.1652 

10 2.308 2.296 2.30796 2.2998 2.30791 

100 7.7657 - 7.76536 7.7532 7.76532 
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implies that thermal boundary layer thickness decreases and on the 
contrary, leads to an increase in the heat transfer rate at the surface.  

Figure 8 illustrates the effect of Sc (0.01, 0.1, .3,and 1) on the 
dimension-less concentration distribution as m and K values were kept 
constant at 0.5 and 1, respectively, and NR = 0. From Figure 8 it can be 
concluded that increasing Sc leads to decrease the dimension-less 
concentration distribution which point toward that concentration 
boundary layer thickness decreases and on the contrary, leads to an 
increase in the mass transfer rate at the surface.  

Figure 9 presents the φ profiles for various values of K (1, 10, and 
100) when m = 0.1, Sc = 0.1 and NR = 1.From this Figure it is obvious 
that the φ profiles decrease as values of K increase. By observation of the 
increase in the curvature, it can also be noticed that the concentration 
gradient at the surface c″(0) increases (in an absolute sense) as K 
increases. Such increase on mass convection is important in high Schmitt 
numbers. 

Figure 10 depicted the φ profiles for various values of m 
(0,.5,0.8,0.9, and 1) when K = 1, Sc = 0.1 and NR = 1.Most of the previous 
investigations have been done based on considering the boundary 
parameter m = 0 or m = 0.5 (m = 0 represents concentrated particle flow 
in which the elements close to the surface are unable to rotate and m = 
0.5 indicates the vanishing of asymmetric part of the stress tensor). In the 
present work, more values of m have been considered. The concentration 
enhancement effect of boundary parameter m on concentration profiles 
is signified in Figure 10. It can also be found that the concentration 
gradients (mass transfer rate) at surface are larger for larger values of m.  
Figure 11 presents the f” profiles for various values of K (10, 50, 100, 
and 500) when m = 0.5.From this Figure it is obvious that the f” profiles 
increase as values of K increase. In addition the curvature of f” decreases 
(in an absolute sense) as K increases and it approaches the linear profile 
shape. The f” values are the significant part in the entropy generation rate 
that rules the velocity component of entropy (SU).  

Figure 12 show the θ” profiles for various values of K (10, 50, 100, 
and 500) when m = 0.5.From this Figure it is obvious that the θ” profiles 
increase smoothly as values of K increase. A the θ” value is the 
significant part in the entropy generation rate that rules the temperature 
component of entropy (Sθ). 

Thermal entropy profiles for various values of Prandtl number 
(m=0.1, K=100, NR=1, Re =1, r=0.1, and Ec = 1) are shown in Figure 
13. As shown most of the thermal component of entropy is occurred near 
the wall and after the η=1 this contribution is negligible. As well the 
velocity component of entropy profiles (m=0.1, K=100, NR=1, Re =1, 
and θr=0.1) for various values of Prandtl number are revealed in the 
Figure 14. As illustrated the maximum of the velocity component of 
entropy take place at the distance =1 from the wall and decrease by 
distance from this point.  

The summation of this components (m=0.1, K=100, NR=1, Re =1, 
θr =0.1, and Ec = 1) are displayed in the Figure 15. Total entropy profiles 
for various values of Prandtl number have maximum near the wall and 
after the η=1 are diminishing. To have a better sense from contribution 
of entropy components the Figure 16 is plotted to show the Bejan number 
profiles for various values of Prandtl number. By increase of Prandtl 
number the Bejan number increased near the wall and decrease in the 
distances far from the wall. The neutral point is take place near the η=1 
point. It must be mentioned that at the beginning of the plate, Be is 
approximately unity (Be ≅ 0.9), which means in the total entropy 
generation, heat transfer plays more important role than fluid friction but 
as we go along the surface, with decrease in temperature gradient, heat 
transfer share in total generated entropy decreases.  

The thermal boundary layer thickness becomes thicker for stronger 
Prandtl number. Figure 17 exposed the variation of average Bejan 
number from η=0 to η=4 versus Prandtl number. By increase of c the 
average of Bejan number decreased smoothly. Variations of thermal 
boundary layer thickness and temperature gradients for various values of 
Prandtl number clearly lead to decrease in Bejan number. 
 

 
 
Fig. 3 Variation of ( ) f  with η at different values of K. 

 
Fig. 4 Variation of velocity profile  ( ) f ˊ with η at different values of 
K. 
 

 
 
Fig. 5 Angular velocity h (η) for various values of K. 
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Fig. 6 Temperature profiles ( )   for various values of NR. 
 

 
 
Fig. 7 Temperature profiles ( )   for various values of Pr. 

 
Fig. 8 Concentration profiles ( )   for various values of Sc. 

 
Fig. 9 Concentration profiles ( )   for various values of K. 
 

 
Fig. 10 Concentration profiles ( )   for various values of m. 

 
Fig. 11  Variation of velocity profile  ( ) f  with η at different values 
of K. 
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Fig. 12 Variation of velocity profile  ( )   with η at different values of 
K. 
 

 
Fig. 13 Thermal entropy profiles ( ) S  for various values of Pr. 

 
Fig. 14 Velocity entropy profiles ( ) US  for various values of Pr. 

 
Fig. 15 Total entropy profiles ( ) totS  for various values of Pr. 

 

 
Fig. 16 Bejan number profiles ( ) Be  for various values of Pr. 
 

 
Fig. 17 Average Bejan number vs Pr. 
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Table 3. Values of  – 0   for various values of Pr, NR, m and K. 

 

Pr NR m K 
 
 
 

1 1 0.5 

0 0.41181 
1 0.42723 
2.5 0.47041 
5 0.52179 
10 0.57507 

1 1 

0 

1 

0.45513 
0.2 0.45217 
0.4 0.44869 
0.6 0.4446 
0.8 0.43975 
1 0.43378 

1 

0 

0.5 1 

0.61332 
0.5 0.50777 
1 0.42723 

5 0.34031 

0.5 

1 0.5 1 

0.36031 
1 0.42723 
2.5 0.68679 
5 0.90555 
10 1.11815 

 
 
Table 4. Values of Skin friction factor when Pr=1 and NR =1 for various 
values of m and K. 
 

m K 
 
 

0.5 

0 -8.0252 
1 -6.5356 
2.5 -5.1566 
5 -4.2871 
10 -3.3208 

0 

1 

-10.264 
0.2 -8.9227 
0.4 -7.3884 
0.6 -5.6153 
0.8 -3.5205 
1 -1.0118 

 
 

7. CONCLUSIONS 

In this paper the problem of steady two-dimensional heat transfer of 
continuous stretching sheet immersed in a micro polar fluid in the 
existence of radiation have studied. Using existence similarity 
transformations the governing equations have been transformed into non-
linear ordinary differential equations and solved analytically by using 
HAM. The obtained results were validated against previous works. 
Effects of the various parameters such as Prandtl number, the material 
parameter, boundary parameter and radiation parameter on the 
temperature, velocity and angular velocity profiles, as well as the skin-
friction coefficient and the local Nusselt number were examined. The 
following conclusions can be drawn as a result of the HAM calculations: 
-An increase in the value of K leads to a decrease of the angular velocity 
profiles, the wall temperature, concentration and the skin-friction 
coefficient; however, the velocity profile and the local Nusselt number 
are increasing. 
-An increase in the value of m leads to an increase of the angular velocity 
profiles, the wall temperature, concentration, and a decrease of the 

velocity profile, the local Nusselt number and the skin-friction 
coefficient. 
-An increase in the value of NR leads to a reduction of the local Nusselt 
number due to the wall temperature enhancement, while the trend is 
opposite for Pr number. 
-An increase in the value of Sc leads to a reduction of the concentration. 
-Be is plotted and its variation is studied as well. It is found that more 
entropy generates in boundary layer with increase the Re and Ec while 
decrease with the increase of Pr numbers. 
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