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ABSTRACT

With the development of multi-signal monitoring technology, the research on multiple signal analysis and pro-
cessing has become a hot subject. Mechanical equipment often works under variable working conditions, and the
acquired vibration signals are often non-stationary and nonlinear, which are difficult to be processed by tradi-
tional analysis methods. In order to solve the noise reduction problem of multiple signals under variable speed,
a COT-DCS method combining the Computed Order Tracking (COT) based on Chirplet Path Pursuit (CPP) and
Distributed Compressed Sensing (DCS) is proposed. Firstly, the instantaneous frequency (IF) is extracted by CPP,
and the speed is obtained by fitting. Then, the speed is used for equal angle sampling of time-domain signals, and
angle-domain signals are obtained by COT without a tachometer to eliminate the nonstationarity, and the angle-
domain signals are compressed and reconstructed by DCS to achieve noise reduction of multiple signals. The
accuracy of the CPP method is verified by simulated, experimental signals and compared with some existing
IF extraction methods. The COT method also shows good signal stabilization ability through simulation and
experiment. Finally, combined with the comparative test of the other two algorithms and four noise reduction
effect indicators, the COT-DCS based on the CPP method combines the advantages of the two algorithms and
has better noise reduction effect and stability. It is shown that this method is an effective multi-signal noise reduc-
tion method.
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1 Introduction

The rotating machinery is an important mechanical equipment. As the core component of transmission
machinery, the gearbox is vulnerable to damage, resulting in machine damage and accidents. Gearboxes are
mostly in variable working conditions and are often used in situations with high working intensity and
complex speed changes [1], such as automobile engines, aircraft, wind turbines, etc. In some cases, it is
difficult to find out the damage and replace it frequently after the gearbox is damaged. The gears in the
gearbox may have faults such as broken teeth, cracks, missing teeth and pitting corrosion. In order to
obtain fault information as soon as possible when a fault occurs, the condition monitoring and diagnosis
technology have gradually developed in the recent years [2]. The vibration signal is collected by the
sensor, and the noise in the signal is removed by algorithms. Then the signal is analyzed and processed to
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obtain the features of the signal, and thus get the fault information of gearbox, in this way, the production
costs can be reduced and the accidents can be avoided, it is of great significance to mechanical production.

The shaft, gear and bearing in the gearbox will generate vibration during operation, and the vibration
signal is the carrier of gearbox fault features. Therefore, vibration signals processing methods have
become a common method of mechanical condition monitoring and diagnosis [3]. However, the vibration
signal of gearbox under variable working conditions contains a lot of noise and frequency components.
Therefore, removing the noise from the collected signal has become an important problem in signal
processing. In recent years, there have been many methods to achieve noise reduction and feature
extraction of signals through a single sensor. With the development of technology, multi-signal collection
and data processing are gradually applied in condition monitoring [4], which has attracted the attention of
researchers. However, in signal pre-processing, there is little research on the noise reduction algorithm of
multiple signals. Therefore, in order to solve this problem, a COT-DCS method based on CPP is
proposed, which is applied to multi-signal denoising. This method first extracts the IF curve from the
collected signal through the CPP, and uses the speed curve as the tacho pulse to calculate COT for the
equal angle sampling, equal angle sampling can convert the time domain signal into the angle domain
signal. Finally, the DCS is used to reduce the noise of the multiple-angle domain signals.

1.1 Chirplet Path Pursuit (CPP)
For the variable speed signal, it is an important processing step to obtain the speed signal to observe the

speed change. When analyzing and processing the signal under time-varying working conditions, it is
necessary to extract the IF or speed from the signal firstly. For the variable speed gearbox, the IF of the
signal is also the meshing frequency of the gear. The speed can be obtained by dividing IF by the number
of gear teeth. Therefore, it is necessary to extract the IF curve through some algorithms from the
vibration signal under variable working conditions. In the early stage of speed tracking and extraction,
the digital differential five-point formula method of numerical analysis was generally used to calculate the
speed directly, but the accuracy of the speed by this method was very poor. At present, the commonly
used method is to obtain the speed indirectly by obtaining the IF. In order to get IF, an IF estimation
method based on the peak search was proposed by Guo Yu and their team [5], the time-frequency
diagram is obtained first, and then the peak search method [6] is used to obtain the discrete IF from the
diagram, and then the IF curve is obtained by fitting. However, the IF obtained by this method will have
burrs, although the accuracy is better than the five-point rotational speed method, there is still a big gap
with the real frequency.

The CPP algorithm which was put forward by Candès et al. [7] is used to adaptively obtain the signal
component whose frequency changes in a curve by connecting the chirplet atoms in the chirplet diagram, and
it has been applied in the analysis of seismic gravitational wave. In the recent ten years, the CPP has been
introduced into the field of signal processing. For gearbox signals, this method can accurately estimate the
gear meshing frequency and has strong noise resistance ability. Compared with the peak search algorithm, the
CPP algorithm has higher frequency fitting accuracy and higher noise resistance ability.

In addition to proposing the algorithm, Candès and his team also detect highly oscillatory signals by CPP
to verify the feasibility of the algorithm. In addition, Luo et al. [8] proposed a new gear fault detection
technology based on Multi-Scale Chirplet Path Pursuit (MSCPP) algorithm and Fractional Fourier
Transform (FrFT) method. Liu et al. [9] proposed a spectrum analysis method of multi-fault azimuth
detection and demodulation based on CPP. Xu et al. [10] applied the method based on MSCPP and
Linear Canonical Transform (LCT) to gear fault diagnosis under variable speed conditions at the first
time. Based on CPP and sparse signals decomposition method, Peng et al. [11] proposed a sparse signal
decomposition method based on MSCPP which is more suitable for the decomposition of multi-
component non-stationary signals with time-varying frequency, and applied it to the gearbox the vibration
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signal. Luo et al. [12] proposed a new method of gear fault detection under time-varying speed, which is
based on CPP and multi-scale morphological analysis. Luo et al. [13] also introduced a new IF estimation
method based on Synchro Squeezing Transform (SST) and MSCPP. Because the Adaptive Time-varying
Filter (ATF) based on Multi-scale Chirplet Sparse Signal Decomposition (MCSSD) will produce phase
shift and signal distortion when used to separate multi-component non-stationary signals, Wu et al. [14]
introduced the zero-phase filter into the filter and proposed a gearbox fault diagnosis method. Jiang et al.
[15] also proposed an optimal chirplet method based on hybrid particle swarm optimization, which used
the absolute value of the inner product of vibration signal and the chirplet basis function as the fitness
function. Millioz et al. [16] proposed a correlation maximum chirp detection method based on iterative
masking which is no need to recalculate the spectrum.

1.2 Computed Order Tracking (COT)
After being proposed and applied for an invention patent by Potter of HP in 1989, the COTwas used to

realize equal angle resampling instead of Hardware Order Tracking (HOT) which realizes equal angle
sampling through analog equipment. The COT is a method to transform non-stationary signals in the time
domain into stationary signals in the angle domain, there are two kinds of converted signals which are
stationary and cyclostationary. At present, order tracking has been widely used in various fields, the
monitoring of ducted fans and turbomachinery in the aerospace industry is a typical application scenario
of this method. Truong et al. [17] used the Vold-Kalman filter order component technology to study the
noise of propeller and duct fan, and the results are generally consistent with the large-scale fan test results
conducted by NASA under transonic conditions. Chiang et al. [18] studied the dynamic characteristics of
the turbomachinery system through the finite element analysis model, and used order tracking to obtain
the critical engine speed of the test device when verifying the analysis results through the modal test and
engine dynamic test.

The signal under variable speed conditions is non-stationary and nonlinear. Therefore, algorithms such
as the Fourier transform cannot be directly used. The COT is an effective method for processing variable
speed signals. The angle domain signal obtained after conversion by COT is stable so that some
traditional signal processing methods can continue to be used. Different from HOT, the COT only needs
to use the device to collect the speed pulse of the reference shaft to calculate the equal angle time, but
sometimes it does not have the conditions to collect the pulse signal. Therefore, the COT is generally
divided into COT with and without a tachometer whose difference is whether the speed pulse of reference
shaft is collected. Li et al. [19] realized the quasi-steady state component separation in the angle domain
and the shock resonance component extraction in the time domain based on order analysis technology
with a tachometer and without it. Wu et al. [20] proposed an improved TLOT method based on
Nonlinear Compensated Demodulation Transform (NCDT) for fault diagnosis in mechanical extreme
condition monitoring. Schmidt et al. [21] proposed a TLOT method which can accurately estimate the
phase of the axis of interest in the presence of large angular acceleration and noise, and the estimated
instantaneous phase is used to resample the vibration signal from the time domain to the angle domain.
Besides, Wang et al. [22] also proposed a method for time-varying fault diagnosis of rotating machinery
based on TLOT and deep learning. Walker et al. [23] applied a case study based on actual wind turbine
bearing data to prove that the combination of adaptive resampling and sequential tracking is simple and
intuitive to diagnose the fault of low-speed non-stationary bearing. Koli et al. [24] used COT to resample
the vibration signal sampled at a constant time into a constant angle sampling signal. Combined with the
working characters of Rolling Mill Gearbox (RMG), Liu et al. [25] proposed a convenient and low-cost
order analysis method to realize the rapid analysis of the running state of the gearbox. Yang et al. [26]
proposed a fault-weak feature extraction scheme combining envelope sequence tracking and constrained
Independent Component Analysis (cICA) with COT to transform the envelope from the time domain to
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the angle domain. Combined with the signal resampling technology based on COT, Wei et al. [27] used the
vibration response under scanning excitation to diagnose the crack state of the beam. Ouadine et al. [28]
applied a method based on order tracking signal analysis and a genetic algorithm to detect flight or
ground faults implemented on the helicopter computer.

1.3 Distributed Compressed Sensing (DCS)
In the field of multi-signal collection and data fusion, Multiple Measurement Vectors (MMV) models is

usually used to process multiple signals. He et al. [29] proposed a sparse global navigation satellite system
(GLONASS) signal acquisition method based on compressed sensing and MMV, which can reduce the
storage space and energy loss of data transmission. He et al. [30] proposed a sparse Bayesian learning
method based on a multi-channel mode coupling hierarchical Gaussian prior model for MMV to solve the
complex problem that is a high-resolution inverse synthetic aperture radar (ISAR) imaging task of fast
rotating targets. The DCS model is also one of the MMV models. In recent twenty years, an emerging
theory called Compressed Sensing (CS) has been put forward in the signal sparsity field by Donoho in
2004. In order to solve MMV problem, based on compressed sensing theory and the idea of distribution,
combining CS [31] and Distributed Source Coding (DSC) [32], Baron et al. [33] introduced a new theory
for DCS and enabled new distributed algorithms for multi-signal ensembles in 2005.

Torkamani et al. [34] used wavelet transform as sparse transform and proposed a Bayesian DCS
algorithm based on wavelet which considered the scale dependence between wavelet coefficients and the
correlation between signals. Wen et al. [35] proposed a new data collection method called Decentralized
Distributed Compressed Sensing (DDCS) whose performance is better than traditional DCS. Chen et al.
[36] proposed a new distributed compressed video sensing scheme which is a new key frame
reconstruction scheme to reduce computational complexity and improve the quality of keyframes. Zheng
et al. [37] also proposed a new distributed compressed video sensing scheme to meet the requirements of
low encoder complexity and high coding efficiency in the new scene. Torkamani et al. [38] proposed a
new Bayesian decentralized algorithm which is a model-based DCS so that a single signal structure can
be used, its recovery performance is better than the existing technology. Jahanshahi et al. [39] developed
an adaptive sensing framework based on sparse order, and a joint reconstruction method is proposed by
using a DCS scheme at the decoder side. Chen et al. [40] proposed a new algorithm called Backtracking-
Based Adaptive Orthogonal Matching Pursuit for block Distributed Compressed Sensing
(DCSBBAOMP) to achieve perfect reconstruction performance.

2 Basic Principles of COT-DCS Based on CPP

2.1 Chirplet Path Pursuit
The multi-scale chirplet primitive function library adopted by the CPP algorithm is as follows:

D hal;bl;I
� � ¼ hal;bl;I tð Þ� � ¼ Kal;bl;I exp �i alt þ blt

2
� �� �

1I tð Þ� �
(1)

where: D is the primitive function library; hal;bl;I tð Þ is a multi-scale chirplet primitive function; I is the
dynamic time period, I ¼ kN2�j � k þ 1ð ÞN2�j½ �; K is the serial number of dynamic time period,
K ¼ 0; 1; . . . ; 2j�1; N is the sampling length of the analysis signal; j is the analysis scale coefficient,
j ¼ 0; 1; . . . ; log N � 1ð Þ; Kal;bl;I is the normalization coefficient so that hal;bl;I ¼ 1; al is the frequency
offset factor; bl is frequency modulation, according to sampling theorem, al þ 2bl t should be less than
fs=2; 1I tð Þ is a rectangular window function, which is 1 when t 2 I and 0 when t =2 I .

The idea of CPP is to use chirplet atoms in the primitive function library to approximate the time domain
analysis signal, use the linear combination of these chirplet atoms to estimate the signal, and connect the
corresponding lines of each atom segment by segment to approximate the IF curve. According to this
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theory, we can find the core problem of the CPP algorithm: the connection of chirplet atoms and the selection
of chirplet atoms. Among them, the selection of chirplet atoms can be realized by drawing a chirplet diagram.
The chirplet diagram obtained by calculating a signal mixed with colored noise is shown in Fig. 1.

Chirplet atoms have linear IF al þ 2blt in the dynamic interval. The time domain signal is projected into
each dynamic time analysis segment I one by one, and the maximum projection coefficient and
corresponding chirplet primitive function are calculated. The primitive function is the most similar
frequency component to the original analysis signal in the whole dynamic time analysis segment I . The
more similar the signal is to the primitive function, the greater projection coefficient and the greater
energy of the primitive function. Therefore, if the total energy of all primitive functions is the largest, the
signal and the primitive function are the most similar. After analyzing the projection section by section,
the analyzed chirplet atoms must be connected to form a frequency curve. In order to simultaneously
meet the two conditions that all chirplet atoms can be connected and the total energy of the primitive
function in the whole dynamic time period can be maximized, CPP provides a dynamic time period
connection method, that is, the best path pursuit method should simultaneously meet the maximum
projection coefficient and the maximum total energy of the primitive function:

Max
X
I2�

Kal;bl;I exp �i alt þ blt
2

� �� �
1I tð Þ2

( )
;� ¼ I1; I2; . . .f g 2 If g (2)

b ¼ bl1 ; bl2 ; . . .
� �

;H ¼ hal1;bl1;I1 ; hal2;bl2;I2 ; . . . (3)

� is the set of support areas that can cover the whole period without overlapping. By the following
method, the connection of chirplet atoms can ensure that the signal formed by the combination of
primitive functions with the largest energy in the whole period is the most similar to the original signal:

b ¼ bl1 ;bl2 ; . . .
� �

H ¼ hal1;bl1;I1 ; hal2;bl2;I2 ; . . .
� ��

(4)

(1) Initialization. I is the serial number of the dynamic analysis period, di is the total energy calculated by
the signal before the ith dynamic analysis period, pi is the serial number of the last dynamic analysis period

Figure 1: A chirplet diagram
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connected to the ith dynamic analysis period, ei is the energy of the signal corresponding to the maximum
projection coefficient of the ith dynamic analysis period. During initialization, set di = 0, pi = 0;

(2) For each element Ii in the dynamic analysis period set Ii; i 2 Zf g. Find out the next dynamic analysis
period set Ij; j 2 Z

� �
adjacent to it, that is, the starting time of all elements in Ij

� �
and Ii adjacent. If

di þ ei > dj (5)

There is

dj ¼ dj þ ei
pi ¼ i

�
(6)

2.2 Order Tracking: Equal Angle Sampling
COT is essentially to convert the time-domain signal sampled by Shannon-Nyquist sampling theorem

into angle-domain signal. Different from HOT, the equal angle sampling for COT calculation only needs
a tachometer. The equipment collects the speed pulse signal of the axis with equal time interval to
calculate the equal angle time, then the interpolation algorithm is used to interpolate and fit the
resampling time to obtain the final angle domain signal.

The calculation formula of order ratio I is derived from the formula for calculating the speed:

I ¼ 60f =n0 (7)

where: f is the frequency of vibration; n0 is the speed.

The order tracking calculation requires a total of two filters, anti-aliasing filter and low-pass filter. Since
the definition of order is obtained from frequency, anti-aliasing filter is to use Shannon-Nyquist sampling
theorem to process firstly to prevent frequency aliasing. The angle domain resampling for COT is similar
to the time domain signal sampling, and the angle domain sampling theorem is also similar to the time
domain sampling theorem, corresponding to the time domain sampling frequency, the angle domain
sampling theorem is:

Os � 2� Omax (8)

where: Os is the order sampling rate (i.e., equal angle sampling point per revolution), Omax is the maximum
order. However, in the actual calculation, we cannot get the true maximum order. Although it is sufficient to
meet the sampling theorem, the angle-domain signal also has order aliasing, and the angle domain sampling
rate cannot be too large, so before equal angle sampling, we need to conduct low-pass filter to determine
Omax.

The maximum order of the signal can be limited by low-pass filtering, and the highest order is
determined by the cut-off frequency fc of the low-pass filter. Thus, according to the maximum and
minimum speed nmax and nmin of the reference shaft to calculate Omax:

fc ¼ nmax � Omax=60 (9)

Omax ¼ 60� fc=nmin (10)

The angle sampling rate can be calculated from the maximum order of the signal. If the reference axis is
uniformly accelerated for a short time period, the angle of rotation h is:

h tð Þ ¼ b0 þ b1t þ b2t
2 (11)

where: b0, b1, b2 are unknown coefficients, which needs to be calculated. To solve this problem, three
consecutive accurate pulse times t1, t2, t3 are required. Its angle is h1, h2, h3 whose phase difference
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between two points is Dh. Besides, the speed pulse of the reference shaft is used to calculate the pulse trigger
time t. The formula can be obtained by substituting the pulse time and angle:

h1
h2
h3

2
4

3
5 ¼

1 t1 t12

1 t2 t22

1 t3 t32

2
4

3
5 b0

b1
b2

2
4

3
5 (12)

The three coefficients b0, b1, b2 can be obtained by solving the equation:

b0
b1
b2

2
4

3
5 ¼

1 t1 t12

1 t2 t22

1 t3 t32

2
4

3
5
�1 h1

h2
h3

2
4

3
5 (13)

By using the coefficient, we can obtain the equal angle time ti at any angle:

ti ¼ 1

2b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2 hi � b0ð Þ þ b1

2
q

� b1


 �
(14)

where, ti is the time series obtained from angle domain resampling, and this process is the calculation of equal
angle time. Finally, the interpolation algorithm also needs to interpolate the equal angle time series to obtain
the resampled signal. The cubic spline interpolation has good convergence and smoothness, and can
effectively solve the problem that Lagrange interpolation will have sharp points, therefore, cubic spline
interpolation is used to complete resampling for order tracking.

2.3 Distributed Compressed Sensing
CS is a new sampling method, which is different from the traditional Shannon-Nyquist sampling. The

principle is: as long as the signal is sparse on the sparse basis, the signal can be projected from high
dimension to low dimension space through the measurement matrix, and the original signal can be
reconstructed from the projection by solving the optimization problem in the end. It can be seen that the
three important steps of compressed sensing are: sparse representation of signal, selection of measurement
matrix and solution of optimization problem.

The sparsity or compressibility of the signal is the premise of the application of the compression sensing
theory. Therefore, compressed sensing is completed based on the signal sparsity theory. If a signal X can be
represented by a set of the baselines Ψ ¼ w1;w2; . . . ;wn; . . . ;wN½ �:

X ¼ ΨΘ ¼
XN
i¼1

wihi (15)

where: hi is the inner product of the signal and the base wi, andΨ is the sparse basis of the signal, the number
of non-zero coefficients K of the signal on this basis is called the signal sparsity. If the signal can be
represented sparsely, CS is a encoding process to the original signal, and then transmitting the
information to the decoder for decoding. The encoding method is to linearly measure the original signal
through the measurement matrix to obtain the measured value. This process is actually to calculate the
inner product of the original signal X and a set of vectors uif g, that is:
y ¼ �X ¼ ��� ¼ ACS� (16)

where: � is the measurement matrix, and � is the sparse coefficient vector. After encoding the signal, the
optimization algorithm is used to complete the decoding, and then the reconstruction of CS can be
completed. However, CS can only be used for single signal processing. For the sake of multi-signal
processing, the distributed idea is introduced. The principle of Distributed Source Coding (DSC)
algorithm is that the independent coding and joint coding of the source which must be relevant are
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equally effective when data is compressed, so that CS can be extended to the field of multi-signal processing.
The DCS, which combines CS and DSC, can process and denoise relevant sources. Like CS, DCS requires
joint sparse between signals and establishes three Joint Sparse Models (JSM).

If the original signals Xj themselves are sparse and have their common part zC whose sparsity are KC and
special part zj whose sparsity are Kj. Then the JSM-1 model can be used:

Xj ¼ zC þ zj; j 2 1; 2; . . . Jf g (17)

If the sparse bases of the original signals whose sparsity are all K are the same, then the JSM-2 model can
be used:

Xj ¼ �hj; j 2 1; 2; . . . Jf g (18)

where: hj is the support set. The above two models are common models. However, if the signals are not
sparse on any basis, it can be solved by the obtained JSM-3 model by extending from JSM-1:

Xj ¼ zC þ zj; j 2 1; 2; . . . Jf g (19)

Same as JSM-1 model, except that zC is not sparse on the base. In specific applications, JSM-2 model is
usually used, and then joint coding is carried out through measurement matrix to transmit information to the
decoder for decoding. DSC provides the theory of joint decoding for DCS, and its method is to use
reconstruction algorithm to solve the optimization problem. DCS generally uses Synchronous Orthogonal
Matching Pursuit (SOMP) to reconstruct, because the algorithm is simple and easy to implement.

The residual r0 and the support set Λ are used to solve the following problem from the SOMP algorithm
by iteration so that Λl can be obtained:

Λl ¼
Xd
k¼1

A lð Þ
i r lð Þ

i ek
� ��� ��� (20)

where: A lð Þ
i is composed of support sets, 1 � l � M , M is the number of bands and r lð Þ

i is the residual, ek is
the base vector of the kth element which is 1. Finally, the sparse vector rΛ is obtained from the above results.

2.4 COT-DCS Based on CPP
Due to the good data processing ability of DCS, it is introduced into multi-signal noise reduction.

However, mechanical equipment often operates under variable speed conditions, the collected signals are
also non-stationary and nonlinear due to the impact of speed, which affects the noise reduction effect. To
eliminate this impact, preprocessing is carried out by COT before DCS processing. However, to calculate
order tracking, it is necessary to calculate the pulse trigger time through the tacho pulse to obtain the
resampling time. Therefore, CPP is used to extract the speed from the original signal and use it for COT
calculation. The steps of the algorithm which is COT-DCS based on CPP method are:

(1) To prevent too much signal data from taking too long to calculate the sparse matrix, a segment of the
vibration signal data is intercepted as the original signal in the time domain.

(2) Pre analyze one of the signals to determine Omax, fc and Os.

(3) The speed pulse is obtained through CPP, and the angle resampling time is calculated by angle
domain sampling rate Os.

(4) The obtained equal angle time sequence is interpolated with cubic spline to obtain angle domain
signal.

(5) Perform steps (1) to (4) for other time domain signals to obtain respective angle domain signals.

(6) The JSM-2 model of DCS is used to compress the angle domain signal and obtain the measured
value, which is then transmitted to the decoder.
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(7) The SOMP algorithm is used to complete joint decoding at the decoding end, and the noise-reduced
signal is successfully reconstructed.

3 Simulations and Experiments

3.1 Study of CPP

3.1.1 Simulation
In order to study the effect of CPP algorithm, a simple sine simulation signal x tð Þ ¼ 10 � sin 2ptð Þ is used

for simulation study, and then the Gaussian white noise whose Signal-to-Noise Ratio is 10db is added, the
time-domain image of the mixed signal is shown in Fig. 2.

Then try to extract the original sine signal from the mixed signal by using the CPP method. The best path
pursuit algorithm of CPP calculates that the best path is the 8th path, and then the chirplet diagram obtained
after fitting the IF is shown in Fig. 3. When the diagram is redrawn, the sine signal extracted from the mixed
signal by CPP is shown in Fig. 4.

Figure 2: The mixed signal

Figure 3: The chirplet diagram after calculated
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It can be seen from the figure that the signal extracted by CPP is close to the original signal in shape, and
the maximum and minimum values of the sine signal can also be accurately reflected, which can indicate the
effectiveness of the CPP algorithm. However, because the algorithm is more suitable for extracting the IF of
non-stationary signals, the extraction effect of mixed noise sine signal is worse than that of non-stationary
signal.

3.1.2 Experimental Study
With the development of non-stationary signal fault diagnosis under variable speed condition, the

International Conference on Condition Monitoring of Machinery in Non-stationary Operations
(CMMNO) was held this years, and there is a contest from CMMNO14 in 2014 to make the most
relevant diagnosis of a wind turbine operating. In order to study the processing effect of CPP method on
non-stationary signals, the IF will be extracted from the sound signal of the contest under variable
working conditions provided by Leclère et al. [41].

The signal is a non-stationary signal whose sampling frequency is 5000 Hz. Its time-domain signal
image is shown in Fig. 5.

Figure 4: Sine signal from CPP

Figure 5: Signal in time domain
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The speed of the signal will be tracked through CPP. Firstly, the chirplet diagram which contains the IF
information is obtained, and then the IF curve is redrawn. In the competition, the unit of speed is rpm, so it is
necessary to convert the amplitude of the IF diagram, and then divide it by the number of teeth to get the final
speed diagram, as shown in Fig. 6.

In order to study the accuracy of the speed curve obtained by CPP, it is compared with the real speed
which is shown in Fig. 7.

In Fig. 7, the deep blue curve represents the real tacho, and the other curves are the extracted results of
each competitor in the contest. It can be seen from the comparison of results in Fig. 6 and the real tacho in
Fig. 7 that the curve of CPP is closer to the actual speed in shape, and its amplitude is also in the range of
1000 to 1900 rpm, which is the same as that of the real speed. Therefore, the effectiveness of CPP can be
verified in extracting the IF of non-stationary signals.

Figure 6: Speed curve by CPP

Figure 7: The real rotation speed
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3.1.3 Compared Experiments
In order to further study the effect of CPP algorithm, it is compared with several existing methods of IF

and speed extraction by the signal in Section 3.1.2 yet. Firstly, the speed is calculated by the earliest speed
extraction method named five point formula of digital differentiation. The result is shown in Fig. 8.

Then the IF is obtained by local peak search based on STFT. This method first obtains the time-
frequency spectrum by STFT, and then extracts the IF curve from the graph by peak search algorithm.
The speed is obtained by converting units and dividing by the number of teeth, as shown in Fig. 9.

Viterbi algorithm is a maximum likelihood decoding algorithm proposed by Viterbi for Hidden Markov
Model (HMM). The algorithm is applied to IF extraction, and the speed is obtained through processing which
is shown in Fig. 10.

Figure 8: Speed by the five point formula

Figure 9: Speed by the local peak search
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After comparing the results of the above three algorithms with that of Fig. 6 and the real speed, it is
showed that the results of the digital differentiation method are inaccurate and cannot be used for speed
extraction of non-stationary signals, the speed extracted by the other two methods is also close to the real
speed from the shape, but both of them have burrs. The result of Viterbi algorithm is better than the peak
search method whose result is greatly disturbed, and the burr phenomenon has a greater impact.
However, the speed obtained by the CPP is almost no burrs, and its non-stationary nature makes it not
vulnerable to the impact of variable speed conditions, which reflects the superiority of the algorithm.

3.2 Validation of COT-DCS

3.2.1 Simulation and Experimental Study of COT
In order to study the effect of the COT algorithm, a simulation signal defined y tð Þ ¼

sin 2pt2ð Þ þ sin 4pt2ð Þ þ sin 8pt2ð Þ is generated for simulation study, and the signal pluse ¼ sin 2pt2ð Þ þ 1
is used to simulate the bond phase pulse, then the signal y tð Þ will be resampled at equal angles. The y tð Þ,
pluse, angle domain signal of y tð Þ and order spectrum of angle domain signal after FFT, are shown in (a),
(b), (c) and (d) of Fig. 11.

Figure 10: Speed by Viterbi

Figure 11: The results of COT simulation
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Then the signal in Section 3.1.2 is still used for research object. Since the signal has no synchronous
speed pulse, the signal pluse is still used for simulation. The signal angle domain diagram and order
domain diagram are shown in (a), (b) of Fig. 12.

It can be seen from the simulation and experimental results that after the time domain signal is converted
to the angle domain, the signal becomes more stable, and many unstable factors are removed. The non-
stationary signals that cannot be directly processed by Fourier transform can continue to be processed by
Fourier transform after using COT. It shows the superiority of COT in processing non-stationary signals.

3.2.2 Experimental and Compared Verification of COT-DCS
In order to verify the effectiveness of COT-DCS method, the open-source data about gearbox vibration

signals collected by Southeast University on the Drivetrain Dynamic Simulator (DDS) [42] is used, as shown
in Fig. 13.

Where: ① Tachometer ② Induction motor ③ Bearing ④ Shaft ⑤ Load ⑥ Drive belt ⑦ Data
Acquisition board ⑧ Bevel gear reducer ⑨ Magnetic load ⑩ Crank mechanism ⑪ Transmission ⑫
Current probe. The data platform simulated five bearing operation states under two working conditions,
namely, speed 20 Hz (1200 rpm)-no-load 0 V (0 N·m) and speed 30 Hz (1800 rpm)-loaded 2 V

Figure 12: The results of COT experiment

Figure 13: Induction motor test platform
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(7.32 N·m). The data set of bearing operation is divided into normal operation state, ball fault, inner race
fault, outer race fault and inner and outer race compound fault, which respectively represent healthy
operation state, ball crack state, inner race crack, outer race crack and inner race outer race crack. The
signals of each fault state are collected by two acceleration sensors from x, y and z directions, and the
sampling frequency is 20 KHz.

The COT can be divided into two types: COTwith tachometer and COTwithout tachometer, the former
can directly collect the speed through tachometer, this method has high reliability and is also widely used in
industry. However, in the collection of multiple signals, tachometer equipment for synchronous acquisition
of rotational speed is sometimes not installed. In view of this situation, the idea of simulating the speed signal
in reference [5] is adopted, and the IF is obtained by using CPP algorithm, and then converted into the
simulated speed pulse to realize CPP without tachometer. In order to verify the proposed method, the
bearing data set is used to collect the inner race fault data with a speed load configuration of 20-0. Firstly,
use CPP to extract the speed of the signal, since the speed obtained by CPP is discrete, the continuous
speed curve obtained by polynomial fitting is shown in Fig. 14.

Then the speed is used to calculate the order tracking of time domain signals in three directions. In order
to show the advantages of COT-DCS algorithm, the original signal is also directly denoised using the DCS
algorithm. The processing results of using COT and DCS separately are shown in Fig. 15.

In Fig. 15, the first line is the time domain signal in the x, y, z directions, the second line is the angular
domain signal by using COT alone, and the third line is the time domain noise reduction signal obtained by
using DCS alone. It can be seen from the figure that the amplitude value of the signal processed by COT has
been effectively compressed, but since the angle domain resampling is only a change in the variable domain,
the noise component in the time domain signal still exists in the angle domain signal. While using DCS to
process time domain signals directly, although the noise has been suppressed to some extent, the algorithm
has a poor effect on signal non-stationary processing. Therefore, COT-DCS algorithm is used to compress
and reconstruct angle domain signals through DCS after angle sampling of time domain signals. Compare
the original time domain signal with the noise reduced angle domain signal to see the noise reduction
effect, as shown in Fig. 16.

Figure 14: Speed of multi-signals
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Compared with the time-domain signal, it can be seen from Fig. 16 that the signal processed by COT-
DCS not only has a certain amplitude compression, but also has a full suppression of noise, which fully
combines the advantages of the two algorithms. In order to further test the effect of the algorithm, the
results of COT-DCS are compared with the processing results of noise reduction methods based on

Figure 15: Comparison between the original signal and the signal processing results using COT and DCS
alone

Figure 16: Comparison between the original signal and the processing results after using COT-DCS
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Singular Value Decomposition and General Linear Chirplet Transform (SVD-GLCT) and Empirical Mode
Decomposition and Multi-scale Permutation Entropy (EMD-MPE). The results are shown in Figs. 17 and 18.

Comparing the three groups of the noise reduction results of experimental data, SVD-GLCT, EMD-MPE
and COT-DCS have all removed part of the noise. Since the three algorithms involve signal reconstruction, in
order to compare and analyze the noise reduction effects of the three methods, four new indicators,

Figure 17: Comparison of noise reduction effects between COT-DCS and SVD-GLCT

Figure 18: Comparison of noise reduction effects between COT-DCS and EMD-MPE
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Reconstructed Standard Deviation (RSD), Root Mean Square Error (RMSE), Root of Variance Ratio (RVR)
and Noise Rejection Ratio (NRR), are calculated respectively, as shown in Table 1.

From the RSD, since it is used to evaluate signal fidelity, the smaller the result is, the more signal
components are retained. The RSD of the three algorithms are all between 0.0038 and 0.0064, which is at
a low level, indicating that the fidelity of the results obtained by the three algorithms is good. The RMSE
reflects the similarity between the signal after noise reduction and the original signal, the more obvious
the value is, the more similar the two signals are, and the better the noise reduction effect is. Compared
with this evaluation index, the RMSE of SVD-GLCT is slightly less than EMD-MPE, while that of COT-
DCS is the smallest. RVR reflects the degree of signal smoothness, the smaller the value is, the smoother
the signal is. The value processed by COT-DCS method is relatively minimum, closer to 0, and the signal
is smoother. The NRR is used to evaluate the ability of signal to suppress noise. The larger the value is,
the higher the signal-to-noise ratio will be, and the better the noise reduction effect will be. The NRR of
COT-DCS is greater than that of the other two methods, indicating that this method has a strong ability to
suppress noise.

To test the treatment effect of the COT-DCS method on different non-stationary working conditions, the
bearing data set to collect the inner race fault data with a speed load configuration of 30-2 is used. The results
of COT-DCS, SVD-GLCT and EMD-MPE are shown in Figs. 19 and 20.

The four new indicators of them under the working condition are shown in Table 2.

Due to the addition of a 2 V load and an increase in speed to 30 Hz in the second working condition, non-
stationary effect of the signal is greater in this working condition. Comparing the processing results of the
same fault under different working conditions, the results of comparison of Figs. 17–20 show that the
fluctuation of the signal processing results under the second working condition is greater than that under
the first working condition, the noise reduction effect of all three methods will be affected by variable
working conditions, but the COT-DCS method is less affected by non-stationary factors. By comparing
Tables 1 and 2, despite increasing speed and adding load, the COT-DCS method is least affected by non-
stationary, and the results of RSD and RMSE indicate that the COT-DCS method still has stronger noise
reduction ability, while the noise reduction ability of the other two methods is weakened. The RVR
indicates that while ensuring noise reduction capability, COT-DCS can still maintain signal smoothness.
From the results of NRR, it is also obvious that COT-DCS has a stronger ability to suppress noise in the
second working condition than the other two methods.

Table 1: Noise reduction effect indicators of three algorithms in 20-0

Original signal Method RSD RMSE RVR NRR

x direction SVD-GLCT 0.0038 0.0038 0.1945 5.7397

EMD-MPE 0.0044 0.0044 0.0564 4.3040

COT-DCS 0.0043 0.0033 0.0159 9.4581

y direction SVD-GLCT 0.0054 0.0054 0.1364 9.3126

EMD-MPE 0.0060 0.0060 0.0276 14.4765

COT-DCS 0.0061 0.0051 0.0239 17.7354

z direction SVD-GLCT 0.0044 0.0044 0.3939 5.1207

EMD-MPE 0.0055 0.0055 0.0458 11.3996

COT-DCS 0.0057 0.0037 0.0455 14.6048
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Therefore, from the above noise reduction results and noise reduction indicators, the noise reduction
effect and the ability to suppress non-stationary of the COT-DCS method is better than the other two
algorithms, and it can better filter the noise in the signal while retaining the effective information in the
original signal and reflecting its advantages in the noise reduction of multiple signals.

Figure 19: Comparison of noise reduction effects between COT-DCS and SVD-GLCT

Figure 20: Comparison of noise reduction effects between COT-DCS and EMD-MPE
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4 Conclusion

As a key variable speed transmission component of a mechanical system, the smooth operation of the
gearbox is related to the safe operation of the entire machinery. With the development of multi-signal
monitoring technology, the analysis, processing and denoising of multiple signals under variable working
conditions have become an important issue. In order to solve the problem, a COT-DCS method based on
CPP is proposed. The IF of the variable speed signal is obtained through the CPP algorithm, and then the
speed information is fitted. Through simulation, experimental study and comparison with other three
methods which include digital differentiation, local peak search and Viterbi algorithm, it is shown that the
IF extracted by CPP is closest to the real speed. Aiming at the non-stationary and nonlinear of the
variable speed signal, the time-domain signal is converted into an angle-domain signal through COT, and
the simulated and experimental study shows that the algorithm has a good ability to deal with the non-
stationary signal. The COT-DCS based on the CPP method is proposed and verified by the actual data.
This algorithm combines the advantages of the two algorithms, which not only eliminates the
nonstationarity, but also effectively removes the noise embedded in the signal. Compared with using COT
and DCS alone, the COT-DCS method has a better noise reduction effect. Moreover, the processing
results of this algorithm are compared with SVD-GLCT and EMD-MPE algorithms. The three algorithms
all have certain noise reduction effects and signal fidelity, the noise reduction results of the COT-DCS are
more stable than those of the others, and the noise reduction effect indicators are also better than SVD-
GLCT and EMD-MPE. This shows the superiority and good effect of COT-DCS on multi-signal noise
reduction.
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