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ABSTRACT
A two phase model for two-dimensional solidification problems with variable densities was developed by coupling the Stefan problem with the Stokes 
problem and applying a mass conserving velocity condition on the phase change interface. The extended finite element method (XFEM) was used to 
capture the strong discontinuity of the velocity and pressure as well as the jump in heat flux at the i nterface. The melting temperature and velocity 
condition were imposed on the interface using a Lagrange multiplier and the penalization method, respectively. The resulting formulations were then 
coupled using a fixed point iteration a lgorithm. Three examples were investigated and the results were compared to numerical results coming from 
a commercial software using ALE techniques to track the solid/liquid interface. The model was able to reproduce the benchmark simulations while 
maintaining a sharp phase change interface and conserving mass. 
Keywords: Phase change, XFEM, Lagrange multiplier, Non-constant density

1. INTRODUCTION

The finite element method Reddy (2006) has been extensively studied
and successfully used in a wide variety of scenarios involving continu-
ous media but particular situations still offer a challenge, such as material
and geometrical discontinuities. This makes the finite element method
ill suited to solve problems involving discontinuities that are part of the
solution or moving with time. The Stefan problem Nedjar (2002); Beck-
ermann et al. (1999); Helenbrook (2013); Özişik (1993) for the isother-
mal solidification or melting of a material is one such situation because
of the discontinuous heat flux at the phase change interface. The problem
is further complicated by the fact that most materials undergo a change
in density at the interface, effectively adding a mass flux boundary con-
dition. Luckily, the density variation in most materials is small and can
be neglected Morgan (1981); Postek et al. (2008). For certain materials
however, the density variation may be quite important, up to 25%. Fur-
thermore, many practical applications involve following the total volume
of the material or mass flow. In these situations, neglecting the density
change significantly hinders the use of numerical models.

To handle such problems involving discontinuities, the extended fi-
nite element method Belytschko et al. (2001); Dolbow et al. (2000); Be-
lytschko et al. (2009) was developed, based on the partition of unity
method Babuska and Melenk (1997); Dolbow et al. (2000); Melenk and
Babuska (1996). Using carefully selected functionsψ(x, t), the technique
adds degrees of freedom that will “enrich" the interpolation and allows
the solution to adopt a non-linear (discontinuous) behavior. The partic-
ular type of behavior is determined by the enrichment function ψ(x, t),
known a priori. Only nodes having support cut by the interface have a
modified behavior must be enriched. Consequently, the additional com-
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putational costs are local to the interface. The interface geometry is stored
and transported in a computationally efficient manner, most commonly
using the level set method Osher and Sethian (1988); Osher and Fedkiw
(2001).

Numerous extended finite element models for the solutions of the
classical (diffusive) Stefan problem are found in the literature Chessa
et al. (2002); Bernauer and Herzog (2011); Merle and Dolbow (2002);
Ji et al. (2002). More complex models involving convection with con-
stant density have also been developed using different numerical tech-
niques Zabaras et al. (2006); Vynnycky and Kimura (2007); Brent et al.
(1988). Particularly, a fully XFEM Stefan/Navier-Stokes model was used
by Martin (2016). Models including the density variation are more un-
common Yoo and Tack (1991). A straight-forward strategy to include the
non-constant material densities is to use a moving-mesh algorithm such
as the one found in the commercial code Comsol. This algorithm defines
the phase change interface on a set of nodes, allowing the mass conserva-
tion boundary condition to be easily applied. However, the moving mesh
adds considerable computational costs caused by the increase in degrees
of freedom of the overall problem and the remeshing procedure required
when the mesh becomes too distorted. These costs may hinder the use
of a moving mesh algorithms in large scale multi-physical simulations
which often have a large amount of degrees of freedom.

In the work presented here, a new coupled formulation using the
extended finite element method for both the Stefan problem and Stokes
equations based on Martin (2016) is developed for the case of variable
phase densities. A fixed point iteration scheme is then used to obtain a
converged solution for a given time step. The conservation of mass at
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the phase change interface is handled by applying a velocity boundary
condition.

The paper is divided as follows. The governing equations for the
Stefan and Stokes problems are described in section 2. The finite ele-
ment formulation, level set problem and details concerning the interface
movement and extended finite element method are described in section
3. Benchmark examples are then solved in section 4 to validate the al-
gorithm. To this end, the commercial finite element simulation software
Comsol was used with a moving mesh algorithm to capture the interface
movement. Finally, the paper ends with some concluding remarks.

2. GOVERNING EQUATIONS

2.1. Stefan Problem Formulation

Consider a domain Ω with an initial temperature T (x, t0) and interface Γ
separating solid (Ωs) and liquid (Ωl) phases with different thermal prop-
erties and densities. We suppose that the material has an isothermal phase
change at some melting temperature Tm. Applying the conservation of
energy in Ω results in the following equations Özişik (1993):

(ρcp)s
∂T

∂t
−∇ · (ks∇T ) = 0 x ∈ Ωs (1a)

(ρcp)l

(
∂T

∂t
+ v · ∇T

)
−∇ · (kl∇T ) = 0 x ∈ Ωl (1b)

T − Tm = 0 x ∈ Γ (1c)

T = T̂ x ∈ ΓD (1d)

−k∇T · n = q̂ x ∈ ΓN (1e)

where cp is the specific heat, k the thermal conductivity, ρ the density,
v the liquid phase velocity. Subscripts l and s indicate liquid and solid
phases, respectively. Additionally, the melting temperature is applied on
the solid-liquid interface (1c). Dirichlet and Neumann boundary condi-
tions away from the interface are applied on ∂Ω = ΓN ∪ ΓD as usual
(1d,1e).

Conservation of energy at the interface requires that the jump in heat
flux normal to the interface (caused by the imposition of the melting tem-
perature) be related to the rate of solidification or melting of the material
as described in Özişik (1993):

[[−k∇T ]] · nΓ = (kl∇Tl − ks∇Ts) · nΓ = ρsLvΓ x ∈ Γ (2)

where L is the latent heat and vΓ the normal interface velocity Özişik
(1993). The normal vector nΓ points from the liquid to solid phase,
meaning that the interface velocity is positive for melting and negative
for solidification.

Tracking the moving interface is done using the level set method
Osher and Fedkiw (2001); Osher and Sethian (1988); Osher and Fedkiw
(2003). The principle behind this method is to introduce a signed distance
function to the interface, φ(x, t), defined as follows Osher and Fedkiw
(2003):

φ(x, t) = min
xΓ∈Γ

|x− xΓ(t)| sign (nΓ · (x− xΓ(t))) x ∈ Ω (3)

The interface is then easily identified as the set of points where φ(x, t) =
0. In this work, the level set field is constructed so that the liquid phase is
on the positive side of the interface (i.e. x ∈ Ωl if φ(x, t) > 0).

2.2. Stokes Problem formulation

In the present study, the liquid phase velocity v is governed by the Stokes
problem for viscous incompressible fluids:

ρl
∂v

∂t
= ∇ · σ x ∈ Ωl (4a)

∇ · v = 0 x ∈ Ωl (4b)

v =
ρl − ρs
ρl

vΓnΓ x ∈ Γ (4c)

v = v̂ x ∈ ΓD (4d)

σ · n = σ̂ x ∈ ΓN (4e)

σ = −pI + 2µD(v) (4f)

D(v) =
1

2

(
∇v +∇vT

)
(4g)

where p is the pressure, µ the viscosity and D(v) the rate of deformation
tensor. The convection term in the complete Navier-Stokes equations was
neglected, leading to two linear systems of equations for the heat transfer
and fluid flow problems. The only non-linearity is in the coupling terms
between the two problems: the convective heat transfer and interface ve-
locity.

The variation in density between the solid and liquid phases creates
a mass flux at the interface, which is a function of the interface velocity
and specific phase densities (equation (4c)). The other physical proper-
ties are assumed constant. The initial velocity field v(x, t0) is assumed
divergence-free with a given initial pressure field p(x, t0). Dirichlet and
Neumann boundary conditions away from the interface are applied on
∂Ω = ΓN ∪ ΓD as usual (4d, 4e).

2.3. Enriched Interpolation Scheme

The phase change problem is characterized by the jump in the heat flux
which is caused by the temperature gradient discontinuity. However, the
application of the interface boundary condition (1c) implies that the tem-
perature is continuous at the interface. Such a weak discontinuity can
be handled using the extended finite element method. To this end, the
following interpolation scheme is used Chessa et al. (2002):

T (x, t) =
∑
i∈I

NT
i (x) Ti(t) +

∑
j∈J

NT
j (x)ψTj (x, t) T ∗j (t) (5a)

ψTj (x, t) = |φ(x, t)| − |φ(xj , t)| (5b)

where NT are the standard interpolation functions, Ti and T ∗j the stan-
dard and enriched degrees of freedom, respectively, and ψTj (x, t) the en-
richment function, based on the absolute value of the level set field. A
more compact way to write expression (5) is by using the standard matrix
form

T (x, t) = 〈NT 〉{T} (6a)

〈NT 〉 = 〈NT
1 , ..., N

T
nI
, NT

1 ψ
T
1 , ..., N

T
nJ
ψTnJ
〉 (6b)

{T} = 〈T1, ..., TnI , T
∗
1 , ..., T

∗
nJ
〉T (6c)

where nI and nJ are the number of standard and enriched nodes, re-
spectively. When using (5) special attention must be given to elements
containing enriched nodes that are not cut by the interface, called blend-
ing elements. A modified interpolation scheme must be used in these
elements to maintain an optimal convergence rate, as described in Fries
(2008); Shibanuma and Utsunomiya (2009).

In order to capture the jump in the heat flux at the interface, a La-
grange multiplier λ is used Gerstenberger (2010). The interpolation scheme
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for the Lagrange multiplier is given by:

λ(x, t) =
∑
i∈I

Nλ
i (x) λi(t) +

∑
j∈J

Nλ
j (x)ψλj (x, t) λ∗j (t) (7a)

ψλj (x, t) = H(φ(x, t))−H(φ(xj , t)) (7b)

H(x, t) =

{
1 if φ(x, t) < 0

0 if φ(x, t) > 0
(7c)

where H is the Heaviside function.
Following (6), the Lagrange multiplier may be rewritten in two di-

mensions as

λ(x, t) = [Nλ]〈λ〉T

[Nλ] =

[
Nλ

1 ...N
λ
nI
Nλ

1 ψ
λ
1 ...N

λ
nJ
ψλnJ

0 ... 0 0 ... 0

0 ... 0 0 ... 0 Nλ
1 ...N

λ
nI
Nλ

1 ψ
λ
1 ...N

λ
nJ
ψλnJ

]
〈λ〉 = 〈λx1 , ... , λxnI

, λx∗1 , ..., λx∗nJ
, λy1 , ... , λ

y
nI
, λy∗1 , ..., λy∗nJ

〉

where [Nλ] is the matrix of interpolation functions.
The Navier-Stokes equations are valid (and solved) in the liquid

phase only. For this purpose, the fluid-structure interaction approach,
proposed in Gerstenberger and Wall (2008), is used. Therefore, the ve-
locity and pressure fields can be interpolated using the following scheme:

v(x, t) =
∑
i∈I

Nv
i (x)ψv(x, t) vi(t) (9a)

p(x, t) =
∑
i∈I

Np
i (x)ψv(x, t) pi(t) (9b)

ψv(x, t) =

{
1 if φ(x, t) > 0

0 if φ(x, t) < 0
(9c)

Following (6) and (2.3), the velocity and pressure fields may be rewritten
as:

v(x, t) = [Nv]{v} (10a)

p(x, t) = 〈Np〉{ p} (10b)

[Nv] =

[
Nv

1ψ
v
1 ... Nv

nI
ψvnI

0 ... 0
0 ... 0 Nv

1ψ
v
1 ... Nv

nI
ψvnI

]
(10c)

{v} = 〈vx1 , ... , vxnI
, vy1 , ... , v

y
nI
〉T (10d)

〈Np〉 = 〈Np
1ψ

v
1 , ..., N

p
nI
ψvnI
〉 (10e)

{p} = 〈p1, ..., pnI 〉
T (10f)

According to this interpolation scheme, the solid part of the domain if
ignored. Also, enriched degrees of freedom are not required because no
new information (behavior) is introduced. All velocity and pressure de-
grees of freedom whose support is completely inside the solid domain are
removed from the system of equations.

3. NUMERICAL IMPLEMENTATION

3.1. Stefan Problem

The weak form of the energy conservation equations (1a,1b) is∫
Ω

δTρcp
∂T

∂t
dΩ +

∫
Ωl

δTρlcpv · ∇T dΩ +

∫
Ω

∇δT k∇T dΩ

(11a)

−
∫

Γ

δTλ · nΓ dΓ = 0∫
Ω

δλ ·
(

1

k
λ +∇T

)
dΩ−

∫
Γ

δλ · nΓ (T − Tm) dΓ = 0 (11b)

where δT and δλ are the test functions. The method used in this work
to impose the melting temperature on the interface is the stable Lagrange

multiplier used in Martin et al. (2016) and originally developed in Ger-
stenberger and Wall (2010); Baiges et al. (2012). The Lagrange multi-
plier is defined as a vectorial flux and interpolated on the same mesh as
the temperature field. The projection of this secondary variable on the in-
terface is then used as a scalar Lagrange multiplier to impose the melting
temperature. The Neumann boundary condition has been omitted for the
sake of clarity.

Using a backward Euler scheme for the time derivative of T in (11)
gives Fries and Zilian (2009):

∫
Ω

δTn+1 (ρcpT )n+1 − (ρcpT )n

∆t
dΩ+∫

Ωl

δTn+1(ρcp)
n+1vn+1 · ∇Tn+1 dΩ+∫

Ω

∇δTn+1kn+1∇Tn+1 dΩ−
∫

Γ

δTn+1λn+1 · nΓ dΓ = 0

(12a)

∫
Ω

δλn+1 ·
(

1

k
λn+1 +∇Tn+1

)
dΩ−∫

Γ

δλn+1 · nΓ

(
Tn+1 − Tm

)
dΓ = 0

(12b)

where n indicates the previous time step.
After replacing T and λ with their approximations we obtain the

system of equations

[
1

∆t
[M ] + [C] + [K] −[L]

[Q]− [L]T [Mλ]

]{
{T}n+1

{λ}n+1

}
(13a)

=

[
1

∆t
[M ]∗ 0
0 0

]{
{T}n
{λ}n

}
−
{

0
{fλ}

}

[M ] =
∑
e

∫
Ωe

{NT }n+1 (ρcp)
n+1 〈NT 〉n+1 dΩ (13b)

[M ]∗ =
∑
e

∫
Ωe

{NT }n+1 (ρcp)
n 〈NT 〉n dΩ (13c)

[C] =
∑
e

∫
Ωe

l

{NT }n+1 (ρcp)
n+1 vn+1[BT ]n+1 dΩ (13d)

[K] =
∑
e

∫
Ωe

([BT ]T )n+1kn+1[BT ]n+1 dΩ (13e)

[Mλ] =
∑
e

∫
Ωe

1

kn+1
([Nλ]T )n+1[Nλ]n+1 dΩ (13f)

[Q] =
∑
e

∫
Ωe

([Nλ]T )n+1[B]n+1 dΩ (13g)

[L] =
∑
e

∫
Γe

{NT }n+1[Nλ]n+1nΓ dΓ (13h)

{fλ} =
∑
e

∫
Γe

([Nλ]T )n+1 · nΓ Tm dΓ (13i)

where Bn+1
ij =

∂Nn+1
j

∂xi
is the gradient matrix and the {} brackets are

used to indicate a vector transpose. In elements which are not cut by the
interface, the boundary condition is removed and the system reduces to:

[
1

∆t
[M ] + [C] + [K] 0

[Q] [Mλ]

]{
{T}n+1

{λ}n+1

}
=

[
1

∆t
[M ]∗ 0
0 0

]{
{T}n
{λ}n

}
(14)

3
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3.2. Stokes Problem

The weak form of the Stokes problem (4) is given as follows∫
Ωl

δv · ρl
∂v
∂t

dΩ +

∫
Ωl

2µ D(δv) : D(v) dΩ−
∫

Ωl

(∇ · δv)p dΩ = 0∫
Ωl

δp∇ · v dΩ = 0 (15a)

where δv and δp are the test functions for the velocity and pressure, re-
spectively. The Neumann boundary condition has been omitted for the
sake of clarity. Using a backward Euler scheme for the time derivative of
v in (15) gives the system of equations Fries and Zilian (2009):∫

Ωl

δvn+1 ·
(

(ρlv)n+1 − (ρlv)n

∆t

)
dΩ +

∫
Ωl

2µD(δvn+1) : D(vn+1) dΩ

−
∫

Ωl

∇ · δvn+1pn+1 dΩ = 0 (16a)∫
Ωl

δpn+1 ∇ · vn+1 dΩ = 0 (16b)

Substituting the approximation for the velocity and pressure fields into
(16) leads to the system of equations:[

[K] −[D]
[D]T 0

]{
{v}n+1

{p}n+1

}
=

[
[M ]∗ 0

0 0

]{
{v}n
{p}n

}
(17a)

[K] = [M ] +

[
[A11] [A12]

[A12]T [A22]

]
(17b)

[M ] =
1

∆t

∑
e

∫
Ωe

([Nv]T )n+1ρl[Nv]n+1 dΩ (17c)

[M ]∗ =
1

∆t

∑
e

∫
Ωe

([Nv]T )n+1ρl[Nv]n dΩ (17d)

[A11] =
∑
e

∫
Ωe

2µ

(
{Bx}n+1〈Bx〉n+1 +

1

2
{By}n+1〈By〉n+1

)
dΩ

(17e)

[A22] =
∑
e

∫
Ωe

2µ

(
1

2
{Bx}n+1〈Bx〉n+1 + {By}n+1〈By〉n+1

)
dΩ

(17f)

[A12] =
∑
e

∫
Ωe

2µ

(
1

2
{By}n+1〈Bx〉n+1

)
dΩ (17g)

[D] =
∑
e

∫
Ωe

〈〈Bx〉n+1〈By〉n+1〉T 〈Np〉n+1 dΩ (17h)

〈Bxi〉
n+1 =

∂〈Nv
1ψ

v
1 , ..., N

v
nI
ψvnI
〉n+1

∂xi
(17i)

The mass flux interface boundary condition is imposed using the penalty
method Chessa et al. (2002); Bernauer and Herzog (2011). This tech-
nique multiplies the residual form of equation (4c) by a very large penal-
ization parameter β and introduces it in the finite element formulation of
the momentum equation. This method is simple to implement and has
proven to be robust for a variety of problems. The formulation for ele-
ments intersected by the interface becomes:[

[K′] −[D]
[D]T 0

]{
{v}n+1

{p}n+1

}
=

[
[M ]∗ 0

0 0

]{
{v}n
{p}n

}
+

{
{fn+1
p }
0

}
(18a)

[K′] = [K] + [P ] (18b)

[P ] =
∑
e

∫
Γe

([Nv]T )n+1β[Nv]n+1 dΓ (18c)

{fn+1
p } =

∑
e

∫
Γe

([Nv]T )n+1β

(
ρl − ρs
ρl

vΓnΓ

)
dΓ (18d)

To solve the system of equations (17)-(18) the interpolation func-
tions for the velocity and pressure fields must satisfy the LBB condi-
tion Babuska (1969); Brezzi (1974). In this work, a pair of stable Q2-Q1

quadrilateral elements was used for the velocity and pressure fields, re-
spectively.

The validation problems presented in the results section are com-
pared with the solution obtained through the commercial finite element
code Comsol where the phase change problem was solved using a mov-
ing mesh algorithm (ALE) to capture the interface movement.

The interpolation scheme (9) is known to cause problems when the
physical domain (liquid phase) covers a very small area of the node’s
support Lang et al. (2014). The small contribution of the concerned de-
gree of freedom causes a significant increase in the condition number of
the global system Lang et al. (2014), leading to divergent solutions. An
efficient solution was developed in Lang et al. (2014). When a degree
of freedom’s contribution to the system is too small, it is removed from
the system. The criteria for removing a degree of freedom is Lang et al.
(2014) (

max
e∈Ei

∫
Ωe

l
Ni(x) dΩ∫

Ωe Ni(x) dΩ

)− 1
2

> Ttol (19)

whereEi is the set of elements connected to node i, Ωel the liquid domain
area in the element, Ωe the element area,Ni(x) the interpolation function
and Ttol a user defined tolerance value. The greater the value for Ttol,
the smaller the contribution of the degree of freedom can be before it is
removed.

The stopping criteria (19) is used on a stabilized Q1-Q1 in Lang et al.
(2014), meaning that the velocity and pressure interpolation functions are
identical, linear and positive-semidefinite. The quadratic interpolation
used for velocity in this work however, is not positive-semidefinite. This
means that certain interface positions would lead to near zero integrals
in (19) even when the liquid area is large, because the negative-valued
areas of the interpolation would cancel out the positive-valued areas. To
maintain the original objective of evaluating the relative contribution of
the degrees of freedom to the complete element, a modified criteria was
used, given by equation(

max
e∈Ei

∫
Ωe

l
|Ni(x)| dΩ∫

Ωe |Ni(x)| dΩ

)− 1
2

> Ttol (20)

where the absolute value of the interpolation function is used.
In Lang et al. (2014) a preconditioner is applied to the global system

before solving, allowing the use of a higher value of Ttol while main-
taining an optimal condition number and accurate solution. Considering
the relatively heuristic modifications made to the removal of degrees of
freedom caused by the use of a Q2-Q1 formulation and to simplify the
implementation of our model, the preconditioner was not applied in this
work.

The systems of equations (13) and (17) are coupled through the con-
vection and mass flux boundary terms, respectively. To obtain a con-
verged solution for both systems, a fixed point iteration scheme is used.

3.3. Level Set Formulation

Once an initial value φ(x, t0) is defined, the interface movement is gov-
erned by its transport equation

∂φ

∂t
+ v · ∇φ =

∂φ

∂t
+ F‖∇φ‖ = 0 (21a)

F =
1

‖∇φ‖∇φ · v (21b)

where v is the convection velocity and F is the interface speed in the
normal direction. The calculation of F is explained below.
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Equation (21) is solved explicitly (forward Euler scheme) with the
finite element method using a linear interpolation. The weak formulation
and time discretization of (21) is given as follows:∫

Ω

δφ
φn+1 − φn

∆t
dΩ +

∫
Ω

δφFn‖∇φn‖ dΩ = 0 (22)

In most applications, the normal component F is only known on Γ.
In order to solve (22) on Ω, a valid value for F must first be constructed
on the entire domain using the following problem Chessa et al. (2002):

sign(φ)∇F · ∇φ = 0 x ∈ Ω (23a)

F (x, t) =
∇φ
‖∇φ‖ · vΓ x ∈ Γ (23b)

This approach guarantees that the φ field velocity is everywhere nor-
mal to the interface and is coherent with the interface’s physically deter-
mined velocity. For more details concerning the construction of F see
Osher and Fedkiw (2003); Chessa et al. (2002). In this paper, the inter-
face velocity is based on the jump in heat flux across the phase change
boundary and is described in the following section.

Equation (22) is first order hyperbolic and must be stabilized to min-
imize the presence of oscillations in the solution Chessa et al. (2002);
Bernauer and Herzog (2011). The GLS method is used here Hughes et al.
(1989). The level set method offers several advantages. It is easily ex-
tensible to three dimensions and stores the interface location as a scalar
variable. Furthermore, the level set field can be defined in a small region
surrounding the interface and the level set formulation solved locally, re-
ducing the impact on the total simulation computation time. It is also
robust enough to handle interface merging and breaking naturally Osher
and Fedkiw (2001).

The main disadvantage of the the level set method is its tendency
to deviate from a signed distance function over time Osher and Fedkiw
(2001). This error accumulates with additional time steps and degrades
the quality of the solution, particularly the level set gradient near the in-
terface. This distortion can be a source of error in the numerical solution
of the level set formulation and the physical problem on which it is based.
Therefore, it is necessary to reinitialize φ(x, t) regularly to maintain an
acceptable solution (‖∇φ‖ ≈ 1). Another limitation to the algorithm
presented here is the use of an explicit time scheme for the level set for-
mulation, which limits the size of the time step. The explicit time step
is required in order to determine the nodes to enrich. In other words, the
interface position must be determined before systems (13) and (17) are
solved.

3.4. Interface velocity calculation

The proper evaluation of the interface velocity is crucial in obtaining a
precise and robust model Martin et al. (2016). For this particular prob-
lem, the interface velocity is determined by the jump in heat flux at the
interface as described in equation (2). The use of a Lagrange multiplier
to impose the melting temperature allows the evaluation of the jump in
heat flux directly from the Lagrange field λ, given by

vΓ =
[[λ]] · ns
ρsL

=
(λl − λs) · ns

ρsL
(24)

where λs and λl are the heat flux at the interface approaching from the
solid and liquid phases, respectively.

The final algorithm can be described as follows. Assuming that a
given time tn, solution (Tn, vn, pn, φn) are known, the strategy to solve
for (Tn+1, vn+1, pn+1, φn+1) consists in the following steps:

1. Compute the interface velocity vn+1
Γ using (24)

2. Construct F on the level set domain by solving (23)

3. Solve for φn+1 using (22)

4. Solve the coupled Stefan-Stokes problem:

4.1. Solve for Tn+1
i+1 using (13) and vn+1

i

4.2. Solve for vn+1
i+1 and pn+1

i+1 using (17) and Tn+1
i+1

5. Evaluate (13) and (17). If both residuals are below the tolerance
criteria, go to step 6. If not, i = i+ 1 and go to step 4

6. Set tn+1 = tn and go to step 1.

3.5. Numerical Integration

The introduction of discontinuous functions inside elements greatly re-
duces the precision of standard Gaussian quadrature and may lead to rank
deficient matrices Chessa et al. (2002). An accurate but geometrically
complex solution is to subdivide elements involving discontinuities into
continuous subelements Moes et al. (1999); Chessa et al. (2002); Ger-
stenberger and Wall (2010). Each element is subdivided into a number
of subelements (lines, triangles or tetrahedrons), as shown in figure 1, to
properly fit the contour of the interface (point, line or surface) and ele-
ment boundaries. The integral over the entire element Ie is then the sum
of the integration of each subelement Is using standard Hammer quadra-
ture. It is important to note that subelements carry no degrees of freedom
or interpolation functions. They are only required as a geometrical tool
to construct the element integrals.

x x

xx

x

x

x
x x

x

x

x

x

x

xx

Γ

Fig. 1 Geometry subdivision for cut element integration

In transient problems the location of the quadrature points must
change as the interface moves in time, requiring that every cut element
be subdivided at each time step. However, the subdivision is applied only
to a small number of elements, reducing the overall increase in computa-
tional effort required.

In transient problems, the interpolation functions at time steps n
and n + 1 are based on different positions of the interface and are dis-
continuous at different places in the element. The integration scheme
for the mass matrix (equations (13c) and (17d)) must take both intersec-
tions into account when generating the integration subelements to ob-
tain optimal convergence Fries and Zilian (2009). This can be difficult
and can significantly increases the number of subelements required to fit
the geometry. However, previous authors have successfully used inte-
gration schemes considering the current interface position only Chessa
et al. (2002); Chessa and Belytschko (2003) and this strategy is used in
this work. As suggested in Fries and Zilian (2009), the test functions are
evaluated using the current time step’s level set values.

4. RESULTS

The Lagrange multiplier formulation used in this work to solve the Ste-
fan problem (1) has been previously validated. For details on the specific
simulations used and its performance compared to a finite difference ap-
proximation of equation (2), the interested reader is referred to Martin
et al. (2016).

To validate the coupled model three benchmark problems were sim-
ulated. The first and second are based on the one- and two-dimensional
analytical phase change problems Merle and Dolbow (2002); Rathjen and
Jiji (1971). The third benchmark problem involves more realistic bound-
ary conditions, using the material properties of cryolite, known for its
important change in density (≈ 25%).
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Properties Solid Liquid Interface

ρ [kg/m3] 1.0 0.75 -
cp [J/kg K] 50 50 -
k [W/m K] 0.1 0.1 -
ρsL [J/m3] - - 2.5
Tm [K] - - 273.0
µ [kg/s·m] - 10 -

Table 1 Material properties for 1D and 2D problems

In all cases, the simulations were also run in Comsol, using a moving
mesh algorithm (ALE) to account for the displacement of the interface.
The Stokes formulation uses a P2−P1 formulation, the temperature field
is linear and the Lagrange multiplier is constant per element Martin et al.
(2016). In Comsol, the mesh geometry is quadratic. The results were then
compared to the solution obtained using the purely XFEM approach. The
Comsol simulations did not include a remeshing step during the simu-
lation. An appropriate element size was used to maintain a low enough
Peclet number to avoid oscillations in the Stefan problem.

These problems were selected for their relatively simple interface
geometry and no reinitialization procedure was applied to the level set
field during the simulation. For smooth interface shapes and relatively
uniform displacements, the absence of a reinitialization step had little
impact on the model’s accuracy Martin (2016). More complex shapes
and interface movements would require a reinitialization step as well as a
remeshing step in the Comsol algorithm.

4.1. One Dimensional Phase Change Problem

The first benchmark problem is inspired by the one dimensional two
phase analytical solution of the Stefan problem in a semi-infinite domain
(x > 0), taken from Merle and Dolbow (2002). The thermal properties
are constant except for the density and are given in table 1. The initial
interface is at x = 0.515 m with the liquid phase on the right and solid
phase on the left, as shown in figure 2. The initial temperature is Tm (see
table 1). The top and bottom edges are insulated. At t = 0, the temper-
ature on the left edge is lowered to 272 K and the right edge is increased
to 275 K. For the Navier-Stokes equations, the right boundary is open (no
stress) while for the top and bottom edges the following boundary con-
dition is applied: v · n = 0. The time step is 0.05 sec, β =1 × 108 and
Ttol =1× 108. The mesh contains 180 quadrilateral elements in XFEM
and 196 in Comsol.

The interface position as a function of time for both Comsol and
XFEM algorithms is shown in figure 3. The temperature at point x1 over
time is given in figure 4 for Comsol and XFEM algorithms. The convec-
tion velocity (constant in the liquid domain) is shown in figure 5 for both
algorithms. These results show that the XFEM method reproduces the
solution obtained through the standard finite element method (Comsol)
using the moving mesh algorithm.

4.2. Two Dimensional Phase Change Problem

The second benchmark problem is two dimensional and based on the ana-
lytical solution of melting (or freezing) in a corner first solved in Rathjen
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Fig. 3 Interface position vs time, 1D problem
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Fig. 4 Temperature at point x1, 1D problem (see figure 2)
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and Jiji (1971). The thermal properties are constant except for the density
and are identical to the first example, given in table 1. The initial inter-
face is at x = 0.1 m from the left and bottom boundaries, with the liquid
phase on the lower left and solid phase on the top right, as shown in fig-
ure 6. The initial temperature is Tm (table 1). The top and right edges
are thermally insulated. At t = 0, the temperature on the left and bot-
tom boundaries is increased to 274 K. For the Navier-Stokes equations,
the left and bottom boundaries are open (no stress). For the top and right
boundaries the boundary condition v · n = 0 is applied. The time step
is 0.05 sec, β =1 × 104 and Ttol =1 × 102. The mesh contains 3025
quadrilateral elements in XFEM and 6590 triangle elements in Comsol.

The interface position for two different time steps for both Comsol
and XFEM algorithms is shown in figure 7. The figure shows that the
Comsol and XFEM algorthims give identical interface positions.

The temperature profile at the end of the simulation is shown in fig-
ure 8. Figure 9 shows the temperature at two points x1 and x2 over time
(see figure 6). In both cases, the Comsol and XFEM algorithms are in
excellent agreement.

The convection velocity at the final time step for both algorithms
is shown in figure 10. The velocity is in good agreement in both cases.
Figure 11 shows the fluid velocity at points x1 and x2 over time, showing
good agreement between the two algorithms, although fluctuations are
present in the XFEM solution.

Two distinct causes contribute to these fluctuations. First, the in-
terface geometry in XFEM (the level set field) is stored using a linear
interpolation. Consequently, the curved interface is approximated by line
segments which reduces the accuracy of the solution. Comsol uses a
quadratic interpolation for its moving mesh solution, allowing it to re-
produce the interface curvature precisely. To validate this hypothesis, a
solution was obtained using Comsol and a linear geometry. Using a mesh
size similar to figure 6, Comsol is unable to produce a converged solu-
tion. To obtain a converged solution, over 24 000 triangle elements had
to be used and the velocity solution showed small errors, similar to the
XFEM solution in figure 11. Furthermore, refining the XFEM mesh, thus
reducing the error caused by the linear geometry, reduces the error in the
solution as can be seen in figure 12, where the error norm is defined as
||vC − vX ||2, vC is the Comsol velocity and vX the XFEM velocity over
time at point x2.

To eliminate this error, a quadratic interface geometry (level set so-
lution) can be used for significantly curved interfaces. Note that this does
not require the use of a quadratic interpolation of the mesh, (as in Com-
sol) but the level set field only, limiting the number of additional degrees
of freedom required. However, the geometric calculations done using the
level set solution (element intersections, normals) becomes more com-
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Fig. 7 Interface Comsol and XFEM, 2D problem

plex to implement and the algorithms supposing a linear interpolation
must be rewritten. Note that the use of a linear interface may reduce pre-
cision but still leads to converged solutions, whereas Comsol struggles
to produce converged solutions using a linear mesh interpolation. These
findings suggest that the use of the extended finite element method com-
bined with the level set method allows for a significant reduction in the
number of degrees of freedom required to reach a converged solution, as
opposed to Comsol’s moving mesh algorithm.

The second factor is the absence of a preconditioning matrix Lang
et al. (2014) for the Stokes problem, which meant that lower Ttol values
had to be used to obtain a converged solution. This low Ttol value causes
important local errors in the velocity near the interface for problematic
time steps; the more significant jumps in 11 are caused by this. To eval-
uate the sensitivity of the solution with respect to Ttol, the problem was
solved using three different values for Ttol: 1×100, 1×102 and 1×104.
The velocity norm at point x1 for all three Ttol values compared to the
Comsol solution is given in figure 13. As can be seen in the figure, at
Ttol =1 × 104, certain critical degrees of freedom are not removed and
the error becomes quite significant at 3.5 seconds. This error distorts the
level set solution and leads to a divergent solution a few time steps later.
At Ttol =1× 100 too many degrees of freedom are removed and the sys-
tem is unable to reproduce the solution at any time step. Between these
two values, at Ttol=1 × 102, the solution shows much smaller errors at
critical time steps and reproduces the correct solution. These results indi-
cate that without a preconditionner, the solution can be quite sensitive to
a change in Ttol.

This source of error can be resolved by adding the preconditioning
matrix defined in Lang et al. (2014) to the Stokes problem. Although this
error impacted only certain time steps, even at the quite low Ttol, more
general applications involving other sources of fluid flow may not be so
stable Martin (2016).

4.3. Melting of Cryolite Problem

The last benchmark problem is the melting of cryolite inside a rectangular
cavity. The material properties are taken from the FactSage software Bale
et al. (2009) and assumed constant except for the density (see table 2).
The initial interface is at x = 0.05 m with the liquid phase on the left and
solid phase on the right, as shown in figure 14. The initial temperature
is Tm (table 2). The top and bottom edges are thermally insulated. The
temperature on the left and right boundaries are functions of y and given
in figure 14. For the Navier-Stokes equations, all boundaries are no-slip
walls (v = 0) except for an open boundary (p = 0) on the top left side
of width 0.01 m (see figure 14). The time step used is 2 × 103 sec,
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Fig. 8 Temperature at final time step, 2D problem
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Fig. 9 Temperature as function of time at x1 and x2, 2D problem (see
figure 6)

Fig. 10 Velocity at final time step, 2D problem

β =1 × 104 and Ttol =1 × 101. The mesh contains 1350 quadrilateral
elements in XFEM and 2799 triangle elements in Comsol.

The varying temperature profile along the left and right boundaries
will create a variation in heat flux along the interface, causing it to curve.
As the solid phase melts, excess mass is released in the liquid phase and
leaves the domain through the open boundary in order to fulfill the mass
conservation principal.

The interface position for three different time steps for both Com-
sol and XFEM algorithms are shown in figure 15 and are in excellent
agreement. The temperature profile at the end of the simulation is shown
in figure 16 whereas figure 17 shows the temperature over time at two
points x1 and x2 (see figure 14). In both cases, the Comsol and XFEM
algorithms are in excellent agreement.

The velocity profile at the end of the simulation is shown in fig-
ure 18. Figure 19 shows the fluid velocity at point x1 over time. Fi-
nally, figure 20 shows the mass flux across the open boundary over time.
The graphs clearly indicate that the XFEM algorithm correctly solves the
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Properties Solid Liquid Interface

ρ [kg/m3] 2900 2050 -
cp [J/kg K] 1650 1650 -
k [W/m K] 0.4 0.4 -
ρsL [J/m3] - - 2.81× 109

Tm [K] - - 1000
µ [kg/s·m] - 2.4× 10−3 -

Table 2 Material properties of cryolite, taken from FactSage Bale et al.
(2009)
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Fig. 14 Cryolite problem definition

interface, temperature and velocity variables. A mismatch between the
Comsol and XFEM algorithms can be seen at earlier time steps, when
the interface velocity varies rapidly. This is caused by the use of an ex-
plcit time stepping scheme for the level set field, requiring the use of the
previous time step’s temperature values to calculte the interface velocity
(equation 2).

5. CONCLUSION

Coupled Stefan and Stokes formulations using the extended finite element
method were developed for the resolution of phase change problems in-
volving variable densities. The density jump at the interface was used to
apply a velocity boundary condition and conserve the global mass of the
system, using the penalty method. The temperature and velocity fields
obtained using XFEM were compared to the moving mesh algorithm in
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Fig. 15 Interface position for cryolite problem

Fig. 16 Temperature profile at the final time step for cryolite problem
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Fig. 17 Temperature as function of time at x1 and x2 for cryolite
problem (see figure 14)

Fig. 18 Velocity profile at the final time step for cryolite problem
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Fig. 20 Mass flux at outflow boundary, cryolite problem

Comsol and are in good agreement. The use of a linear interpolation
for the level set solution lead to errors in the mass flux velocity at the
interface compared to the quadratic interpolation used by Comsol but re-
quired fewer degrees of freedom. When a linear interpolation was used
in Comsol, the number of degrees of freedom required to obtain a con-
verged solution was much greater than in XFEM. The simple removal of
degrees of freedom with a small contribution to the system for the Q2-Q1

Stokes formulation was shown to produce errors in the velocity field for
problematic interface configurations. The same observation for a Q1-Q1

formulation was made in Lang et al. (2014). The resolution of a more
physically realistic benchmark problem using cryolite showed the XFEM
algorithm to be quite effective at evaluating the mass flux caused by the
density change. Future work will be done to include the complete Navier-
Stokes equations and a stabilized Q1-Q1 formulation to implement the
preconditionner scheme.
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