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ABSTRACT 

The paper reports the estimation of volumetric heat generation (qv) from a Teflon cylinder. An aluminum heater, which acts as a heat source, is 
placed at the center of the Teflon cylinder. The problem under consideration is modeled as a three dimensional steady state conjugate heat 
transfer from the Teflon cylinder. The model is created and simulations are performed using ANSYS FLUENT to obtain temperature data for the 
known heat generation qv. The numerical model developed using ANSYS acts as a forward model. The inverse model used in this work is 
Artificial Neural Network (ANN). Estimation of heat generation is carried out by minimizing the error between the simulated temperature and 
the experimental/surrogated temperature. The efficacy of the ANN method is explored for the estimation of unknown heat generation as both 
forward model and inverse model. The concept of Asymptotic Computational Fluid Dynamics (ACFD) is introduced as a fast forward model 
which is obtained by performing CFD simulations. The unknown heat generation is estimated for the surrogated data using ANN.  In order to 
mimic experiments, noise is added to the surrogated data and estimation of heat generation is also carried out for the perturbed/noise added 
temperature data 
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1. INTRODUCTION 

Most of the major engineering applications utilize conduction and 
convection as their heat transfer phenomenon. Electronic cooling, 
heat exchangers are examples of its application. The ability to 
control the thermal process depends on how the designed 
mathematical model predicts the behavior of the thermal system. 
Mathematical design requires inputs such as boundary conditions, 
thermo physical properties and initial conditions. If any of the inputs 
is unknown, the only way to determine these parameters is by using 
the concept of parameter estimation. In heat transfer, we estimate 
the unknown properties using temperature data measured at one or 
several location at a domain. This type of estimation is called 
inverse problem. On contrary, if all the aforementioned properties 
are known then the defined model is well posed and this approach is 
referred to as direct problem. From past few years a lot of research 
is being carried out on inverse convection heat transfer due to its 
wide range of applicability and importance in engineering 
applications. (Yang, 1998) used the least-squares error method to 
determine the strength of the temporal dependent heat source when 
prior knowledge of the source functions is not available in a two-
dimensional heat conduction problem. A comprehensive detail 
about inverse heat conduction problems has been given by (Ozisik 
and Orlande, 2000). (Chen and Yang, 2008) showed that the inverse 
convection problem is more complex than inverse conduction 
problem due to its parabolic nature. Energy and momentum 
equation coupling adds complexity to analysis. Adjoint and 
conjugate gradient methods were used for inverse convection 
analysis by (Yang and Chen, 2009; Zhao et al., 2009; Payan et 
al.2009). (Deng and Hwang, 2006) used non iterative methods are 
used to solve both forward and inverse conduction problem  and 
showed advantages over iterative methods in terms of computational 
cost and accuracy. In inverse heat transfer problems deterministic 
and stochastic methods are used as the inverse methods. Conjugate 
gradient method and steepest descent method are the forms of 

deterministic method, whereas Bayesian Inference which forms the 
stochastic method. 

One among the non-iterative method is ANN, also being used 
for solving inverse convection and inverse conjugate heat transfer 
problems (Balaji and Kumar, 2010; 2011). ANN can be used as the 
forward model as well as the Inverse model in heat transfer and 
other applications. (Torre et al., 2015) used artificial neural network 
as a modeling tool to predict the strength of high performance 
concrete based on manufacturing parameters. (Wright et al., 2014) 
investigated the use of an artificial neural network to perform 
diagnostic classification of DMCA scans carried out in nuclear 
medicine to assess the level of functional renal tissue in patients. 
(Ligor et al., 2015) applied artificial neural network for selection of 
potential lung cancer biomarkers by obtaining volatile organic 
compounds (VOCs) in the exhaled breath samples of lung cancer 
patients. (Hamzaoui et al., 2015) developed an integrated approach 
using artificial neural network inverse (ANNi) coupling along with 
a Nelder Mead optimization method to estimate the resonance stress 
of the turbine blades. (Thibault and Grandjean, 1991) used ANN to 
correlate heat transfer data. (Zhao and Zhang, 2010) presented 
neural network approach to the evaluation of performance of the fin 
and tube air cooled condensers used in air-conditioning and 
refrigeration systems. (Basheer and Hajmeer, 2000) focused on the 
use of ANN in solving complex real-world problems. (Kumar et al., 
2013) used artificial neural network as a design tool in the area of 
building services engineering. (Fannou et al., 2014) used ANN to 
model direct expansion geothermal heat pump. (Krishnan et al., 
2003) used asymptotic computational fluid dynamics (ACFD) and 
obtained correlations for the average Nusselt number, for the mixed 
convection problem. (Premchandran and Balaji, 2006) developed a 
correlation for the non-dimensional maximum temperature using the 
method of asymptotic expansions. 

Based on the literature review, most of the research on inverse 
problems is devoted to the theoretical works and iterative methods 
are used as inverse method. The problem considered in the present 
work is conjugate heat transfer from Teflon cylinder which has not 
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been discussed by other researchers. Navier stokes equation is 
solved for the conjugate heat transfer problem and temperature 
distribution is obtained. In view of this, the main contribution of this 
study is to develop a numerical model (Forward model) which 
would reduce the computational cost and to estimate the heat 
generation in the Teflon cylinder using a non-iterative method. In 
the ensuing sections, following a brief description about forward 
model and its validation, detailed evaluation of inverse model and 
ACFD as a forward model is discussed. 

2. FORWARD MODEL 

The problem deals with a cylindrical aluminum heater inside the 
Teflon cylinder that provides constant volumetric heat generation 
(qv). The heater is placed at the center of the Teflon cylinder. The 
setup has an aluminum heater with dimensions of 30mm diameter 
and 30mm length. The Teflon cylinder with dimensions of 100mm 
diameter and 100mm length is considered for the present work. The 
velocity profiles and the convection effects are thus studied by 
modeling an extended air domain. The setup is modeled as a three 
dimensional steady state conjugate heat transfer problem. The 
geometrical model and the coordinate system considered in the 
present study are as shown in Fig.1 

 
Fig. 1 Schematic representation of the Teflon cylinder along with 

aluminum heater 

 

The governing equation contains both conduction and 
convection terms hence one cannot find the exact solution. So the 
governing equation along with the appropriate boundary conditions 
is solved using the commercially available CFD package ANSYS 
fluent 14. The fundamental equations of fluid flow are the 
continuity equation, momentum equations (Navier Stokes equation) 
and energy equation. Air is the medium under consideration with 
constant thermo-physical properties except for density. The 
assumption of constant density cannot be done in this case since the 
problem deals with convection and fluid motion in convection is 
driven by density change and gravity. Hence the density change is 
modeled using Boussinesq approximation for the buoyancy term in 
the momentum equation. This approach treats the density as 
constant in the continuity equation and allows it to change with 
temperature in gravity term. 

The governing equations can be written as 
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డ௨

డ௫
 + 

డ௩

డ௬
+ 
డ௪	

డ௭	
	= 0 (1) 

X-momentum equation: 

u 
డ௨

డ௫
 + v

డ௨

డ௬
+ w

డ௨

డ௭
= - 

ଵ

ఘ

డ௣

డ௫	
ሺడߴ	+ 

మ	௨

డ௫మ
 + 

డమ	௨

డ௬మ
+ 
డమ	௨

డ௭మ
)    (2) 

 

Y-momentum equation: 

u 
డ௩

డ௫
 + v

డ௩

డ௬
 + w

డ௩

డ௭
 = - 

ଵ

ఘ

డ௣

డ௬
 + ሺߴ

డమ	௩

డ௫మ
 + 

డమ	௩

డ௬మ
+ 
డమ	௩

డ௭మ
)   (3) 

Z-momentum equation: 

u 
డ௪

డ௫
 + v

డ௪

డ௬
 + w

డ௪

డ௭
= - 

ଵ

ఘ

డ௣

డ௫	
 + ሺߴ

డమ	௪

డ௫మ
 + 

డమ	௪

డ௬మ
+ 
డమ	௪

డ௭మ
)+ gβ(T - ஶܶሻ (4) 

 

Energy equation: 

u 
డ்

డ௫
 + v

డ்

డ௬
+ w

డ்

డ௭
= αሺ

డమ	்

డ௫మ
+ 
డమ	்

డ௬మ
൅

డమ	்

డ௭మ
)    (5) 

The governing equation for the conduction inside the Teflon 
cylinder is given by 
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The following problem is effectively modeled by applying the 
boundary conditions as shown in Table 1. 
 
Table 1 Boundary conditions 

Boundary Condition 

Inner cylinder top Coupled wall 

Inner cylinder bottom Coupled wall 

Inner cylinder lateral Coupled wall 

Inner cylinder Constant heat generation (Aluminum) 

Outer cylinder top Coupled wall 

Outer cylinder bottom Coupled wall 

Outer cylinder lateral Coupled wall 

Outer cylinder k =0.25W/mK (Teflon) 

Extended domain top pressure-outlet 

Extended domain bottom pressure-outlet 

Extended domain lateral pressure-outlet 

The meshed portion of the geometry considered is shown in Fig. 2. 

  
Fig. 2 Schematic of the meshed Teflon cylinder 

2.1 Grid Independence study 

Grid Independence study is performed to fix the optimum grid size 
for meshing with a balance in computational time and accuracy. The 
domain is meshed with a coarse mesh and the simulation is 
performed for fixed convergence criteria until the solution is 
converged. The grid size is then refined and simulations are studied 
until solution is not varied. The proper meshing has been selected 
after carrying out many case studies. Table 2 represents the details 
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of grid independence study carried at location (x,y,z) = (50,0,50) 
mm. 
 
Table 2 Grid independence study for qv = 5x105 W/m3 

Sl No. No. of grids T (K)

1 50000 341.95

2 75000 342.69

3 90000 342.56

4 110000 339.83

5 120000 339.56 

 
From the grid independence study, the total number of cells 

considered throughout the entire analysis is fixed to be 110000. The 
deviation observed is very less and results can be considered to be 
reasonably accurate. The forward model is executed with the fixed 
grid for the heat generation of 300000 W/m3and 400000 W/m3 to 
obtain temperature distribution of the Teflon cylinder. Fig. 3 shows 
the temperature distribution on the surface of the Teflon cylinder for 
the heat flux mentioned previously. 

   

Fig. 3 Temperature distribution along with the surface of the 
cylinder 

CFD Simulations are carried out for different heat generation 
value as input and the temperature and velocity plot for each of the 
heat generation value is obtained. One such simulation result is 
shown in Fig. 4 in which temperature distribution along the surface 
of the Teflon cylinder is shown and Fig.5 shows the velocity 
distribution for heat generation value of qv=400000W/m3. 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Temperature(K) distribution in the Teflon cylinder for qv = 
4x105 W/m3 

2.2 Forward model – Neural Network  

The temperature data obtained from the forward model (CFD) with 
heat generation qv as input is used to train the artificial neural 
network. By doing so, the computational cost involved in executing 

 

 

Fig. 5 Velocity (m/s) contour plot for qv = 4x105 W/m3  

the forward model simulations is reduced. Commercially available 
MATLAB neural network tool box is used to train the neural 
network. A network is created between heat generation qv as  input 
and temperature distribution as output.Similar to grid independence 
study one should perform neuron independence study in order to 
obtain better correlation and accuracy. A three layer Neural 
Network is shown in Fig. 6 and for the present case network input is 
heat generation qv and the network output is temperature. Each layer 
consists of more neurons that are represented by circular nodes. The 
first layer input which is called as input layer recieves the 
information from the user and the output of the particular neuron is 
passed as the input to the next layer. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Schematic of three layer Neural Network 

2.3 Neuron independence study 

The neuron independence study is carried out to fix the optimum 
number of neurons in the hidden layer. Once the input is specified, 
the next step is to create a network. The study is started with one 
neuron and the network is trained with the help of specified input 
and output data. In order to fix the number of neurons in the hidden 
layer, a neuron independency study is carried out by increasing the 
number of neurons from 5 to 15 in the interval of 5 till the 
satisfactory results are obtained. The feed forward model is trained 
by Levenberg-Marquardt algorithm. The selection of the network is 
based on the error on the network training, validation and testing the 
data.  The performance of the network can be expressed in terms of 
mean relative errors (MRE), mean square errors (MSE) and the 
coefficient of determination R2. The number of neuron is selected in 
such a way that the mean square error is less and the regression 
value approaches one.  

Table 3 represents the data tabulated for the trained neural 
network.The regression coefficient for three different neuron studies 
is shown in Fig. 7-9. We can observe that 10 neurons are sufficient 
to train the neural network. 

Input     
layer Output layer Hidden 

layer 

Network Input Network Output
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Table 3 Neuron Independence Study 

 

 
Fig. 7 Regression for 5 neurons in the hidden layer 

 
Fig. 8 Regression for 10 neurons in the hidden layer 

 

 
Fig. 9 Regression for 15 neurons in the hidden layer 
 

The numerical model created using CFD is used to obtain 
temperature distribution on the surface of the Teflon cylinder. The 
full numerical simulation provides information about temperature 
for various heat generation qv. The network is trained between heat 
generation qv and surface temperatures as mentioned earlier. The 
temperature obtained from full numerical simulation and ANN is 

compared for different values of qv at a particular location say (50, 
0, 50)mm on the Teflon cylinder. Such a comparison is shown in 
Table 4.  A maximum error of 0.39 % further corroborates that the 
numerical model can be replaced with ANN model which now 
becomes a fast forward model to provide temperature information 
on the surface of the Teflon cylinder.  
 
Table 4 Comparison between full numerical solution and ANN 

 
2.4 Forward solution using ACFD 

Thus far, the numerical model based on ANN has been used as the 
forward model. In this section, the concept of Asymptotic 
Computation Fluid Dynamics (ACFD) is introduced as a forward 
model. The key point for the problem under consideration is the 
concept of Asymptotic Computation Fluid Dynamics (ACFD) 
which acts as a further fast forward model to obtain the temperature 
distribution. An Asymptotic analysis is the study of behavior of 
algorithms when the size of the data being processed grows very 
large. Asymptotic Computational Fluid Dynamics (ACFD) is the 
combination of asymptotic analysis with Computational Fluid 
Dynamics (CFD).The ACFD forward model provides the 
information about temperature for the given input qv. The 
asymptotic expansion approach is the expansion of the solution to 
the problem from the particular solution taken as reference solution.  
 

 
Fig. 10 Variation of temperature with variable qv 
 
The ACFD correlation for the model is given as  

ܶ=  ఖܶ+ 
୼்

୼ø
 (ø – ø0)       (6) 

ܶ = 308.85 + 9.72ൣሺݍ௩ ⁄௩,௥௘௙ݍ ሻ଴.଼ଽ െ 1൧       (7) 
 where ø	ൌ 	 ሺݍ௩ ⁄௩,௥௘௙ݍ ሻ଴.଼ଽ 
୼்

୼ø
 = slope obtained from the linearized plot 

ఖܶ 	= Reference temperature value,K 
 ௩ = Given heat generation value, (W/m3)ݍ
 ௩,௥௘௙= Reference heat generation value, 100000(W/m3)ݍ

Fig.10 shows the linearized temperature values obtained from 
simulated temperatures. CFD simulations are carried out for various 
input values of heat generation and the temperature plotted with 
respect to the heat generation ratio ൫ݍ௩ ⁄௩,௥௘௙ݍ ൯, now this plot is 
linearized by subjecting it to a power law relation which is termed 
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Sl. No No. of 
neurons in 
the hidden 
layer 

MRE (%) R2 Rtest 

1 5 0.010137 0.99974 0.932661

2 10 0.0000175 0.99999 0.997319

3 15 0.0019204 0.99988 0.877846

S. No qv, W/m3 

Temperature, 
K (full 
numerical 
solution) 

Temperature, 
K (ANN) 

Error 
(%) 

1 100000 308.85 307.89 0.31 

2 200000 317.14 316.28 0.27 

3 300000 324.99 323.72 0.39 

4 400000 332.54 331.44 0.33 
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as linearized plot in Fig.10. Based on the plot obtained Eq. (7) is 
obtained which forms the ACFD correlation. 

Eq. (7) is the temperature correlation obtained using ACFD 
with respect to heat generation qv. Eq. (8) gives the value of 
temperature for any given value of heat generation. The ACFD 
correlation thus obtained reduces the computational time and hence 
used as the forward model in the present work. Table 5 shows a 
comparison between CFD and ACFD temperature values at (50, 0, 
50) mm. 
 
Table 5 Comparison between temperatures obtained from CFD and 
ACFD 

 
From Table 5, it is observed that a maximum error of 0.42% is 
obtained, which indicates that the correlation obtained from ACFD 
as a forward model predicts the temperature very close to the 
simulated temperature. Therefore, it has been safely concluded that 
the ACFD model as a forward model that can accurately predict the 
temperature in estimating the unknown heat generation inside the 
Teflon cylinder. 
 

3.RESULTS AND DISCUSSION 

3.1 Inverse problem – Neural network 

In the inverse problem, estimation of heat generation is done for the 
known temperture distribution from the Teflon cylinder. The inverse 
method adopted is also Artificial Neural Network.  The temperature 
data obtained through CFD analysis is given as input and heat flux 
is obtained as output. It should be noted that the Neural Network 
inverse model also requires neuron independence study  and such an 
exercise is reported in the next section. 
 
3.2 Neuron independence study– ANN as the forward 
model 
A neuron independence study was carried out to determine the 
optimum number of neurons in the hidden layer. 
 
Table 6 Neuron independence study for the inverse model 

 
Table 6 represents the data tabulated for inverse model neural 
network. From Table 6 we can observe that 8 neurons are sufficient 
to train the neural network. 
 
3.3 Neuron independence study- ACFD as the forward 
model 

A neuron independence study was carried out to determine the 
optimum number of neurons in the hidden layer for ACFD model. 
Table 7 represents the data tabulated for inverse model neural 
network. From the table we can observe that 8 neurons are sufficient 
to train the neural network in order to obtain the target data. 
 
 

Table 7 Neuron independence study for inverse model 

 
3.4 Retrieval of heat generation qv, W/m3 

Single parameter estimation is attempted in this section for the 
known temperature distribution. It must be noted that to estimate the 
unknown heat generation qv, W/m3 experimental/surrogated 
temperature is required. In other words, the surrogated temperature 
is obtained by the procedure given in Fig. 11. 

 
 
 
 
 
 
 
Fig. 11   Schematic representation of surrogated temperature 

 
The surrogated temperature obtained from CFD simulation and 
ACFD is fed into the neural network which also acts as an inverse 
model to obtain qv. Table 8 shows the retrieved qv from the 
surrogated temperature data obtained at (50,0,50)mm on the surface 
of the Teflon cylinder. For example, from Table 9 when a 
temperature of 317.14 K is specified as input to the inverse model, 
the estimated heat generation turns out to be 196912 W/m3. This in 
turn, compared with the heat generation reported in Table 9 for the 
same temperature. More precisely, the error between the actual and 
estimated heat generation is 1.5 % for ANN model and 2.08% for 
ACFD model which is within the acceptable limit. 

 
Table 8 Retrieval of heat generation 

S. No Temperature 
(K) at 
(50,0,50)mm 

qv retrieved from 
ANN (W/m3) 

qv retrieved 
from ACFD 
(W/m3) 

1 317.14 196912 195840 

2 324.99 295569 294987 

3 332.54 396582 396038 

 
The retrieved value of internal heat generation qv, W/m3 is now 
given as input to the forward model to obtain the simulated 
temperature distribution. The simulated and experimental 
temperature are compared and shown in a parity plot Fig 12. 
Surprisingly, the simulated temperatures using forward model and 
the surrogated temperatures agree very well.  

 
3.5 Retrieval of heat generation for perturbed 
temperature data 

In the early investigations, estimation of heat generation qv was 
attempted for the surrogated data. In actual practice, experimental 
temperature contains inherent noise and this has motivated the 
authors to carry out an estimation process for the noise added or 
perturbed temperature data. Hence, in this study 0.5% and 1% noise 
is added to the surrogated data and estimation of heat generation is  

Sl. 
No 

No. of 
neurons in the 
hidden layer  

MSE (%) Rtraining Rtest 

1 5 0.025874 0.9994 0.99949 

2 8 0.0010027 1.0000 0.99983 

3 10 0.24869 0.9973 0.99745 

S. 
No 

Volumetric 
heat 
generation(qv), 
W/m3 

Simulation 
temperature, 
K (CFD) 

Forward 
model 
temperature, 
K (ACFD) 

Error (%) 

1 150000 311.91 313.07 0.37 

2 250000 320.26 321.09 0.26 

3 350000 327.38 328.76 0.42 

4 450000 335.04 336.19 0.34 

Sl. No No. of 
neurons in the 
hidden layer  

MSE (%) Rtraining Rtest 

1 5 0.0335651 0.99995 0.99923 
2 8 0.00101929 0.99999 0.99972 
3 10 0.160204 0.99980 0.99839 

Temperature 

 

Heat generation, 
qv, W/m3 

Numerical Model 

 (INPUT) (OUTPUT) 
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Fig. 12 Parity plot showing agreement of simulated temperature 
with surrogated temperature. 
 
is carried out. Table 8 shows the retrieved value of heat generation 
and the simulated temperature obtained by the inverse method for 
the noise added data. As seen in Table 9, the proposed method is 
capable of estimating the unknown heat generation using ANN with 
a maximum error of 4% and 7% between the retrieved value for 
0.5% and 1% noise and actual value of heat generation qv. The 
parity plot shown in Fig.13 further corroborates the agreement of 
the simulated and surrogated temperature. 
 
Table 9 Retrieved heat generation qv, W/m3 for noise added 
surrogated temperature 

 
 

 
 
Fig. 13 Parity plot showing agreement of simulated temperature 
with the noise added surrogated temperature 

 
4. CONCLUSIONS 

In a novel approach, the unknown volumetric heat generation (qv) 
has been estimated for the surrogated temperature of the Teflon 
cylinder using artificial neural network as an inverse model. The 
forward model for the three dimensional conjugate heat transfer has 
been solved using the commercially available software ANSYS 14. 
A simple ACFD model has been proposed. ANN and ACFD are 
used to replace the forward model to save computational cost. ANN 
method was also used as an inverse model to estimate qv from the 

surrogated temperatures obtained from CFD simulations. A 
maximum error of 0.39% was observed between temperature 
obtained from CFD and ANN and a maximum error of 0.37% 
between temperature obtained from CFD and ACFD. The unknown 
heat generation retrieved for the surrogated as well as noise added 
temperature data was under the reasonable limit. Finally, it has been 
concluded that the well trained ANN method is a powerful 
technique for the estimating the volumetric heat generation from 
surface temperature data. 

 
NOMENCLATURE 

ANN artificial neural networks 

ACFD asymptotic computational fluid dynamics

CFD computational fluid dynamics 

g acceleration due to gravity (m/s2) 

h heat transfer coefficient (W/m2K) 

k thermal conductivity (W/mK) 

MRE mean relative error 

qv volumetric heat generation (W/m3) 

qv,ref reference volumetric heat generation (W/m3)

R2 correlation coefficient 

T temperature (K)

T∞ ambient temperature (K) 

Greek Symbols 

α thermal diffusivity (m2/s) 

β Boussinesq approximation  

υ kinematic viscosity (m2/s) 

ρ density (kg/m3)

φ ሺݍ௩ ⁄௩,௥௘௙ݍ ሻ଴.଼ଽ
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