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ABSTRACT

The application of abruptly enlarged flows to adjust the drag of aerodynamic vehicles using machine learning
models has not been investigated previously. The process variables (Mach number (M), nozzle pressure ratio (η),
area ratio (α), and length to diameter ratio (γ )) were numerically explored to address several aspects of this process,
namely base pressure (β) and base pressure with cavity (βcav). In this work, the optimal base pressure is determined
using the PCA-BAS-ENN based algorithm to modify the base pressure presetting accuracy, thereby regulating the
base drag required for smooth flow of aerodynamic vehicles. Based on the identical dataset, the GA-BP and PSO-BP
algorithms are also compared to the PCA-BAS-ENN algorithm. The data for training and testing the algorithms was
derived using the regression equation developed using the Box-Behnken Design (BBD). The results show that the
PCA-BAS-ENN model delivered highly accurate predictions when compared to the other two models. As a result,
the advantages of these results are two-fold, providing: (i) a detailed examination of the efficiency of different neural
network algorithms in dealing with a genuine aerodynamic problem, and (ii) helpful insights for regulating process
variables to improve technological, operational, and financial factors, simultaneously.
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Nomenclature

a Convergence precision
B Measured value of base pressure (Pa)
BBD Box-Behnken Design
CCD Central composite design
CFD Computation fluid dynamics
IL Input layer
HL Hidden layer
CL Context layer
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d0 Spacing between two beetle antennae (mm)
i Number of iterations
OL Output layer
M Mach number
n Number of samples
s Specific beetle movement
GA-BP Genetic algorithm back propagation
l Learning rate
MAE Mean absolute error
MAPE Mean absolute percent error
NN Nueral network
Pc Crossover probability
Pm Nutation probability
PCA-BAS-ENN Principal component analysis-beetle search algorithm—elman neural network
PSO-BP Particle swarm optimization-back propagation
R2 Regression coefficient
RMSE Root mean square error
S Population size
T Highest time for training
TEB Three error band
x Location of the simplified center
y Output representation of the Elman neural network

Greek Symbols

α Area ratio (ratio of duct area to nozzle exit area)
β Non-dimensionnal base pressure or base pressure
δS Step decay co-eeficient
η Nozzle pressure ratio
ω Weights
γ Length to diameter ratio of the duct

Subscripts

2 Second order
5 Fifth order
cav Cavity/cavities in the expanded duct
pre Predicted
act Actual
des Desired

1 Introduction

Fluid flows with sudden axisymmetric expansions are a challenging topic in fluid dynamics that
may be encountered in a wide range of areas and industrial applications. In most situations, a round
tube with a smooth inner surface is adopted. A drop in the pressure in the wake zone is seen while the
duct area ascends rapidly. Such type of expanded flows undergoes flow separation and reattachment.
Although significant work has been done, these flows are still not completely realized. The area
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of concern is at the nozzle-duct interface where the nature of the fluid flow phenomena is quite
complicated, as it involves shock waves, expansion waves, and high pressure gradients [1]. The shear
layer developed at the nozzle exit in the base region results in recirculation flow, which is often said
to be highly turbulent and compressible. The intensity of recirculation flow plays a crucial role in
controlling the base drag, through which, the performance of high-speed rockets, projectiles, missiles,
and other aerodynamic vehicles could be monitored. Recent issues raised concern that the recirculation
flow was wave dominated, with not enough mass flow in the base region, causing an increase in the
base drag for a certain set of parameters [2]. Hence, it is important to identify such parameters and
control their levels, so that their influence on base drag is minimal. As there are quite a few flow and
geometric parameters affecting base drag independently [3], varying these parameters experimentally
and numerically is quite complex. This explores the possibility of using computational models to know
the different input parameters and their combinations that could minimize base drag.

Studies have been carried out by many researchers using a sudden expansion duct with ribs and
splitter plates [1,4–6]. These techniques were mostly employed to reduce base drag. Additionally, few
investigations demonstrated the application of active control for flow modulation [3,7,8]. These studies
employed dynamic control in the form of 1 mm diameter jets to manage β using a microjet at the base
and duct. Again here, the primary focus was a modification of β leading to changes in base drag.

Following the investigative and numerical techniques to passive flow regulation, a numerical
approach was also implemented to solve the suddenly expanded flow process. The computational
fluid dynamic (CFD) approach is most commonly used for this type of analysis. This approach
was undoubtedly used by multiple researchers associated with the current investigation. Over the
previous two decades, both passive and active control approaches have been successfully used in CFD
investigations. Turbulence modeling is an important aspect of fluid analysis and in most cases; a
density-based model was proven to be more suitable for compressible flows. CFD analysis revealed
that flow control via tiny jets was favorable for regulating pressure in the separated zone at large η

for nozzles flowing under favorable pressure in a convergent-divergent nozzle [9,10]. CFD was also
utilized to explore the external flow generation over several types of airfoils, such as the CH10 and
wedge, respectively [11]. Utilizing the CFD methodology, the flow control technique in a bluff body
was also discovered using a non-circular section in a front face and splitter plate [12].

Several Taguchi designs, response surface methods (RSM), and soft computing approaches have
been implemented to determine the level of accuracy and reliability. A study regarding wind tunnel
adjustments with variable throat diameters was conducted by Cameron et al. [13] by implementing
an operational algorithm. This algorithm was optimized with the genetic algorithm (GA) [14], and
the outcomes were matched to those produced with a standard PID controller. CFD simulations
were used to construct input-output correlations for recirculation zone length in suddenly expanded
flows using a Mamdani-based fuzzy logic technique [15]. The technique included multiple membership
functions, and the operating variables were M, η, and expansion corners. The CFD findings indicated
that the flow field near the corner vertex was composed of several elemental features. The Triangular
function fared the best, having the least uncertainty rate of 9.0705%. Quadros et al. [16] predicted β

from suddenly expanded flows using CFD and artificial neural networks (ANN). CFD simulations
for different parameters and configurations using the Taguchi-based L27 orthogonal array were
used to construct the dataset for training, testing, and verification. M, η, and α were the three
input parameters. For optimization, the Levenberg-Marquardt technique was used. The findings
demonstrated that the ANN could efficiently forecast β with an R2 ≥ 0.97 and an RMSE = 0.0032.
Abid et al. [17] employed the design of experiments to optimize β by performing trials for different
values of M, η, and γ . The studies were carried out using the L9 orthogonal array, and linear regression



4 CMES, 2023

equations for β as a function of M, η, and γ were created. The experimental findings were verified
through CFD simulations. The regression models were validated by random experimental test cases.
Based on available findings, the regression models were effective and quite close to the experimental
β. Afzal et al. [2] implemented the RSM, clustering, and forest regression techniques to study the
influence of M, η, α, and γ on β and wall pressure. The experimental values of M, η, α and γ

were varied to determine the output. The RSM analysis indicated that once the η increased, the β

decreased as the flow transitioned from over to correct expansion. The introduction of microjets did
not affect the wall pressure. According to the clustering analysis, the parameters of the lower range
had a greater influence on the β values. The random forest technique predicted both β and wall
pressure appropriately. Back propagation neural network (BPNN) models [18] were used to estimate
pressures at supersonic flow (Afzal et al. [19]). The analysis accounts for variations in η, α, and γ .
The most substantial effect of η on β was identified by visual analysis of the data. The BPNN 5 and
BPNN 6 models successfully predicted the pressures of the study. Moreover, numerous soft computing
approaches were performed to predict high-speed flow control from suddenly expanded ducts and such
studies proved to be a cost-saving and energy-efficient approach in this field [20–23].

In a suddenly expanded flow process, a sudden change in the cross-sectional area of the flow from
the nozzle to the expanded duct, creates massive changes in velocity and pressure of flow. The dynamics
of the flow are dependent on a number of factors that include, M, η, α, γ , etc., and analyzing these
factors experimentally is quite complicated [16]. The implementation of cavity/cavities in the expanded
duct also creates significant changes in the flow field, and has not been explored much previously. All
these factors are critical for creating an optimal design of a suddenly expanded flow process, and
can maximize or minimize the base drag. Analyzing such studies experimentally becomes challenging
and time consuming, as parameter variation becomes a laborious process. Additionally, although
numerical simulations can predict the behavior of suddenly expanded flows, turbulence modelling at
the nozzle-duct interface becomes a challenging area due to random fluctuations that result in changes
in pressure and velocity. Apart from this, the resolution and stability of the numerical scheme also plays
a vital role in determining the accuracy of the numerical model. Considering the issues addressed, and
vast amount of data available on experimental and numerical suddenly expanded flows, there is a high
potential of implementing the artificial intelligence-based algorithms to model complex fluid systems,
due to their ability to capture both linear and non-linear relationships with different parameters of
the flow process. These techniques have the ability to handle high dimensional data involving multiple
input variables, which otherwise becomes difficult using traditional methods.

Based on the literature cited above, the authors found numerous works that apply different neural
network computational techniques on suddenly expanded flows. Also, techniques such as, genetic
algorithm and particle swarm optimization in different forms have been applied to similar fluid
flow problems. The regression co-efficients (R2) obtained in literature were ≥0.9 that re-affirm the
application of such techniques to our study. The previous studies however, used a combination of
not more than three input parameters, while our study considered four different input parameters.
In this regard, the authors also found no research in supersonic expanded flows that specifically
implemented the PCA, BAS, and PCA-BAS-ENN analysis algorithms. Additionally, work on base
pressure with cavity for supersonic flows is hardly reported. Due to these reasons, the techniques
mentioned above are found to be appropriate in analyzing such a flow process. Therefore, this study
investigates to evaluate the effect of the suddenly expanded flow variables on the two responses (β and
βcav), and determine the ideal operational settings. Here, the PCA method performs a dimensionality
reduction on the appropriate measured data from β. The second method, known as PCA-BAS-ENN,
optimizes the Elman neural network (ENN) using the beetle antennae search algorithm (BAS) to
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create a β preset model. The next step is to assess and confirm the models’ accuracy and expected
results. The analysis findings demonstrate the best neural network models, which could be extensively
applied in the present β model, in terms of prediction accuracy and performance. Finally, the model
that significantly reduces the different order β deviations is determined, according to industry field
applications. Ultimately, the best solution developed is effectively confirmed in industrial application,
validating the reliability and applicability of the experimental study results. As a result, the following
are the primary contributions of the following study: (i) selection of flow and geometric parameters
to resolve reduction of energy expenditure in vehicle aerodynamics (by minimizing base drag), as well
as advancement of the financial and operational aspects; (ii) structured and objective optimization of
the supersonic flows in the presence of contradictory constraints. The application of such computing
techniques for prediction of base pressure as demonstrated in this work will help researchers evaluate
the performance characteristics of a suddenly expanded flow process with multiple number of input
configurations with higher accuracy. This technique will reduce time consumption and expensive tests
that let decision-makers discover the combination that delivers the best performance.

2 Experimental Setup

The flow process to be explored experimentally is shown in Fig. 1. Figs. 2 and 3 provide a
schematic representation of the experimental setup for determining β and βcav, respectively. For βcav, a
single annular cavity having an equal width and depth of 3 mm was accommodated within the duct, to
passively control the β. This pressure at the base obtained in the duct is termed βcav. The two essential
features of the experimental apparatus are as follows: a flow device with compressors and storage tanks
and an external flow apparatus. A control segment, which typically comprises a pressure-controlling
valve and a throttling valve, supplies high-pressure air to the settling chamber. The throttle supplies the
settling chamber with the necessary air. A slot holder connects the settling chamber’s terminal to the
nozzle. This configuration comprises a little pipe-like attachment with an O-ring to restrict leaking.
Sudden discharge through the nozzle runs through three pipes having diameters (D) of 18, 22, and
25 mm, which are linked to the nozzle exit at the same time. The above three diameters, which are
used in our research, approximate α = 3.25, 4.75, and 6.25. The exit diameter of all nozzles is set at
d = 10 mm. The settling chamber generates the stagnation pressure (Po) required to develop η of 3, 7,
and 11 for the current inquiry. Throughout the test, laboratory air pressure was also monitored with
a barometer. The operating characteristics are detailed in Table 1.

Figure 1: Characteristics of a suddenly expanded flow process
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Figure 2: Experimental set up for determing β

Figure 3: Experimental set up for determining βcav

Table 1: Levels and parameters of control parameters

S. I. No. Control parameters Levels of the parameters

Low (−) Medium (0) High (+)

1. M 2.0 2.5 3.0
2. η 3 7 11
3. A 3.25 4.75 6.25
4. γ 3 6 9

2.1 Response Measurements
Nozzles having exit Mach values of 2.0, 2.5, and 3.0 were constructed for the proposed study. The

nozzles’ exit Mach numbers were optimized utilizing isentropic relations by Genick [24]. A 1.5 mm
thick brass tube was used to fabricate the duct. At the preliminary phase of the experiments, the
diameter and length of the duct were maintained at a pre-requisite value. After obtaining the necessary
readings for the preceding γ , the duct was partitioned progressively at γ = 9, 6, and 3. In this study,
the β was determined by installing pressure taps at strategic points (see Fig. 3). To estimate β and βcav,
eight holes were drilled across the flange. The diameter of these taps was 0.5 mm and was manufactured
of stainless steel. A sensor was used to monitor the pressure changes in the duct. The transducer was
attached to a PC operating with Lab VIEW software. The transducers had a 0.15% accuracy range. The
results of this study were acquired through repeated experiments. The accuracy and reproducibility of
the recorded pressure data were both within ±2% and ±3% amidst major alterations.
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3 Design of Suddenly Expanded Flow Preset Model
3.1 Elman Neural Network

J. E. Elman suggested introducing a context layer to a feedforward NN to create a one-step
postponement manipulator for transitory memory functions, for the NN to respond to time-varying
features, thereby improving network stability. The network might then be utilized to tackle quick
optimization-seeking challenges that effectively represent the properties of compelling process systems,
giving rise to Elman NN [25,26]. The Elman NN is partitioned over four layers: the input layer (IL),
the hidden layer (HL), the context layer (CL), and the output layer (OL) (Song et al. [27]). Here, ωinput,
ωoutput, and ωcontext, are the weights between the IL and HL, HL and OL, and OL and CL, respectively.
bhidden and boutput represent the threshold values for the HL and OL, respectively. The non-linear state
space expression is given as:

μ(k) = S
[
ωcontextμc(k) + ωinputx(k − 1) + bhidden

]
(1)

μc(k) = μ(k − 1) (2)

y(k) = G [ωoutputμ(k) + boutput] (3)

where, x(k − 1), μc(k), μ(k) and y(k) represent the vectors for IL, CL, HL, and OL, respectively. S(·)
and G(·) represent the transfer functions of the HL and OL neurons, respectively. HL used the sigmoid
function, as seen in Eq. (4). The Elman NN comprises of a learning indicator that implements the error
sum of squares, according to Eq. (5) (Jiang et al. [28]):

S(x) = 1
1 + e−x

(4)

E(k) =
n∑

k=1

[
ypre(k) − ydes(k)

]2
(5)

ypre and ydes represent the predicted and the desired output, respectively. Song et al. [27] clearly
showed the training and prediction approach process flow of Elman NN. The Elman NN is trained
and forcasted using the past data. It is a dynamic feedback network that can automatically review,
store, and utilize prior output information. It is capable of both static system modeling and dynamic
system mapping, as well as instantly responding to the dynamic properties of the system. In regards
to processing efficiency and network reliability, it outperforms the BPNN.

3.2 BAS Algorithm Optimizing the ENN (BAS-ENN)
Jiang et al. [29] introduced the BAS algorithm, an intelligent optimization method. The BAS

algorithm simulates the natural foraging activity of beetles. When hunting for food, its distinct odor
draws the beetle’s attention to it. The two antennae of the beetle can smell food through the air, and
the strength of the smell they pick up changes depending on how close the food is to them. While the
feed is positioned on the left end of the beetle, the left antennae are better able to identify odors than
the right antennae. According to the variation in attention observed by the two tentacles, the beetle
moves arbitrarily towards the end with stronger intensity. As demonstrated in Wang et al. [30], the
position of the food was eventually discovered by repetitive iterations [31].

The beetle is modeled as a parameter that receives input in an n-dimensional space and to compute
values, it chooses locations close to oneself based on multiple values obtained throughout either side
of the multi spatial domain to obtain the optimal global value. The simplified model was shown in
Wang et al. [30].



8 CMES, 2023

• Two antennae are located on either ends of the simplified center of the beetle head.

• The ratio of the movement of a specific beetle (s) spacing separating two beetle antennae (d0),
is given by Eq. (6):

c = s
d0

(6)

• The positioning of the beetle’s head upon approaching the next place from the existing position
is random.

The following are the stages of the BAS algorithm:

1. Create and standardize a T-dimensional random vector of the beetle’s original direction
(Wei et al. [26]) as seen in Eq. (7):

�e = rand(T , 1)

‖rand(T , 1)‖ (7)

where rand(·) is the random function, T is the spatial dimension of the antenna of the beetle, and �e is
the current position of it.

2. At the ith iteration, beetle takes the coordinates as stated by (Lin et al. [32]):{
xleft

i = xcenter
i − (d0 × �e)

xright
i = xcenter

i + (d0 × �e) i = 0, 1, 2, 3, 4 . . . . . . n (8)

xcenter
i , xleft

i , and xright
i are the locations of the simplified center, at the ith iteration, respectively.

3. The intensity of the food odor is determined by the estimated value of the orientation of the
beetle antennas; the next travel direction is then modified (Yue et al. [33]):

xcenter
i+1 = xcenter

i − li × �e × sign
[
f

(
xright

i

) − f
(
xleft

i

)]
(9)

fitness = MSE = 1
N

N∑
j=1

(
ypredict

j − ydesire
j

)2
(10)

Here, li is the step factor, f
(
xright

i

)
and f

(
xleft

i

)
are the right and left fitness function values for the

ith iteration, sign(·) is the determinant function, fitness is the fitness function (FF), ypredict
j and ydesire

j are
network predicted and real values of the model for the jth sample.

4. As we use the step factor li to regulate the dimensionality of the beetle antennae to prevent
the problem of local minima, the primary action was to select a sizable value to make the beetle
antennas move beyond the local minima in the beginning phase itself. li must diminish as the search
time progresses, and Eq. (11) is as follows:

li+1 = li × δS (11)

δS represents step decay coefficient and its value ranges from 0 to 1.

The BAS-ENN algorithm is eventually established based on the theories presented above, as
illustrated in Fig. 4. The following are the steps:

Step 1: Compute the Elman NN model’s topology and dimensional vector. Assume the suggested
model is I-H-O. The neuron numbers in the model’s IL, HL, and OL are denoted by I , H, and O,
respectively. Eq. (12) is used to compute H, where is α value in the range [0–1] [30]. The weights of the
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Elman NN’s I-H-O, as well as the commencement of every individual neuron, generate a dimensional
vector Sspace, which is computed by Eq. (13):

H = √
I + O + α (12)

Sspace = IH + HO + H + O (13)

Figure 4: BAS-ENN algorithm flow chart

Step 2: Set up the BAS algorithm’s settings. Calculate the spacing d0 between the either ends of the
antennae of the beetle, the starting step size δ, the utmost iterations n, the learning goal convergence
error c, then generate a random vector configurations using Eq. (7).

Step 3: Compute the FF and its value. As demonstrated in Eq. (10), the RMSE of the training
dataset is utilized based on the FF criterion, and the FF value is determined.

Step 4: Updating the beetle location. Initially, using Eq. (8) the positions of the beetle’s antennae
are calculated, and the fitness values of the antennae’s, i.e., f

(
xright

i

)
and f

(
xleft

i

)
are then determined

using Eq. (10). By comparing both values, the simplified center location xcenter
i is updated using Eq. (9).

This automatically adjusts the weights of the ENN, updates the dimensions of the solution, and
determines the current coordinates of the FF.

Step 5: Stop the judgment by iterating. Evaluate if the fitness function value is accurate enough.
If a significant level of accuracy is obtained after the completion of iterations, proceed over to Step 6;
if not, Step 4 is repeated.
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Step 6: Model training and optimal solution creation. The optimum initial weights and thresholds
for Elman NN training are found once the BAS algorithm finishes iterating, and this response is used
to train the Elman NN until the model’s training accuracy is reached.

Step 7: A unique test set is used to forecast the model to be trained.

The trained model forecasts for the fresh test set. The calculations are performed for this specified
test set, and the findings obtained are output.

3.3 Base Pressure Prediction Based on the PCA-BAS-ENN Model
According to the literature, the parameters influencing the suddenly expanded flow process are

numerous and complicated. However, in the flow process, M may be selected before experimentation.
η, α, γ , and cavity dimensions in the expanded flow process are the other important parameters.
Table 1 summarizes the control parameters of the model. For training and testing, data were generated
using the Box-Behnken Design (BBD) of response surface methodology (RSM) as shown in Table 2.
A MATLAB software was used for this purpose. In response surface methodology (RSM), multiple
factors and their interactions are taken into consideration using different experimental designs such
as, central composite design (CCD), and Box-Behnken design (BBD), etc. [34]. These designs plan
the number of experiments according to the number of parameters and their levels, and as a result
develop non-linear regression equations. A statistical Minitab software is used for this purpose. For
our study, the BBD was found suitable as per (Quadros et al. [34]). The experimental data have been
used to generate nonlinear regression equations that create huge amounts of data required for training
and testing. The non-linear regression equations indicate the distribution of the distinctive factors and
variables that influence the β to a certain degree.

Table 2: Experimental input and output as per BBD

S.I. No. Operating conditions Output responses

M η A γ β βcav

1. 2.0 3 3.25 3 0.75 0.72
2. 2.0 7 4.75 3 0.82 0.78
3. 2.0 11 6.25 3 0.78 0.78
4. 2.5 11 3.25 3 0.91 0.85
5. 2.5 7 4.75 3 0.63 0.66
6. 2.5 3 6.25 3 0.71 0.66
7. 3.0 11 3.25 3 0.52 0.49
8. 3.0 3 4.75 3 0.45 0.44
9. 3.0 7 6.25 3 0.38 0.35
10. 2.0 3 3.25 6 0.66 0.59
11. 2.0 7 4.75 6 0.71 0.73
12. 2.0 11 6.25 6 0.44 0.42
13. 2.5 11 3.25 6 0.49 0.46
14. 2.5 7 4.75 6 0.32 0.30
15. 2.5 3 6.25 6 0.58 0.55
16. 3.0 11 3.25 6 0.69 0.62

(Continued)
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Table 2 (continued)

S.I. No. Operating conditions Output responses

M η A γ β βcav

17. 3.0 3 4.75 6 0.75 0.70
18. 3.0 7 6.25 6 0.91 0.89
19. 2.0 3 3.25 9 0.61 0.54
20. 2.0 7 4.75 9 0.35 0.33
21. 2.0 11 6.25 9 0.40 0.37
22. 2.5 11 3.25 9 0.55 0.52
23. 2.5 7 4.75 9 0.62 0.58
24. 2.5 3 6.25 9 0.93 0.86
25. 3.0 11 3.25 9 0.84 0.80
26. 3.0 3 4.75 9 0.50 0.47
27. 3.0 7 6.25 9 0.35 0.32

The actual β values developed from the nonlinear regression equation for different cases exhibit
a chaotic distribution, thereby projecting that the data used for developing a model to predict β for
such a flow process is accurate enough. The β results from the regression equation (see Eqs. (14a) and
(14b)) were accurate upto ±7.45%. There would inevitably be some poor data points since most of the
process parameters tend to vary in the regression equation. To enhance the model’s forecasting skills,
this study applies the Pauta criteria to remove the erroneous data elements from the observed dataset
in the manner shown in Eqs. (15)–(17).

(β) = −0.239 + (0.205 × M) − (0.191 × η) − (0.378 × α) − (0.252 × γ ) + (0.0506 × M2)

+ (0.00805 × η2) − (0.03458 × α2) + (0.02815 × γ 2) + (0.03770 × M × η)

− (0.03901 × M × α) − (0.02351 × M × γ ) − (0.02005 × η × α) + (0.00789 × η × γ )

− (0.00450 × α × γ ) (14a)

(βcav) = −0.250 + (0.121 × M) − (0.134 × η) − (0.401 × α) − (0.301 × γ ) + (0.0492 × M2)

+ (0.00768 × η2) − (0.04591 × α2) + (0.03120 × γ 2) + (0.02908 × M × η)

− (0.04919 × M × α) − (0.03658 × M × γ ) − (0.03129 × η × α) + (0.00891 × η × γ )

− (0.00711 × α × γ ) (14b)

|xi − μ| > 3σ (15)

σ =
√√√√1

n

n∑
i=1

(xi − μ)
2 (16)
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μ = 1
n

n∑
i=1

xi (17)

The confidence intervals [μ − 3σ , μ + 3σ ] are the projected ranges of all the control parameters
represented by μ and σ of the dataset, therefore excluding the samples referring to data beyond the
interval. The five-spot triple smoothing approach was then used to smooth the regression dataset by
Deng et al. [35]. Fig. 5 displays the smoothed findings partially.

Figure 5: Five-spot triple smoothing

4 Results and Discussion
4.1 Base Pressure Analysis

Before the NN analysis, we must understand the behavior of base pressure for the different
parameters. For this purpose, variation of β w.r.t. M, η, α, and γ has been studied thoroughly. The
experimental results were normalized with atmospheric pressure. Fig. 6a shows the variation of β

and the influence of cavity on β for a changing γ , for different values of η. It is observed that β

decreased significantly as η increased, and marginally reduces for increasing γ . For the current range
of η implemented, the flow for Mach 2.0 was correctly expanded and over-expanded for Mach 2.5
and 3.0. For nozzles that are over-expanded, the pressure gradient is always adverse, which tends
to decrease β for an increasing η. This trend is seen in Fig. 6a, that shows the β variation for a
constant Mach of 2.5. The over-expansion increases with increase in Mach numbers, and the flow
exiting the nozzle duct interface possesses an oblique shock. This causes wave motions across the flow
area that eventually makes the flow field oscillatory [8]. As η is increased, the flow tends to become
under-expanded reducing the level of over-expansion, and the nozzle experiences an improved pressure
difference leading to a decreasing trend in β.

It is important to note that, a higher value for β is observed when the α is high as seen in Fig. 6b.
The relief available for the flow to recirculate (Fig. 1) is generally dictated by α. As α increases,
development of powerful suction at the base takes place for a fixed intensity of the primary vortex. This
primary vortex intensity apparently regulates the pressure in the base region. It creates a low pressure
region at the base, prior to the flow reaching its reattachment point causing influx of additional flow
from the walls into the base region [1]. The additional flow developed captures the base region causing
the main the flow to get disturbed. This diminishes the intensity of the primary vortex. This reduction
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causes the β levels to increase to an extent such that, any additional mass incurrance would not be
possible into the base region [8]. Therefore, effectiveness of the vortex is reduced, thereby increasing
β. The induction of a cavity into the expanded duct showed that the level of β significantly decreased
for all cases of the current study. As per Vijayaraj et al. [6], inducing a cavity or rib generates secondary
vortices within the duct. These secondary vortices influence mixing, making the flow field oscillatory,
thereby modifying the strength of the primary vortex [1]. As a result, β is reduced to a significant level.

Figure 6: Variation of β w.r.t., (a) γ ; (b) M

The model contains multiple input parameters, as indicated in Table 1, and these parameters are
interconnected. Assume that these are the input variables for explicitely constructing the β preset
model. In that condition, the number of model operations would rise, as will the forecast inaccuracy,
resulting in the phenomena known as ‘dimensional disaster’. Fig. 7 depicts the computation results,
which demonstrate that the combined significance of the initial 45 principal elements reaches 88.90%
(commonly, a cumulative significance rate greater than 85% is preferred), so the initial 45 principal
elements are chosen to substitute the existing parameters as fresh input variables to establish the β

preset model.

4.2 Performance Analysis of Models
To evaluate the performance of various algorithms on the β presetting model, the GA-BP and

PSO-BP algorithms are compared with the PCA-BAS-ENN under identical data settings. Numerous
results for β were developed using the regression equation that was utilized in all three NN models, and
the results are shown in Table 3. Here, T is the highest time required for training, a is the convergence
precision, S is the population size, l is the learning rate, Pc is crossover probability, i is maximum
iterations, c1 and c2 are the learning parameters that have the highest and lowest levels, respectively,
Pm is the mutation probability, v is the highest velocity of the particle, δs and d0 are defined earlier in
Eqs. (11) and (6), respectively.
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Figure 7: Five-spot triple smoothing

Table 3: Various models with their parameter settings and values

Type of model Values of specific parameters

GA-BP T = 600; a = 1 × 10−3; l = 1 × 10−2; S = 50; Pc = 5 × 10−2; Pm = 7 × 10−2; i = 75
PSO-BP T = 600; a = 1 × 10−3; l = 1 × 10−2; S =150; i = 250; c1 and c2 = 2.5; v = 1
PCA-BAS-ENN T = 600; a = 1 × 10−3; l = 1 × 10−2; S = 150; i = 100; δ = 5; δs = 0.90; d0 = 0.6

Meanwhile, three performances of MAE, MAPE, and RMSE are chosen as the performance
criteria in this paper to extensively and categorically analyze the predictive performance and compu-
tational efficiency of each model mentioned above. The formulae are presented below in Eqs. (18)–(20)
(Song et al. [27]):

MAE = 1
n

n∑
i=1

∣∣ypre
i − yact

i

∣∣ (18)

MAPE = 1
n

n∑
i=1

∣∣∣∣ypre
i − yact

i

yact
i

∣∣∣∣ × 100% (19)

RMSE =
√√√√1

n

n∑
i=1

(
ypre

i − yact
i

)2
(20)

where, ypre
i and yact

i are the predicted and actual values. Table 4 displays the efficiency of the above three
models’ training and testing sets for β prediction results. Depending on the values obtained in Table 4,
Fig. 8 depicts the error differences of MAE, MAPE, and RMSE, respectively.
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Table 4: Error comparison for all three models

Type of errors Models Training data Testing data

β βcav β βcav

MAE Model 1 3.107 3.513 4.210 4.310
Model 2 3.102 3.870 3.824 4.050
Model 3 2.787 3.115 3.007 3.355

MAPE (%) Model 1 1.656 4.255 2.257 5.334
Model 2 1.355 4.410 2.120 4.995
Model 3 1.267 3.850 2.088 4.550

RMSE Model 1 4.008 4.556 5.552 5.595
Model 2 4.123 4.865 5.345 5.151
Model 3 3.995 4.445 4.395 4.858

Note: Model 1 (GA-BP); Model 2 (PSO-BP); Model 3 (PCA-BAS-ENN).

From Table 4 and Fig. 8, the following points may be concluded: On the training set, the PCA-
BAS-ENN models’ three error indicators for predicting β are much lower compared to the rest of the
models. When comparing the PSO-BP model to the GA-BP model, the precision of the former model
was high for predicting β, whereas the latter had a better ability to predict βcav. In comparison to the
GA-BP model, the test data points were close to the PSO-BP model for all the β prediction indicators.
All in all, the GA-BP model performed poorly and was unstable. In both the training and testing data
sets, the performance of the PCA-BAS-ENN model is best when compared to the other two models.

The primary reason for the poor performance of the GA-BP model (Fig. 8) in prediction of β

was mainly due to the fact that, the GA-BP model has the tendency to get stuck at local minima.
Here, the model converges to a suboptimal solution beyond which, it cannot progress further to find a
better solution. This problem occurs due to improper tuning of the GA-BP parameters [27]. Parameter
tuning is challenging process as it requires significant expertise and experimentation. Additionally, the
GA-BP model predominantly relies on the combination of genetic algorithm and back propagation
algorithm. The weights and baises of the model tend to get optimized automatically, leading to
inaccurte predictions. On the other hand, the PCA-BAS-ENN model performed best as it executed
multiple functions that include, reduction of dimensionality of input data by transforming variables
into tiny principal components undertaken by PCA, optimization of NN parameters that lead to faster
convergence and better performance by BAS (which is an algorithm based on hunting behavior of
ant lions); the ENN uses the hidden layer to otimize the training process. The PSO-BP model that
performed slightly better than the GA-BP model especially for the testing data, is a global optimization
model that has the ability to find the global minima without getting stuck at local minima [28,29].
Therefore, it performed better with more accurate predictions.
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Figure 8: Error comparison of the three models. (a–c) for β; (d–f) for βcav

4.3 Comparison of the Prediction Results of All Three Models
Fig. 9 shows the comparison of performance prediction of all three models for the testing data set.

Each models’ performance is determined by the set of data points that fall within the three-error band
(TEB), which represents an absolute error of ≤0.05. An increase in the number of data points that fall
beyond the TEB indicates the poor performance of the model. From Figs. 9a–9c, the absolute error
for prediction of β by the ENN model is the best as only three of its data points lie beyond the TEB.
Quite a few deviation points have been observed to lie outside the TEB for the PSO-BP and GA-BP
models, thereby reducing their prediction ability significantly. From Figs. 9d–9f, the comparison led
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to the same conclusions. Overall, it can be thoroughly construed that the PCA-BAS-ENN model had
the best prediction ability for β, closing in with its actual value.

Figure 9: Comparison of performance prediction for all the three models. (a–c) for β; (d–f) for βcav
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The hybrid PCA-BAS-ENN model as seen in Figs. 9a and 9d achieves a low training error due to
less deviation, indicating that the model fits the training data very well. The ability of the PCA-BAS-
ENN model to perform well in the TEB is due to its robustness and generalization ability. The models
ability to reduce input variable dimensionality [27], optimize parameters using the BAS algorithm,
and handle various other noise and outliers are the primary reasons that make it a powerfull tool to
forecast the β and βcav for a supersonic suddenly expanded flow process.

The frequency distribution of the absolute error has been presented in Fig. 10. This type of
frequency distribution is plotted as an x-y plot wherein, x-axis represents the absolute error value
and y-axis represents the frequency of each error. The model here is said to perform well when its
distribution is centered around zero with relatively few errors of high magnitude. Similarly, the model
performs poorly when the distribution is spread and sees larger errors of higher magnitude. It can be
seen that the errors associated with the PCA-BAS-ENN model prediction are highly pronounced in
the 0 range. This is primarily due to reduction of dimensionality of the input data, that moderates
the complexity of the data leading to a faster training process [27]. This signifies that there are less
significant prediction error samples in this model in comparison to the other two models, thereby
confirming that the model is highly secure, balanced and error-tolerant.

Figure 10: Frequancy distribution of asbsolute errors for (a) β, and (b) βcav

The theoretical β in missiles and projectiles and combustion chambers as a part of practical
field application is determined through the uncertainty analysis. This analysis is developed based
on values of control pressure and exit pressure that are required for the functioning of an actual
aerodynamic problem [3,8]. This is performed to validate the positive influence of the model with
the best prediction ability, suggested in this study. The comparison of β accuracy before and after
optimization in a suddenly expanded axisymmetric duct is shown in Fig. 11. The results show a
significant improvement in the average β deviation from 93.655% to 95.590%, which eventually
improves the β control deviation. According to the β data obtained, we compared the second-order
and the fifth-order base pressure targets and determined the RMSE for comparison.

(RMSE)2 =
√√√√ n∑

j=1

(
Ba

2n − Bg
2n

)2
/n (21)

(RMSE)5 =
√√√√ n∑

j=1

(
Ba

5n − Bg
5n

)2
/n (22)
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Figure 11: Comparison of base pressure values for varying model settings

Here, n is the sample number, Ba
2 and Ba

5 are measured β values of 2nd and 5th order Mach numbers,
respectively; Bg

2 and Bg
5 are target β values of 2nd and 5th order Mach values, respectively; δ2 and δ5 are

RMSE of 2nd and 5th order measured β values, respectively. As per Fig. 12, for the same Mach value,
the average δ was 0.396 and 0.477 for the 2nd and 5th order β, respectively. After the application of
the PCE-BAS-ENN model, the average RMSE for the 2nd and 5th order base pressure was 0.341 and
0.393, respectively. This means that the average RMSE reduced by 0.055 (13.88%) and 0.084 (17.61%),
respectively.

Figure 12: Comparison of base pressure for different models. (a) 2-order, (b) 5-order

5 Conclusions

Supersonic expanded flow process has been found to be very handy in regulating the base drag of
aerodynamic vehicles. Numerous experimental and numerical investigations carried out by researchers
previously, supported the implementation of internal modifications in the abruptly expanded duct in
order to achieve favourable performance characteristics. However, analyzing such flows for a number
of input parameters becomes time-consuming, challenging, and expensive. In this regard, the use
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of machine learning models in non-linear fluid flow problems still remains unexplored. Therefore,
the current study developed a data-driven forecasting model by employing the PCA and BAS-ENN
algorithms to determine the optimal setting of β in a suddenly enlarged flow process. The experimental
examination along with the NN analysis in this work led to the following results:

• β reduces considerably for increasing η and marginally reduces for increasing γ due to the
production of an oblique shock that causes the flowing nature to be wave-dominated.

• The induction of a cavity into the expanded duct decreased β significantly, due to the introduc-
tion of secondary vortices, that make the flow field oscillatory.

• Under identical settings, the PCA-BAS-ENN model was compared to the other two algorithms,
for determining β, and it was discovered that the former has the best forecasting performance
and accuracy. This machine learning algorithm is efficient in estimating β, while ignoring the
constraints of the GA, like inadequate local search capabilities, early maturity, and deficient
model efficiency due to genetic variation randomness; it also excludes the drawbacks of the
BP NN algorithm, such as slowness of calculation and the simplicity of slipping into localized
extremes.

• Upon having integrated with the PCA-BAS-ENN model, the practical field implementation
displays that the average β deviation increased from 93.655% to 95.590%, which eventually
improved the β control deviation. The average δ between the 2nd and 5th order β was reduced
by 0.055 (13.88%) and 0.084 (17.61%), respectively. This finding suggents that effectiveness of
control management is good following the use of the new β preset models.

• All the machine learning models of the present study for β and βcav have shown the ability to
predict the data successfully. Mathematical modelling is very complex for such type of research
due to the data being highly non-linear. Such algorithms could be used to deal with several fluid
flow problems of this kind. In the current study, the models employed will help aerodynamic
engineers forecast the inception and advancement of base drag across a high-speed aerodynamic
vehicle without the use of any experiments or simulation. This would eliminate the necessity of
any prior insight or expertise of the flow process. Ultimately, this would result in less use of
energy and material, also excluding the method of trial and error generally used to determine
the optimal combination of process parameters that control base drag.
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