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ABSTRACT 

A mathematical model of forced convection boundary layer stagnation-point slip flow in Darcy-Forchheimer porous medium over a shrinking sheet 

is presentedin this paper. The governing partial differential equations are transformed into ordinary differential equation using self-similarity 

transformation which are then solved numerically with shooting method. A parametric study of the physical parameters involved in the problem is 

conducted and representative set of numerical results are presented through graphs and tables, and are discussed. 
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1. INTRODUCTION 

The analysis of convection boundary layer flow along a vertical surface 

embedded in porous media has received considerable theoretical and 

practical interest.  The convection boundary layer flow occurs in several 

industrial and technical applications such as electro-chemistry, solar 

collectors and polymer processing. Studies of boundary layer flows in a 

saturated porous medium have been considered by several authors. The 

first study of the free convection flow over a horizontal flat plate 

embedded in a porous medium was reported by Cheng and Chang (1976) 

and followed by Cheng (1977) for the mixed convection flow case.  Hong 

et al. (1987) studied the Darcy-Brinkman forced convection flow over a 

fixed impermeable heated plate embedded in a porous medium.  

Mukhopadhyay and Layek (2009) analyzed the forced convection 

boundary layer flow over a porous plate in porous media with the 

radiation effects. Mahdy and Chamkha (2010) reported the effects of 

chemical reaction and viscous dissipation on Darcy-Forchheimer mixed 

convection along a vertical surface in a fluid saturated porous media. The 

steady forced convection flow and heat transfer past a porous plate placed 

in a fluid saturated porous medium using the Darcy model with partial 

slip was discussed by Bhattacharyya et al. (2011).  Later, 

Mukhopapadhyay et al. (2012) have studied the steady forced convection 

boundary layer flow past a porous plate placed in a fluid-saturated porous 

medium using the Darcy-Forchheimer model taking into account the 

effect of thermal radiation.  Bakar et al. (2014) considered the forced 

convection flow past a permeable plate embedded in a Darcy-

Forchheimer poeous medium. 

Recently, the boundary layer flow due to a shrinking sheet has 

attracted considerable interest where there are plenty of applications of 

shrinking sheet problems in industries and engineering fields. The 

shrinking sheet occurs, for example, on a rising shrinking balloon. Fang 

 et al. (2010) investigated analytically the viscous flow over a shrinking 

sheet with a second slip flow model.  Lok et al. (2011) studied the MHD 

Stangnation-Point Flow towards a Shrinking Sheet.  Stability of dual 
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solutions in stagnation-point flow and heat transfer over a porous 

shrinking sheet with thermal radiation was analyzed by Mahapatra and 

Nandy (2013). Later, Mahapatra and Nandy (2013)  presented the 

unsteady boundary layer flow and heat transfer about a stagnation-point 

towards a shrinking sheet in the presence of velocity and thermal slip. 

They show that multiple solution exits for certain range of the ratio of 

shrinking velocity which again depend on the unsteadiness parameter and 

velocity slip parameter.  Bhattacharrya et al. (2013) studied the slip 

effects on the boundary-layer flow of a Casson fluid over a porous 

stretching/shrinking sheet.  Very recently, the similarity equations for 

steady boundary layer flow and heat transfer over a permeable stretching 

or shrinking surface embedded  in a porous medium using Brinkman 

model was analyzed  by  Merkin et al. (2014). 

In view of above literature, we study the slip effects on on forced 

convection boundary layer  near the stagnation-point over a shrinking 

sheet in Darcy-Forchheimer porous medium. The slip condition is taken 

into accaount in terms of the shear stress. Using similarity variables, a 

third order and a second order differential equations corresponding to the 

momentum and thermal boundary layer equations are obtained. These 

nonlinear equations along with appropriate boundary conditions are then 

solved numerically using shooting method.  

2. BASIQ EQUATIONS 

We consider the steady two-dimensional boundary layer flow and heat 

transfer near a stagnation-point towards a shrinking sheet in a porous 

medium with velocity and thermal slips. The differential equations of 

fluid motion is based on Forchheimer which accounts for the drag exerted 

by the porous media, in the study of porous media flow analysis.  The 

governing boundary layer equations for momentum and energy under 

Boussinesq’s approximation are: 

0
u v

x y

∂ ∂
+ =

∂ ∂
,                                                   (1) 

 

Frontiers in Heat and Mass Transfer 

 
Available at www.ThermalFluidsCentral.org  



Frontiers in Heat and Mass Transfer (FHMT), 7, 38 (2016)
DOI: 10.5098/hmt.7.38

Global Digital Central
ISSN: 2151-8629

2 

( ) ( )
2 2

2 2

2

e

e e e

dUu u u F
u v U v u U u U

x y dx ky k

νε ε∂ ∂ ∂
+ = + − − − −

∂ ∂ ∂
,   (2) 

2

2

p

T T T
u v

x y C y

κ

ρ

∂ ∂ ∂
+ =

∂ ∂ ∂
,                    (3) 

where u and v are the velocity components along x and y, respectively, 

ν  is kinematic viscosity, ε  is dimensionless stretching/shrinking 

parameter, 
e

U ax=  is the straining velocity of the stagnation-point 

flow, k is the permeability of the porous media, T is the temperature, κ  

is the thermal conductivity of the fluid and 
pC  is the specific heat at 

constant pressure. The last two-terms on the right hand side in Eq (2) 

describe the non-linear Darcy-Forchheimer resistance of the surrounding 

porous medium. The boundary conditions with partial slip for both 

velocity and temperature components are given by: 

1 1
, 0,  at 0

,  as ,

w

e

u T
u cx L v T T D y

y y

u U ax T T y∞

∂ ∂
= + = = + =

∂ ∂

→ = → → ∞

                 (4) 

where c and a are the shrinking/stretching rate and straining rate 

parameters, respectively, with 0c >  is for stretching and 0c <  is for 

shrinking. Here 
1

L is velocity slip factor, 
1

D  is thermal slip factor, 
w

T  

is temperature of the sheet and T∞  is free stream temperature. 

          Next, we introduce the following similarity transformations as 

follow: 

( ) ( ) ( ), , .
w

a
avxf T T T T y

v
ψ η θ η η∞ ∞= = + − =                   (5) 

By using Eq (5), the momentum and temperature in Eq (2) and (3) will 

obtained as: 
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whereψ is the stream function, which is defined in the usual way as 

u
y

ψ∂
=

∂
and v

x

ψ∂
= −

∂
. 

The boundary conditions in Eq (4) then reduce to: 
2

1 12
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By substitute Eq (5) into Eqs (6) and (7), we obtain the following self-

similar equations: 

( ) ( ) ( )
2 2

1 2
1 1 1 0,f ff f k f k f ′′′ ′′ ′ ′ ′+ − − − − − + =

 
               (9) 

Pr 0,fθ θ′′ ′+ =                  (10) 

where
1

k
ka

νε
= is the parameter of porous media, 

2

2

F x
k

k

ε
=  is the 

inertia-coefficient parameter and Pr is the Prandtl number.  The boundary 

conditions finally become: 
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  (11) 

where
c

a
α =  is the velocity ratio parameter, 

a
L

v
δ =  is velocity slip 

parameter and 
a

D
v

β =  is thermal slip parameter. 

3. RESULTS AND DISCUSSION 

The nonlinear ordinary differential equations (9) and (10) subject to the 

boundary conditions (11) are solved numerically using the Shooting 

method.  To validate the accuracy of the numerical method, we compare 

the obtained results corresponding to the skin-friction coefficient ( )0f ′′

with the published results of Bhattacharyya et al. (2011) and Mahapatra 

and Nandy (2013) in Table 1 and those are found in excellent agreement.  

This study confirms that the existence and uniqueness of solution depend 

on the velocity ratio parameter α . For the current work, the numerical 

computations are performed for various values of different parameters 

such as the parameter of the porous medium 
1

k , inertial parameter 
2

k , 

velocity slip parameter δ , thermal slip parameter β , Prandtl number 

Pr, and the velocity ratio parameter α .  Variation of the skin friction 

coefficient ( )0f ′′ , and temperature gradient ( )0θ ′−  for different 

values of velocity ratio parameter α and  velocity slip parameter δ are 

presented in Table 2. It is noticed that the values of ( )0f ′′ and ( )0θ ′−  

increases with the increase of velocity slip parameter δ  that the velocity 

slip delays the separation of boundary layer.  On the other hand, variation 

of the temperature gradient ( )0θ ′− with α for different values of � 

when 
1

0.1k = , 
2

0.1k = , 1.0δ =  and Pr 0.7=  are presented in Table 

4 and Figure 3. The first solution is stable, while the second solution is 

not, according to the stability analysis performed by Weidman et al. 

(2006) i.e. first solution is physically realizable (stable), while the second 

solution is not physically realizable (unstable). Also, this investigation 

confirms that the existence and uniqueness of the solutions greatly 

depend on the stretching/shrinking velocity parameter ϵ as also pointed 

out by Miklavciˇc and Wang (2006). Figures 4 and 5 display the velocity 

and temperature profiles for several values of α  when α when

1
0.1k =

2
0.1k = , 1.0δ = , 0.1β =  and Pr 1.0= .  The dual velocity 

profiles show that the velocity decreases with increasing magnitude of 

α in first solution and conversely for second solution it increases.  In 

Figure 5, it is observed that the thermal boundary layer thickness for 

second solution is thicker than the thickness for first solution. The effects  

 

Table 1 Values of skin friction coefficient ( )0f ′′  for several values of 

α  when
1 2

0.0.k k δ β= = = =  
 

  ( )0f ′′   

α  Bhattacharyya 

et al.  

(2011) 

Mahapatra and 

Nandy 

 (2013) 

Present work 

-0.25 1.4022405 1.402242 1.40224083 

-0.5 1.4956697 1.495672 1.49566981 

-0.75 1.4892981 1.489296 1.48929830 

-1.00 1.3288169 1.328819 1.32881699 

-1.15 1.0822316 

(0.1167023) 

1.082232 

(0.116702) 

1.08223143 

(0.11670217) 

-1.20 0.9324728 

(0.2336491) 

0.932470 

(0.233648) 

0.93247382 

(0.23364968) 

-1.246 0.5842915 

(0.5542856) 

0.584374 

(0.554215) 

0.58429402 

(0.55428441) 

-

1.24657 

0.5745268 

(0.5639987) 

- 0.57456027 

(0.56397856) 

Results in parenthesis ( ) are the second (dual) solutions 
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Table 2 Values of ( )0f ′′ and ( )0θ ′− for various values of α and δ

when, 
1

0.1k = , 
2

0.1k = , 0.1β =  and Pr 1.0= . 

δ  α  ( )0f ′′  ( )0θ ′−  

0.0 -1.00 1.328817 0.228327 

-1.10 1.186680 

(0.073419) 

0.219965 

(0.000336) 

-1.20 0.932474 

(0.233650) 

0.211283 

(0.010897) 

0.5 -1.00 1.458073 0.468428 

-1.10 1.484336 

(0.006833) 

0.450445 

(0.000094) 

-1.20 1.516508 

(0.147207) 

0.426762 

(0.001752) 

1.0 -1.00 1.132807 0.571321 

-1.10 1.181250 

(0.000671) 

0.559767 

(0.000052) 

-1.20 1.228366 

(0.079355) 

0.547674 

(0.000516) 

1.5 -1.00 0.901135 0.618026 

-1.10 0.943134 

(0.000128) 

0.610379 

(0.000013) 

-1.20 0.984705 

(0.0648721) 

0.602501 

(0.000232) 

Results in parenthesis ( ) are the second (dual) solutions. 

 

Table 3. Values of �� , ( )0f ′′ and ( )0θ ′−  for various values of δ  

when 
1

0.1k = , 
2

0.1k = , 0.1β =  and Pr 1.0=  

� �� ( )0f ′′  

0.0 -1.246579 0.570892 

0.5 -1.752691 1.189160 

1.0 -2.408533 1.395784 

1.5 -3.127016 1.468032 

 

Table 4. Values of ��  and ( )0θ ′−  for various values of β  when 

1
0.1k = , 

2
0.1k = , 1.0δ =  and Pr 0.7= . 

� �� ( )0θ ′−  

0.0 -2.330128 0.238037 

0.5 -2.330128 0.212377 

1.0 -2.330128 0.192270 

 

of the velocity slip � on the velocity and temperature profiles are 

presented in Figure 6 and 7, respectively.  It is observed that ( )f η′

decreases on increasing �. This is because when slip occurs, fluid 

velocity near the sheet is no longer equal to the velocity of the shrinking 

sheet and consequently fluid velocity decreases on increasing velocity 

slip factor.  This indicates that velocity slip factor has a substantial effect 

on the fluid flow.  

From Figure 7, it is noticed that fluid temperature ( )θ η increases 

on increasing �. Thus, there is an enhancement in the fluid temperature 

throughout the boundary layer region with the increase in velocity slip 

parameter. The thermal slip parameter � also effects on the fluid 

temperature, which can be seen in from Figure 8. It is found that the fluid 

temperature ( )θ η  decreases on increasing � and this is happened if 

thermal slip parameter increases, less heat is transferred to the fluid from 

the sheet and, therefore, temperature is found to decrease.  

 

 

�

�

�

Fig. 1 Variation of skin friction of ( )0f ′′  with α  for several values 

of δ when 
1

0.1k = , 
2

0.1k = , 0.1β =  and Pr 1.0= . 

 

 

 

�

Fig. 2 Variation of temperature gradient ( )0θ ′−  with α  for several 

values of δ when 
1

0.1k = , 
2

0.1k = , 0.1β =  and Pr 1.0= . 

 

 

 

 

FIG. 3 Variation of temperature gradient ( )0θ ′−  with α  for several 

values of β  when 
1

0.1k = , 
2

0.1k = , 1.0δ =  and Pr 0.7= . 
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Fig. 4 Velocity profiles ( )f η′  for different values of α when 

1
0.1k = , 

2
0.1k = , 1.0δ = , 0.1β =  and Pr 1.0= . 

 

 

Fig. 5 Temperature profiles ( )θ η  for different values of α when 

1
0.1k = , 

2
0.1k = , 1.0δ = , 0.1β =  and Pr 1.0= . 

 

 

Fig. 6 Velocity profiles ( )f η′  for different values of δ when 

1
0.1k = , 

2
0.1k = , 1.20α = − , 0.1β =  and Pr 1.0= . 

 

 

Fig. 7 Temperature profiles ( )θ η for different values of δ when 

1
0.1k = , 

2
0.1k = , 1.20α = − , 0.1β =  and Pr 1.0= . 

 

Fig. 8 Temperature profiles ( )θ η for different values of β when 

1
0.1k = , 

2
0.1k = , 1.50α = − , 1.0δ =  and Pr 1.0= . 

 

Fig. 9 Velocity profile ( )f η′  for different values of 
1

k when 

2
0.1k = , 1.50α = − , 1.0δ = , 0.1β =  and Pr 0.7= . 
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�

�

Fig. 10 Temperature profile ( )θ η for different values of 
1

k when 

2
0.1k = , 1.50α = − , 1.0δ = , 0.1β =  and Pr 0.7= . 

 

 

 
 

Fig. 11 Velocity profile ( )f η′  for different values of 
2

k when 

1
0.1k = , 1.50α = − , 1.0δ = , 0.1β =  and Pr 0.7= . 

 

 

Fig. 12 Temperature profile ( )θ η for different values of 
2

k when 

1
0.1k = , 1.50α = − , 1.0δ = , 0.1β =  and Pr 0.7= . 

 

 

Fig. 13 Temperature profile ( )θ η for different values of Pr when 

1
0.1k = , 

2
0.1k = , 1.50α = − , 0.5δ =  and 0.1β = . 

 

Thus, there is a reduction in the fluid temperature throughout the 

boundary layer region. The effect of porous medium parameter 
1

k , on 

velocity and temperature profiles while other parameters are kept 

constant are illustrated in Figure 9 and 10, respectively. With the 

increasing values of 
1

k , both velocity and temperature profiles show 

decreases in first solution but conversely increasing in second solution. 

The influence of inertial parameter 
2

k , on velocity and temperature 

distribution is enlightened in Figure 11 and 12, respectively. For velocity 

distribution, the velocity decreases as 
2

k  is increasing in first solution, 

while in the second solution case it behaves oppositely.  The influence of 

Prandtl number on temperature distribution is enlightened in Figure 13. 

As can be seen from this figure, the increasing value of Pr number causes 

the decreasing in temperature as well as in boundary layer thickness for 

both solutions. Physically, when the Prandtl number is small, then the 

free stream velocity remains continues throughout the walland the 

velocity profile will be closer to the wall. These results are important for 

those fluids, whose have a high range of Prandtl number. 

4. CONCLUSIONS 

The forced convection boundary layer stagnation-point flow and heat 

transfer over a shrinking sheet in Darcy-Forchheimer porous media 

model with presence of slip is analyzed and discussed in this present 

paper.  The similarity equations are solved numerically and the effects of 

the parameter of the porous medium 
1

k , inertial parameter 
2

k , velocity 

slip parameter δ , thermal slip parameter β , Prandtl number Pr, and the 

velocity ratio parameter α are computed and analyzed.  It is found that 

dual solutions exist for shrinking case and the increase of velocity slip 

and thermal slip parameters reduces the momentum boundary layer 

thickness for first solution.  Results for the skin friction coefficient, local 

Nusselt number as well as velocity and temperature profiles are presented 

for different values of the governing parameters. 
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