#### **PROCEEDINGS**

# Direct FE<sup>2</sup> Method For Concurrent Multilevel Modeling of Piezoelectric Structures

# Leilei Chen<sup>2,3</sup>, Haozhi Li<sup>3,4</sup>, Lu Meng<sup>5</sup>, Pan Chen<sup>3</sup> and Pei Li<sup>1,\*</sup>

<sup>1</sup>International Machinery Center, Department of Mechanical Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China

<sup>2</sup>School of Architectural Engineering, Huanghuai University, Zhumadian, 463000, China

<sup>3</sup>Henan International Joint Laboratory of Structural Mechanics and Computational Simulation, Huanghuai University, Zhumadian, 463000, China

<sup>4</sup>College of Architecture and Civil Engineering, Xinyang Normal University, Xinyang, 464000, China

<sup>5</sup>College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China \*Corresponding Author: Pei Li. Email: mepeili@xjtu.edu.cn

#### ABSTRACT

In this paper, a Direct FE<sup>2</sup> method is proposed to simulate the electromechanical coupling problem of inhomogeneous materials. The theoretical foundation for the proposed method, downscaling and upscaling principles, is the same as that of the FE<sup>2</sup> method. The two-level simulation in the Direct FE<sup>2</sup> method may be addressed in an integrative framework where macroscopic and microscopic degrees of freedom (DOFs) are related by multipoint constraints (MPCs) [1]. This critical characteristic permits simple implementation in commercial FE software, eliminating the necessity for recurrent data transfer between two scales [2-4]. The capabilities of Direct FE<sup>2</sup> are validated using four numerical examples, including two benchmark examples, a piezoelectric arc honeycomb example and a piezoelectric composite structure example.

## **KEYWORDS**

Direct FE<sup>2</sup> method; computational homogenization; piezoelectric structures; multi-point constraints (MPCs)

Funding Statement: The author(s) received no specific funding for this study.

**Conflicts of Interest:** The authors declare that they have no conflicts of interest to report regarding the present study.

## **References:**

- 1. Tan, V. B. C., Raju, K., Lee, H. P. (2020). Direct FE2 for concurrent multilevel modelling of heterogeneous structures. *Computer Methods in Applied Mechanics and Engineering*, *360*, 112694.
- 2. Xu, J., Li, P., Poh, L. H., Zhang, Y., Tan, V. B. C. (2022). Direct FE<sup>2</sup> for concurrent multilevel modeling of heterogeneous thin plate structures. *Computer Methods in Applied Mechanics and Engineering*, 392, 114658.
- 3. Zhi, J., Raju, K., Tay, T. E., Tan, V. B. C. (2021). Multiscale analysis of thermal problems in heterogeneous materials with Direct FE2 method. *International Journal for Numerical Methods in Engineering*, *122*(*24*), 7482-7503.



4. Zhi, J., Raju, K., Tay, T. E., Tan, V. B. C. (2021). Transient multi-scale analysis with micro-inertia effects using Direct FE<sup>2</sup> method. *Computational Mechanics*, 67(6), 1645-1660.