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ABSTRACT 

The aim of this paper is to present non-similar solutions of a steady laminar compressible boundary layer flow past a long thin circular cylinder 

including the effects of wall enthalpy and surface mass transfer. The governing equations along with the boundary conditions are first converted into 

dimensionless form by a non-similar transformation, and then the resulting system of coupled non-linear partial differential equations is solved by an 

implicit finite difference scheme in combination with the quasi-linearization technique. The increase in the value of power law variation of viscosity 

causes an increase in the boundary layer thicknesses of both the velocity and enthalpy profiles. Skin friction as well as heat transfer at the wall 

increases with suction and decreases with injection. The increase in viscous dissipation causes an increase in skin friction and decrease in heat 

transfer at the wall. 
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1. INTRODUCTION

When the fluid moves at a speed comparable to the speed of sound, 

density changes become more significant and the flow is termed as 

compressible. Compressible flow deals with more than air, including 

steam, natural gas, nitrogen and helium, etc. Compressible flow also 

includes flow around bodies such as the wings of an airplane and such 

flows are termed as external flows. Compressible flows are also 

experienced in manufacturing process such as die casting and injection 

molding. The die casting process is a process in which liquid metal is 

injected into a mold to obtain a near final shape. The air is displaced by 

the liquid metal in a very rapid manner and therefore compressibility has 

to be taken into account. Also, cooling of some manufacturing systems 

and design of refrigeration systems utilize compressed air flow. 

References (Subhashini and Nath, 1999; Subhashini et al., 2003; 

Chamkha et al., 2005; Kumari and Nath, 2005; Bryuno and Shadrina, 

2007) give information on some of the recent works on compressible 

boundary layer flows for various geometries. 

Compressible boundary layer flow over two dimensional or 

axisymmetric bodies provide many practical applications. For example, 

two dimensional or axisymmetric bodies simulate approximately the 

leading edge of an aircraft or an airplane body surface and at the same 

time also allow a basic simplification of the complicated three 

dimensional compressible boundary layer equations. For axisymmetric 

flow, both the velocity and thermal boundary layer thicknesses are 

assumed to be small compared to either the body radius for an external 

flow or the channel radius for an internal flow. Bryuno and Shadrina 

(2007) have used methods of power geometry to study the axisymmetric 

boundary layer on a needle. Also, Roy (2000), Roy and Takhar (2003) 

have analyzed the effect of non-uniform multiple slot injection and wall 

enthalpy on the steady non-similar compressible boundary layer flow 

over axisymmetric bodies. Reddy (2014) has used Crank-Nicolson finite 

difference scheme to study the boundary layer of vertical cylinder. 

Similarity solutions of mixed convection boundary layer flows are also 

presented in a recent study by Daba et.al (2015). Experimental 

investigation of the boundary layer transition on an axisymmetric model 

is given by Sugiura et al. (2006). The mass transfer from wall into the 

boundary layer is of great interest for various potential applications 

including thermal protections, energizing the inner portion of boundary 

layer in adverse pressure gradient and skin friction reduction on control 

surfaces. In fact, mass transfer influences the development of boundary 

layer and can prevent or at least delay the point of separation. 

The aim of the present investigation is to analyze the effect of wall 

enthalpy and mass transfer on steady laminar boundary layer flow of 

viscous compressible fluids past a long thin circular cylinder. Owing to 

the extreme complexity of the fully compressible boundary layer 

equations a mathematical model is adopted which can be justified to a 

certain extent on physical grounds. In short, the assumption is made that 

the effects of compressibility are confined to the boundary layer and the 

main stream remains incompressible. This could be realized in practice by 

releasing a stream of small Mach number past a very hot body. The non-

similar solution of the boundary layer equations has been obtained 

numerically using the method of quasi-linearization in combination with 

an implicit finite difference scheme (Singh and Roy, 2007; 

Srinivasacharya et al., 2015). The results for some particular cases are 

compared and found to agree with the available results in literature (Na 

and Pop, 1999; Kumari and Nath, 2004). 
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2. ANALYSIS

A steady axisymmetric boundary layer flow of a compressible fluid 

with variable properties past a static thin cylinder of infinite length and 

radius b is considered. Let x and y be the curvilinear coordinates along 

and perpendicular to the boundary, respectively, u and v be the 

corresponding velocity components. r = b + y is the normal distance 

from the axis of the cylinder (see Fig. 1). It is also assumed that the 

injected fluid possesses the same physical properties as the boundary 

layer fluid and has a static temperature equal to the wall temperature.   

Fig. 1 Physical model and coordinate system 

The Prandtl number (Pr) is assumed to be constant as its variation 

across the boundary layer is negligible for most atmospheric problems 

(Wortman et al., 1971). Also the external flow is homo-entropic and the 

surface is maintained at a constant temperature. Under the above 

assumptions the governing boundary layer equations are 
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with boundary conditions 

     
    .,,,

,0,,0,,00,

ee

ww

hxhuxu

hxhvxvxu




 (4) 

Here h (h = CPT) is the specific enthalpy of the fluid, ue and he are 

constants, and 0 xp . It is assumed that the fluid properties vary as 

ρ h-1 and μ hω. Equations (2) and (3) are written in terms of total

enthalpy H as  
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subject to boundary conditions 
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Further, introducing new variables (Choi, 1982) 
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the equation of continuity is satisfied if the streamfunction   is 

defined as 
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Using (8), Eqs. (5) and (6) can be written as 
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 subject to boundary conditions 
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Equations (10) and (11) are further transformed into non-dimensional 

form by introducing the following transformation 
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Thus, Eqs. (10) – (11) become 
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Here ω is the power law variation of viscosity, ω = 0.5 represents high 

temperature flows, ω = 0.7 is appropriate for low temperature flows and 

ω = 1.0 represents constant density-viscosity product simplifications. N 

is the density-viscosity product, Ec is the Eckert number, Re is the 

Reynolds number and Pr is the Prandtl number which is taken as 

constant across the boundary layer. The boundary conditions imposed 

on the Eqs. (14) - (15) for ξ ≥ 0 are 
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21 . The mass transfer 

parameter A > 0 and A < 0 according as there is suction or injection. 
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The local skin friction coefficient and the local heat transfer coefficient 

in the form of Stanton number are defined as  
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where 
wηwwη FNF )()(    and Rex is the local Reynolds number. 
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where  )1(Pr)()( wwηwwη G/GNG  . It is clear from Eqs. (17) - (18) 

that 
wηF )(  and 

wηG )(  are the crucial parameters which characterize the 

skin friction and heat transfer of the fluid flow. 

3. METHOD OF SOLUTION 

The set of dimensionless non-linear coupled partial differential 
equations (14), (15) under the boundary conditions (16) has been solved 
numerically using an implicit finite-difference scheme in combination 
with the quasi-linearization technique. The quasi-linearization 
technique is essentially a generalized Newton-Raphson method for the 
functional equations. The advantage of this technique is its quadratic 
convergence property. A detailed treatment of the quasi-linearization 
technique can be found elsewhere (Patil and Roy, 2010).  An iterative 
sequence of linear equations is carefully constructed to approximate the 
nonlinear equations (14), (15) for achieving quadratic convergence. 
Applying the quasi-linearization technique, the nonlinear coupled 
system of partial differential equations is replaced by the following 
sequence of linear partial differential equations 
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The coefficient functions with iterative index i are known and the 

functions with iterative index (i+1) are to be determined. The boundary 

conditions are given by 
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where   is the edge of the boundary layer. The coefficients in 

equations (19), (20) are given by 
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The resulting sequence of linear partial differential equations (19), 

(20) was discretized using second order central difference formula in η- 

direction and backward difference formula in ξ- direction. In each 

iteration step, the equations were then reduced to a system of linear 

algebraic equations, with a block tri-diagonal structure which is solved 

using Varga’s algorithm (2000). Since the method is elegantly 

presented in a recent study by Patil and Roy (2010) for boundary layer 

equations, its detailed description is not provided here to conserve the 

space. The convergence of numerical solutions to the exact solution is 

ensured by optimizing the step sizes ∆η and ∆ξ, and the optimized step 

sizes are ∆η = 0.01 and ∆ξ = 0.01. The results presented here are 

independent of the step sizes at least up to the fourth decimal place. A 

convergence criterion based on the relative difference between the 

current and previous iteration values is employed. The solution is 

assumed to have converged and the iteration process is terminated when 

the difference reaches 
410
 i.e. 
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4. RESULTS AND DISCUSSION 

Computations have been carried out for various values of A (-1.0 ≤ A ≤ 

1.0), Gw (0.4 ≤ Gw ≤ 0.6), ω (0.5 ≤ ω ≤ 1.0) and Ec (0.2 ≤ Ec ≤ 0.6). In 

all numerical computations Pr  has been taken as 0.7. In order to verify 

the correctness of the present numerical approach, the computed results 

are compared with those of Na and Pop (1999) for compressible flow 

case. The incompressible flow study reported by Kumari and Nath 

(2004) is also possible to compare for a specific set of parameter values 

with the present study. The results are found to be in excellent 

agreement and some of the comparisons are shown in Table 1 and Fig. 

2. 

 

Table 1 Comparison of skin friction (Rex
1/2Cfx) for various values of ξ 

when Ec = 0, Pr = 0.7, Gw = 0, A = 0, ω = 1.0. 

 

ξ Kumari and Nath (2004) Present Result 

0 1.3281 1.3282 

1 1.9167 1.9166 

2 2.3975 2.3975 
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Fig. 2 Comparison of Local Nusselt number (Nu Re-1/2 = St Pr Re1/2) 

for various values of Gw with results of Na and Pop (1999) for 

Pr = 0.7, ω = 0.5, Ec = 0 and A = 0 
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Fig.  3 Effects of Gw and A on skin friction 
wF )( 

 for Ec = 0.6, Pr = 0.7 

and ω = 0.5.  
 

The effects of wall enthalpy (Gw) and mass transfer parameter (A) 

on the skin friction and heat transfer rate at the wall are presented in 

Figs. 3 and 4. The results presented in Fig. 3 indicate that the skin 

friction increases with suction (A > 0) and decreases with injection       

(A < 0). For example, approximately 40% increase in skin friction is 

noticed as A changes from 0 to 0.5 whereas, 32% decrease is noticed as 

A changes from 0 to -0.5 for Gw = 0.4 at ξ = 10.The physical reasoning 

for the above behaviour is that blowing gives rise to a thicker 

momentum boundary layer thereby decreasing velocity gradient at the 

surface. Similarly, heat transfer at the wall increases with increase of 

suction and decreases with the increase of injection. It is observed from 

Figs. 3 and 4 that as the wall enthalpy increases, the heat transfer rate at 

the wall decreases while skin friction increases. This is because the 

fluid (air) viscosity is increased due to the increase in the wall enthalpy 

which results in increase of skin friction. On the other hand, as the wall 

enthalpy increases, the density decreases. Decrease in density results in 

increase of the thermal boundary layer thickness which causes 

reduction in heat transfer rate at the wall. From Fig. 4 it is noted that for 

A = 0.7, there is approximately 30% decrease in heat transfer rate at the 

wall as the wall enthalpy increases from 0.4 to 0.6 at ξ = 10.0. Similarly, 

Fig. 3 indicates that skin friction increases approximately 13% for           

A = − 0.5 when the wall enthalpy changes from 0.4 to 0.6 at ξ = 10.0. 

Further for A = 0.5, increase in 
wF )( 

 is 15% at 0.10 .  
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Fig. 4 Effects of Gw and A on heat transfer at the wall 
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 for         

Ec = 0.6, Pr = 0.7 and ω = 0.5. 
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Fig.  5 Effects of Ec and ω on skin friction 
wF )( 

 for Gw = 0.6, Pr = 

0.7 and A = 0.5. 

 

Figures 5 and 6 present the effect of viscous dissipation parameter 

and power law variation of viscosity on skin friction and heat transfer 

rate at the wall, respectively. The increase in viscous dissipation (Ec) 

causes increase in the skin friction. It is interesting to observe in Fig. 5 

that as the dissipation parameter increases from 0.4 to 0.6 there is 

approximately 17% increase in skin friction for ω = 0.5 at ξ = 10.0. 

Also, it is noticed in Fig. 6 that the increase in viscous dissipation 

causes a decrease in heat transfer rate at the wall. This is because the 

kinetic energy of the flow will be partially dissipated by the influence 

of friction and will be transformed into internal energy of the fluid. 

Thus, the viscous dissipation increases the frictional heating and 

consequently the surface gets heated. This results into the enthalpy 

difference between the wall and the fluid near the wall. Hence, the 

enthalpy gradient becomes less and heat transfer is reduced at the wall 

(Fig. 6). It is noted from Figs. 5 and 6 that increase in power law 
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variation of viscosity (ω) decreases both skin friction and heat transfer 

rate at the wall. In particular, for ξ = 5.0 and Ec = 0.6, there is 

approximately 15% decrease in the skin friction as ω increases from 0.5 

to 1.0 (see Fig.5). Similarly, there is about 20% decrease in heat 

transfer rate at the wall as ω increases from 0.5 to 1.0 at ξ = 5.0 when 

Ec = 0.6 (see Fig.6).  
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Fig. 6 Effects of Ec and ω on heat transfer at the wall 
wG )( 

 for        

Gw = 0.6, Pr = 0.7 and A = 0.5.  

 

It may be remarked from Figs. 5 and 6 that the effect of power law 

variation of viscosity (ω) is slightly more pronounced on heat transfer 

rate at the wall as compared on skin friction. Also, it is seen from Figs. 

5 and 6 that skin friction and heat transfer at the wall increases with 

increase in ξ. It is noticed in Fig. 6 that the increase in heat transfer at 

the wall with the increase of ξ is significant for higher values of ω. For 

example, for ω = 1.0, approximately 11% increase in heat transfer at the 

wall is noted as ξ increases from 0 to 10.0 whereas only 4% increase in 

 
w

G
 is observed for ω = 0.5 when Ec = 0.6. 
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Fig.  7 Effects of Ec and A on velocity profile (F) for Gw = 0.6, Pr = 

0.7 and ω = 0.5 at ξ = 5.0. 
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Fig. 8 Effects of Ec and A on enthalpy profile (G) for Gw = 0.6,          

Pr = 0.7 and ω = 0.5 at ξ = 5.0.  
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Fig.  9 Effects of ω and A on velocity profile (F) for Gw = 0.6, Pr = 0.7 

and Ec = 0.6 at ξ = 5.0. 

 

Effects of dissipation parameter and mass transfer parameter on 

the velocity and enthalpy profiles for Gw = 0.6 and ω = 0.5 are 

presented in Figs. 7 and 8. It is noticed from Fig. 7 that the increase in 

the value of the dissipation parameter causes increase in the steepness 

of the velocity profile (F), that is, the boundary layer thickness of the 

velocity profile decreases with the increase in the value of dissipation 

parameter. This is because increase in dissipation causes an increase in 

kinetic energy of the particles within the boundary layer thereby 

decreasing its thickness. Also, from Fig. 7 it is observed that the 

boundary layer thickness increases with injection and decreases with 

suction. This is due to the reason that the fluid is carried away from the 

surface in the case of injection (A < 0) causing a reduction in the 

velocity gradient as it tries to maintain the same velocity over a small 

region near the surface, and such effect is reversed in the case of 

suction (A > 0). Similarly, the enthalpy boundary layer is thick for 

injection and gets thinner for suction (see Fig. 8). The reason is that the 

fluid is brought closer to the surface by suction and hence the enthalpy 

boundary layer thickness is reduced. Also, it is observed from Fig. 8 

that the increase in the value of dissipation parameter causes an increase 

in the boundary layer thickness of the enthalpy profiles. The effect of 

power law variation of viscosity on velocity and enthalpy profiles is 
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presented in Figs. 9 and 10, respectively. It is noted that the boundary 

layer thickness of both velocity and enthalpy profiles increases with the 

increase in the value of ω (see Figs. 9 and 10). For example, it is noted 

from Fig. 9 that η∞ ≈ 3.9 and η∞ ≈ 4.6 for ω = 0.5 and ω = 1.0, 

respectively, when A = 0.5. Similarly, Fig. 10 displays that for A = 0.5, 

the enthalpy boundary layer thicknesses are approximately 3.2 and 3.4 

corresponding to ω = 0.5 and 0.7, respectively. 
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Fig. 10 Effects of ω and A on enthalpy profile (G) for Gw = 0.6,          

Pr = 0.7 and Ec = 0.6 at ξ = 5.0.  

 

5. CONCLUSIONS 

A steady axisymmetric boundary layer flow of a compressible fluid 

with variable properties past a static thin cylinder of infinite length and 

radius b has been studied numerically. Conclusions of the study are as 

follows 

 Results indicate that increase in wall enthalpy Gw from 0.4 to 0.6 

causes approximately 32% decrease in heat transfer at the wall 

wG )( 
 and approximately 17% increase in skin friction

wF )( 
.  

 It is noticed that skin friction increases by 40% for suction A = 0.5 

and reduces by 31% for injection A = −0.5. Similarly, heat transfer 

at the wall increases with suction and decreases with injection.  

 Increase in dissipation parameter from Ec = 0.4 to Ec = 0.6 causes 

approximately 17% increase in skin friction and 5% decrease in 

heat transfer at the wall. Also, skin friction and heat transfer 

increase with the increase in the value of
 
ξ.  

 Power law variation of viscosity reduces both skin friction and 

heat transfer at the wall. Approximately 15% decrease in skin 

friction and 20% decrease in heat transfer is noticed as ω increases 

from 0.5 to 1.0. 

NOMENCLATURE 

r  normal distance from the axis of the cylinder 

b radius of the cylinder 

p pressure 

h specific enthalpy 

u,v velocity components in x- and y- direction 

x,y axial and vertical coordinates 

Pr Prandtl number 

H total enthalpy  

G dimensionless enthalpy 

F dimensionless velocity 

N ratio of buoyancy parameters 

Ec Eckert number 

xfC  Local skin friction coefficient 

xSt  local Stanton number 

k thermal conductivity of the fluid 

pC  specific heat at constant pressure 

A dimensionless surface mass transfer parameter 

xRe  local Reynolds number 

Greek Symbols  

ρ density  

  dynamic viscosity 

  kinematic viscosity 

  similarity variable 

  transformed axial coordinate 

  powerlaw variation in viscosity 

  dimensionless stream function 

Subscripts  

w condition at the wall 

e ambient environment 

,  partial derivative with respect to these variables 
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