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ABSTRACT

A numerical approach has been used to analyze the effects of homogeneous-heterogeneous reaction and nonlinear density temperature variation over
a vertical plate in an incompressible micropolar fluid flow saturated Darcy porous medium. In addition, convective boundary condition is incorporated
in a micropolar fluid model. The similarity representation for the set of partial differential equations is attained by applying Lie group transformations.
The resulting non-dimensional equations are worked out numerically by spectral quasi-linearization method. Less temperature and wall couple stress
coefficient, but more velocity, skin friction, species concentration, and heat transfer rate are noticed by enhancing the nonlinear convection parameter.
It is also observed that as the strength of homogeneous and heterogeneous reaction parameters increases, the species concentration and mass transfer
rate reduces.

Keywords: Non-linear convection, Convective boundary condition, Micropolar fluid, Homogeneous-heterogeneous reactions, Porous medium, Spec-
tral quasi-linearization method.

1. INTRODUCTION

The analysis of convective transport in porous media has been a topic of
continuing interest in the past decades due to its significance in various
engineering, scientific and industrial applications like air conditioning of
a room, moisture transport in thermal insulation, solar energy collect-
ing devices, petroleum industries, material processing, cooling of molten
metals, etc. Darcy’s law is a linear empirical relationship between the
Darcian velocity and the pressure drop across the porous medium and it
is valid for slow flows with low permeability in porous media. The liter-
ary work relevant to the convective heat and mass transfer phenomenon in
porous medium can be found in the books by Vafai (2000); Ingham and
Pop (2005); Nield and Bejan (2013). Many researchers combined these
analysis with non-Newtonian fluids, but most of them cannot explain the
rotation of fluid particles and its rheological behaviour. Thus, Eringen
(1966) introduced the micropolar fluids subset of micromorphic fluid the-
ory, and they exhibit the microrotation and micro-inertia effects. Further,
they simulate the flow attributes of animal blood, haematological suspen-
sions, geomorphological sediments, liquid crystal, colloidal suspensions
etc. A comprehensive review of theory and applications of micropolar
fluids can be presented in the books by (Lukaszewicz, 1999; Eremeyev
et al., 2013). The analysis of free convection flow of micropolar fluids
in porous medium has been investigated by many researchers with differ-
ent analysis, (Singh, 2013; El-Kabeir and Gorla, 2007; Beg et al., 2007;
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Srinivasacharya and RamReddy, 2013; Pal and Chatterjee, 2015), etc.

Several investigators extended their work with chemical reactions
due to its immense practical applications in engineering and science.
Chemical reactions can be divided as homogeneous and heterogeneous
reactions. Homogeneous reaction occurs uniformly throughout a given
phase while heterogeneous reactions arises in a particular area or at phase
boundaries. So, these reactions depend on phase interface. The influence
of homogeneous and heterogeneous reactions in chemically reacting sys-
tem arises in catalysis, combustion and bio-chemical system. Merkin
(1996) discussed homogeneous-heterogeneous reaction model in bound-
ary layer flow in which cubic autocatalysis represents the homogeneous
reaction and the heterogeneous reaction by a first-order process. The ef-
fect of homogeneous-heterogeneous reaction in a nanofluid flow towards
a porous shrinking/stretching sheet has been investigated by (Kameswaran
et al., 2013). (Shaw et al., 2013) analyzed the incompressible micropolar
fluid flow over a stretching or shrinking sheet with the influence of perme-
ability and homogeneous-heterogeneous reactions. (Nandkeolyar et al.,
2014) studied the effects of external magnetic field, internal heat gener-
ation and homogeneous-heterogenous reaction on water based nanofluid
flow over a stretching surface. (Hayat et al., 2015a) analyzed stagna-
tion point flow of carbon nanotubes induced by an impermeable stretch-
ing cylinder with homogeneous-heterogeneous reactions and Newtonian
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heating effects. The effect of Cattaneo-Christov heat flux in the stag-
nation point flow of Maxwell fluid towards a nonlinear stretching sur-
face with homogeneous-heterogeneous reactions has been examined by
(Hayat et al., 2016a).

The influence of nonlinear density temperature in the buoyancy force
term may exert a variation in flow and heat transfer characteristics owing
to the temperature difference between the ambient fluid and surface of the
plate becomes consequently large. The physical significance of nonlinear
thermal convection is of great interest owing to a wide range of applica-
tions in astrophysics, engineering, geophysics and industrial manufactur-
ing process such as doping processes, cooling of electronic components,
pore water convection near salt domes etc. Barrow and Rao (1971) dis-
cussed the variable thermal expansion coefficient effect on free convec-
tion flow. The study of natural convection flow embedded in a non-Darcy
porous medium with a temperature-concentration-dependent density re-
lation has been studied by Partha (2010). (Kameswaran et al., 2014)
presented the effect of thermophoresis on nonlinear convection flow over
an impermeable vertical wall in a Darcy porous medium. (Motsa et al.,
2014a) discussed the unsteady nonlinear convective flow caused by an
impulsive stretching sheet, and generated the numerical results with spec-
tral homotopy analysis method. (Shaw et al., 2016) studied the nonlinear
convection flow of nanofluid over a stretched surface with the effect of
momentum, thermal, and solute slip.

Most of the researchers showed attention to a great extent on heat
transfer problems related to the convective surface boundary condition.
It is more general and realistic, especially in various technologies and in-
dustrial operations such as material drying, transpiration, laser pulse heat-
ing, current carrying conductor cooled by ambient air, nuclear fuel rod
cooled by a liquid metal coolant etc[see (Hayat et al., 2015b, 2016c,d)].
The hydro magnetic boundary layer flow with heat and mass transfer
over a vertical plate in the presence of magnetic field and chemical re-
action with the convective boundary condition is scrutinized by (Gan-
gadhar et al., 2012). Yacob and Ishak (2012) investigated stagnation
point flow towards stretching or shrinking sheet in an incompressible mi-
cropolar fluid using convective boundary condition and presented dual
solutions for shrinking case but, for stretching case the solution is unique.
(Hayat et al., 2013) discussed the influence of convective boundary con-
dition on mixed convection stagnation flow of Maxwell fluid with radi-
ation. (Hayat et al., 2014) analyzed the effects of Joule heating and
thermophoresis in stagnation point flow of Maxwell fluid with convective
condition. (Chamka et al., 2014) studied the effects of viscous dissipa-
tion and magnetic field on free convection flow in a non Darcy porous
medium saturated with a nanofluid under convective boundary condition.
(RamReddy et al., 2015) analyzed the similarity solution of free convec-
tion flow of an incompressible micropolar fluid with convective boundary
condition using lie group transformations. (Waqas et al., 2016) inves-
tigated the influence of convective boundary condition on MHD mixed
convection flow of micropolar fluid towards nonlinear stretched sheet.
Micropolar fluid flow and heat transfer over an unsteady stretching sheet
subject to convective boundary condition has been discussed by (She-
hzad1 et al., 2016). (Hayat et al., 2016b) studied the MHD flow of third
grade fluid due to exponentially stretching sheet with convective bound-
ary condition.

From these works and literature survey, it conclude that the nonlin-
ear convection flow of micropolar fluid saturated Darcy porous medium
in the presence of homogeneous-heterogeneous reactions using convec-
tive boundary condition have not been investigated so far. This article
attempts to present the new similarity transformations and corresponding
similarity solution to the homogeneous-heterogeneous effect on natural
convection flow of a micropolar fluid saturated Darcy porous medium un-
der convective boundary condition in the presence of nonlinear dependent
temperature relation. The involvement of convective boundary conditions
for mathematical model becomes a slightly more complicated leading to
the complex interactions of the flow and heat transfer mechanism. Fur-

ther, numerical solution is obtained since the analytical solution is out of
scope for the current problem. Also, the influence important parameters,
namely, convective heat transfer, nonlinear convection, strength of homo-
geneous and heterogeneous reaction parameters on the physical quantities
of the flow, heat transfer rates are analyzed in different flow situations.

2. MATHEMATICAL FORMULATION

Consider the steady, two dimensional, laminar and incompressible mi-
cropolar fluid flow along a vertical plate embedded in Darcy porous medium.
The fluid flow is influenced by nonlinear convection due to nonlinear
temperature and density relation. The x-axis is chosen along the verti-
cal plate and y-axis is normal to the plate, as shown in Fig. (1). The
free stream temperature is T∞. Due to the convection, the plate is either
cooled/heated from a fluid of temperature Tf with Tf < T∞ related to a
cooled surface (opposing flow) and Tf > T∞ corresponding to a heated
surface (assisting flow) and respectively.

Fig. 1 Geometry of the Problem

Further, the following assumptions are considered in the present
analysis: (i) The porous medium is homogeneous and isotropic,(i.e., uni-
form with a constant porosity and permeability).
(ii) Except for the density variation prescribe by the Boussinesq approxi-
mation, the porous medium and fluid properties are constant.
(iii) The porous medium and fluid are in local thermodynamic equilib-
rium.
(iv) A simple homogeneous-heterogeneous reaction model exists as con-
sidered by Merkin (1996) in the following form :

A+ 2B → 3B, rate = kc a b
2

The single isothermal first order reaction on the catalyst surface

A→ B, rate = ks a

By employing these conditions and making use of the standard boundary
layer approximations, the governing equations for the micropolar fluid
Ahmadi (1976) are given by

∂u

∂x
+
∂v

∂y
= 0 (1)

ρ

ε2

(
u
∂u

∂x
+ v

∂u

∂y

)
=

1

ε
(µ+ κ)

∂2u

∂y2 + κ
∂ω

∂y
− µ

Kp
u (2)

+ ρg∗
[
β1(T − T∞) + β2(T − T∞)2

]
ρj

ε

(
u
∂ω

∂x
+ v

∂ω

∂y

)
= γ

∂2ω

∂y2 − κ
(

2ω +
1

ε

∂u

∂y

)
(3)
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u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2 (4)

u
∂a

∂x
+ v

∂a

∂y
= DA

∂2a

∂y2 − kc a b
2

(5)

u
∂b

∂x
+ v

∂b

∂y
= DB

∂2b

∂y2 + kc a b
2

(6)

where ω represents the microrotation component, u and v are compo-
nents of Darcy velocity in x and y directions respectively, κ is the vortex
viscosity, a, b are concentrations of the chemical species A and B, ρ rep-
resents the fluid density, T indicates the temperature,DA andDB are the
respective diffusion coefficients of species A and B, g∗ represents the ac-
celeration due to gravity,Kp, is the permeability, µ indicates the dynamic
coefficient of viscosity, β1, β2 are the coefficient of thermal expansion, j
is the micro-inertia density, α is the thermal diffusivity and γ is the spin-
gradient viscosity.

The boundary conditions are

u = 0, v = 0, ω = −n∂u
∂y
, −k ∂T

∂y
= hf (Tf − T ), (7a)

DA
∂a

∂y
= ksa, DB

∂b

∂y
= −ksa at y = 0

u = 0, ω = 0, T = T∞, a = a0, b = 0 as y →∞ (7b)

where, the subscripts w and ∞ indicate the conditions at the wall and at
the outer edge of the boundary layer respectively, hf is the convective
heat transfer coefficient, k is the thermal conductivity of the fluid, a0 is
a positive constant, ks is the rate constant, n is a material constant and
γ =

(
µ+

κ

2

)
j is assumed (for more details, see Ahmadi (1976).

3. NON-DIMENSIONALIZATION

Introducing the following non-dimension variables

x =
x

L
, y =

y

L
Gr1/4, u =

L

νGr1/2
u, v =

L

νGr1/4
v, (8)

ω =
L2

νGr3/4
ω, θ =

T − T∞
Tf − T∞

, h =
a

a0
, h1 =

b

a0

where Gr =
g∗βT0(Tf − T∞)L3

ν2
represents the Grashof number.

In view of the continuity equation (1), we introduce the stream func-
tion ψ by

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (9)

Using (8) and (9) into (2)-(6), we get the following momentum, angular
momentum, energy, and species A and B concentration equations

1

ε2

(
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2

)
− 1

ε

(
1

1−N

)
∂3ψ

∂y3
−

(
N

1−N

)
∂ω

∂y

− g∗β1(Tf − T∞)

ν2Gr
θ

(
1 +

β2

β1
θ(Tf − T∞)

)
+

1

DaGr1/2

∂ψ

∂y
= 0

1

ε

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
+

(
N

1−N

) (
2ω +

1

ε

∂2ψ

∂y2

)
= 0 (10)

−
(

2−N
2− 2N

)
∂2ω

∂y2

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− 1

Pr

∂2θ

∂y2
= 0 (11)

∂ψ

∂y

∂h

∂x
− ∂ψ

∂x

∂h

∂y
− 1

Sc

∂2h

∂y2
+K hh1

2 = 0 (12)

∂ψ

∂y

∂h1

∂x
− ∂ψ

∂x

∂h1

∂y
− δ

Sc

∂2h1

∂y2
−K hh1

2 = 0 (13)

In usual definitions, ν represents the kinematic viscosity, Pr =
ν

α
is the

Prandtl number, Da =
Kp

L2
indicates the Darcy number, K =

kca0
2L

νGr1/2

measure the strength of homogeneous reaction, Sc =
ν

DA
represents

the Schmidt number, δ =
DB

DA
is the ratio of diffusion coefficient and

N =
κ

µ+ κ
(0 ≤ N < 1) indicates the Coupling number [ Cowin

(1968)].
Now the boundary conditions (7) become

∂ψ

∂y
= 0,

∂ψ

∂x
= 0, ω = −n∂

2ψ

∂y2
,
∂θ

∂y
= −Bi(1− θ), (14a)

∂h

∂y
= Ks h, δ

∂h1

∂y
= −Ks h at y = 0

∂ψ

∂y
= 0, ω = 0, θ = 0, h = 1, h1 = 0 as y →∞ (14b)

where Ks =
ksLGr

−1/4

DA
measures the strength of heterogeneous (sur-

face) reaction. Further, Bi =
hf L

kGr1/4
is known as the Biot number,

which is the ratio of the internal thermal resistance of the plate to the
boundary layer thermal resistance of the hot fluid at the bottom of the
surface.

4. SIMILARITY EQUATIONS VIA LIE GROUP
TRANSFORMATIONS

A one-parameter scaling group of transformations, selected as (Tapanidis
et al., 2003)

Γ : x∗ = x eε α1 , y∗ = y eε α2 , ψ∗ = ψ eε α3 , ω∗ = ω eε α4 , θ∗ = θ eε α5 ,
(15)

h∗ = h eε α6 , h∗1 = h1 e
ε α7 , β∗1 = β1 e

ε α8 , β∗2 = β2 e
ε α9

Here ε 6= 0 is the parameter of the group and α′s are arbitrary real num-
bers not all simultaneously zero. Equations (10)- (13) along with the
boundary conditions (14) do not alter under the group of transformations
in Eq.(15) if αi’s hold following relationship

α1 + 2α2 − 2α3 = 3α2 − α3 = α2 − α4 = −α5 − α8 = −2α5 − α9;
α1 + α2 − α3 − α4 = 2α2 − α4 = −α4 = 2α2 − α3;
α1 + α2 − α3 − α5 = 2α2 − α5; α2 − α6 = −α6;
α1 + α2 − α3 − α6 = 2α2 − α6 = −α6 − 2α7; −α6 = 0;
α1 + α2 − α3 − α7 = 2α2 − α7 = −α6 − 2α7;
α2 − α7 = −α6 α2 − α5 = 0 = −α5; −α4 = 2α2 − α3.


(16)

Using the procedure explained in the article by (Uddin et al., 2012) and
(Mutlag et al., 2013), we have the following similarity transformations:

η = y, ψ = xf(η), ω = xg(η), β1 = βT0x, (17)

β2 = βT1x, θ = θ(η), h = h(η), h1 = h1(η)

where βT0 and βT1 are constant coefficients of thermal expansion.
Using Eq. (17) into Eqn. (10)-(13), we get the following similarity

equations

1

ε

(
1

1−N

)
f ′′′ +

1

ε2
ff ′′ − 1

ε2
f ′2 +

(
N

1−N

)
g′ (18)

+ θ(1 + χθ)− 1

DaGr1/2
f ′ = 0(

2−N
2− 2N

)
g′′+

1

ε
fg′− 1

ε
f ′g−

(
N

1−N

) (
2g +

1

ε
f ′′

)
= 0 (19)

1

Pr
θ′′ + fθ′ = 0 (20)
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1

Sc
h′′ + fh′ −Khh1

2 = 0 (21)

δ

Sc
h′′1 + fh′1 +Khh1

2 = 0 (22)

where the primes indicate differentiation with respect to η alone, χ =
βT1

βT0

(Tf − T∞) the nonlinear convection (or) nonlinear density temper-

ature (NDT) parameter.
The corresponding boundary conditions (14) are

f(0) = 0, f ′(0) = 0, f ′(η) = 0 as η →∞ (23a)

g(0) = −nf ′′(0), g(η) = 0 as η →∞ (23b)

θ′(0) = −Bi[1− θ(0)], θ(η) = 0 as η →∞ (23c)

h′(0) = Ksh(0), h(∞) = 1 as η →∞ (23d)

δh′1(0) = −Ks h(0) h1(∞) = 0 as η →∞. (23e)

It is predicted that the diffusion coefficients of chemical species A and B
are of comparable size, which undergo further assumption that the diffu-
sion coefficients DA and DB are equal, i.e., δ = 1 Merkin (1996).

h(η) + h1(η) = 1 (24)

Thus, equations (21) and (22) reduce to

1

Sc
h′′ + fh′ −Kh(1− h)2 = 0 (25)

and are subject to the boundary condition

h′(0) = Ks h(0), h(η) = 1 as η →∞ (26)

The wall shear stress, wall couple stress and the heat transfer from
the plate are

τw =

[
(µ+ κ)

∂u

∂y
+ κω

]
y=0

mw = γ

[
∂ω

∂y

]
y=0

and qw = −k
[
∂T

∂y

]
y=0

(27a)

The non-dimensional skin friction Cf =
2τw

ρu2
∗

, wall couple stress Mw =

mw

ρu2
∗x

, and the local Nusselt number Nux =
qwx

k(Tf − T∞)
are given by

CfGr
1/4
x = 2

(
1− nN
1−N

)
f ′′(0), MwGr

1/2
x =

(
2−N
2− 2N

)
g′(0)

(28)

and
Nux

Gr
1/4
x

= −θ′(0).

where Grx =
g∗βT0(Tf − T∞)x3

ν2
is the local Grashof number.

5. NUMERICAL SOLUTION

Here, the spectral quasi-linearization method (SQLM) is used for solving
the non-linear system of Eqs. (18) - (20) and (25) along with the boundary
conditions (23(a) - 23(c) and (26)). The Quasi-linearization method is
the generalized Newton-Raphson method, introduced by Bellman and
Kalaba (1965) for solving nonlinear boundary value problems.

Assume that the solutions fr , gr , θr and hr of Eqs. (18)-(20) and
(25) at the (r+1)th iteration are fr+1, gr+1, θr+1 and hr+1. If the solu-
tions at the previous iteration is sufficiently close to the present iteration,
the nonlinear components of the Eqs. (18)-(20) and (25) can be linearised
using Taylors series expansions for multiple variables and neglecting the
second and higher order derivative terms, so the Eqs. (18)-(20) and (25)
give iterative sequence of linearized equations in the following form:

1

ε

(
1

1−N

)
f ′′′r+1 +

1

ε2
a1,r f

′′
r+1 + a2,r f

′
r+1 +

1

ε2
a3,r fr+1 (29)

+ a4,r θr+1 +

(
N

1−N

)
g′r+1 = R1,r(

2−N
2− 2N

)
g′′r+1 +

1

ε
b3,r g

′
r+1 + b4,r gr+1 +

1

ε
b1,r f

′
r+1 (30)

+
1

ε
b2,r fr+1 −

(
N

1−N

)
f ′′r+1 = R2,r

1

Pr
θ′′r+1 + c1,r fr+1 + c2,r θ

′
r+1 = R3,r (31)

1

Sc
h′′r+1 + d1,r fr+1 + d2,r h

′
r+1 + d3,r hr+1 = R4,r (32)

Where the coefficients as1,r (s1 = 1, 2, 3, 4), bs2,r (s2 = 1, 2, .., 4),
cs3,r (s3 = 1, 2) , ds4,r (s4 = 1, 2, 3) and Rs5,r (s5 = 1, 2, .., 4) are
known functions calculated from previous iterations and are defined as

a1,r = fr, a2,r =
−2

ε2
f ′r −

1

DaGr1/2
, a3,r = f ′′r , a4,r = 1 + 2χ θr,

b1,r = −gr, b2,r = g′r, b3,r = fr, b4,r = −1

ε
f ′r −

(
2N

1−N

)
,

c1,r = θ′r, c2,r = fr, d1,r = h′r, d2,r = fr, d3,r = K (4hr−3h2
r−1),

R1,r =
1

ε2
fr f

′′
r −

1

ε2
(f ′r)

2 + χ (θr)
2 R2,r =

1

ε2
fr g

′
r −

1

ε2
f ′r gr,

R3,r = fr θ
′
r, R4,r = 2K (h2

r − h3
r) + fr h

′
r

subject to boundary conditions:

fr+1(0) = 0, f ′r+1(0) = 0, gr+1(0) = −n f ′′r+1(0), (33a)

θ′r+1(0) = −Bi(1− θ(0)), h′r+1(0) = Ks h(0),

f ′r+1(∞) = 0, gr+1(∞) = 0, θr+1(∞) = 0, hr+1(∞) = 1 (33b)

The above linearized system of Eqs. (29) to (32) can be worked iteratively
using Chebyshev pseudo-spectral method. [For more details, one can
refer the works of (Motsa et al., 2014b,c)]. To start the SQLM scheme
for the system of equations (29) - (32), the initial guesses are chosen as
functions that satisfy the boundary conditions:

f0(η) = 0, g0(η) = 0, θ0 =
Bi

Bi+ 1
e−η, h0 = 1− e−ηKs

Starting from the set of initial approximations f0, g0, θ0, h0, the itera-
tion schemes (29) to (32) can be worked out iteratively for fr+1, gr+1,
θr+1, hr+1 when r = 0, 1, 2,.... To solve equations (29) to (32) dis-
cretize the equation using the Chebyshev spectral collocation method af-
ter transforming the domain in η to the interval [-1,1] where the spec-
tral method can be implemented. For the convenience of the numerical
computations, the physical region is approximated by truncated domain
[0, η∞], where η∞ is a finite length chosen to be large enough to repre-
sent the flow properties behaviour when η is large. Use the transformation
η = η∞(τ + 1)/2 to map the interval [0, η∞] to [-1,1].

The basic idea behind the spectral collocation method is the first
appearance of a differentiation matrix D which is applied to approximate
the differential coefficients of the unknown variables, for example, f(η)
at the collocation points as the matrix vector product

df

dη
=

N∑
k=0

Dlkf(τk) = DF, l = 0, 1, ..., N, (34)

The unknown functions are approximated by the Chebyshev interpolating
polynomials in such way that they are collocated at the Gauss-Lobatto
collocation points defined as

τj = cos
πj

N
, j = 0, 1, 2, ..., N, (35)
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where N + 1 is the number of collocation points (grid points), D =
2D
η∞

is the differentiation matrix and its entries are clearly defined in (Canuto
et al., 2006), and F = [f(τ0), f(τ1), ..., f(τN )]T is the vector function
at the collocation points. Similar vector functions corresponding to g, θ
and h are denoted by G, Θ and H respectively. Higher order derivatives
are obtained as powers of D, that is

f (q) = DqF, g(q) = DqG, θ(q) = DqΘ, h(q) = DqH. (36)

where q represents derivatives order. Substituting Eqs.(34)-(36) into Eqs.
(29)-(32) leads to the matrix equation


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44




Fr+1

Gr+1

Θr+1

Hr+1

 =


R1

R2

R3

R4


Where

A11 =
1

ε

(
1

1−N

)
D3+

1

ε2
diag[a1,r] D2+diag[a2,r]D+

1

ε2
diag[a3,r],

A12 =

(
N

1−N

)
D, A13 = diag[a4,r]I, A14 = 0

A21 =
1

ε

(
N

N − 1

)
D2 + diag[b1,r]D +

1

ε
diag[b2,r],

A22 =

(
2−N
2− 2N

)
D2 +

1

ε
diag[b3,r]D + diag[b4,r], A23 = 0, A24 = 0

A31 = diag[c1,r], A32 = 0, A33 =
1

Pr
D2 + diag[c2,r]D, A34 = 0

A41 = diag[d1,r], A42 = 0, A43 = 0,

A44 =
1

Sc
D2 + diag[d2,r]D + diag[d3,r]

R1 = R1,r, R2 = R2,r, R3 = R3,r, R4 = R4,r

where I is an identity matrix, 0 is a zero matrix and diag[ ] is a diagonal
matrix, all of size (N + 1) × (N + 1). F, G, Θ and H are the values of
the functions f , g, θ and h when evaluated at the grid points.

6. RESULTS AND DISCUSSIONS

The influence of homogeneous and heterogeneous reactions and nonlin-
ear convection on micropolar fluid flow along a vertical plate embedded
in Darcy porous medium with convective boundary condition is analyzed
in this paper. In order to study the effects of nonlinear convection parame-
ter χ, Darcy number Da, Biot number Bi, strength of homogeneous and
heterogeneous reaction parameters K and Ks, computations have been
carried out in the cases of n = 0, ε = 0.6, Gr = 10, Pr = 0.71 and
Sc = 0.22. The results of the current problem have been compared with
that of the results attained by (Merkin, 1976; Nazar et al., 2002; Molla
et al., 2006) as a special case by taking N = 0, ε = 1, n = 0, Pr = 1,
χ = 0, Da→∞ and Bi→∞, and seems to be good agreement in the
above case, as presented in Tab. (1). Also, the comparison of −θ′(0) has
been made with the results obtained by (Nazar et al., 2002) as shown in
Tab. (1) when n = 0.5, ε = 1, Pr = 1, Bi→∞, Da→∞ and χ = 0.

Table 1 Comparison of −θ′(0) for free convection along a vertical flat
plate in Newtonian fluid when N = 0, Da → ∞, n = 0, Pr =
1, χ = 0, ε = 1 and Bi→∞.

Merkin (1976) (Nazar et al., 2002) (Molla et al., 2006) Present

0.4214 0.4214 0.4214 0.4214313

Table 2 Comparison of −θ′(0) for free convection flow in a micropolar
fluid obtained by (Nazar et al., 2002) when n = 0.5, ε = 1,
Pr = 1, χ = 0, Da→∞ and Bi→∞.

N (Nazar et al., 2002) Present

0.00 0.4214 0.4214
0.33 0.3991 0.3990
0.50 0.3834 0.3834
0.60 0.3709 0.3709
0.66 0.3608 0.3608
0.71 0.3522 0.3522
0.75 0.3447 0.3447

6.1. Boundary layer distribution of velocity, microrotation,
temperature and species concentration

a) With varying values of Biot bumber (Bi)
The first set of Figs. 2(a) -2(d) depicts for N = 0.5, Da = 1,

K = 1, Ks = 0.5 and χ = 1.0 and refer to the variation of non-
dimensional velocity f ′, microrotation g, temperature θ and species con-
centration h across the boundary layer. When the plate is totally insulated
(i,e., Bi = 0), the internal thermal resistance of the plate is extremely
high and no convective heat transfer to the cold fluid on the upper part of
the plate. Fig. 2(a) reads the fluid velocity profiles for different values
of the Biot number with fixed values of other parameters. Specifically, at
the surface of the plate, the fluid velocity is zero and enhances moderately
away from the plate to the free stream value satisfying the boundary con-
ditions. It is interesting to reveal that in momentum boundary layer the
fluid velocity enhances with an increase in intensity of convective surface
heat transfer Bi. From Fig. 2(b) it is clear that the microration profile
shows reverse rotation near the two boundaries. Fig. 2(c) depicts that, the
temperature of fluid is maximum at plate surface and diminishes expo-
nentially to zero far away from the plate. Comparatively, internal thermal
resistance of the plate is more for high Biot number than the boundary
layer thermal resistance. From Fig. 2(d) it notice that the species concen-
tration increases with increase in Biot number. b) With varying values
of nonlinear convection parameter (NDT)

The second set of Figs. 3(a)-3(d) plotted for different values of non-
linear convection parameter on non-dimensional velocity f ′, microrota-
tion g, temperature θ and species concentration h with fixed values of
other parametersN = 0.5,Da = 1,K = 1,Ks = 0.5 andBi = 1. The
nonlinear convection parameter χ measures the nonlinearity in density-
temperature relationship. The influence of nonlinear convection parame-
ter χ on the velocity profile is depicted in Fig. 3(a). With an increase in χ,
the velocity increases, but far away from the plate it shows opposite trend.
From Fig. 3(b), it observes that the microrotation is showing reverse rota-
tion near the two boundaries with increased value of nonlinear convection
parameter. If χ > 0 implies that Tf > T∞ hence there is supply of heat
from wall to flow region. Similarly χ < 0 implies that Tf < T∞, heat
transfer from fluid to the wall. From Fig. 3(c) it is perceived that the
temperature of the fluid reduces with an increase in nonlinear convection
parameter. The species concentration enhances with an increase in non-
linear convection parameter as shown in 3(d). c) With Varying values of
Darcy number (Da)
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Fig. 2 Effect of Bi on (a) Velocity, (b) Microrotation, (c) Temperature,
and (d) Concentration profiles.
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Fig. 3 Effect of χ on (a) Velocity, (b) Microrotation, (c) Temperature, and
(d) Concentration profiles.
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Table 3 Effects of skin friction, wall couple stress and heat transfer rate
for varying values of micropolar parameter N , Biot numbers Bi,
nonlinear convection parameter χ and Darcy number Da with
K = 1 and Ks = 0.5.

N Bi χ Da CfGr
1/4
x MwGr

1/2
x

Nux

Gr
1/4
x

0 1.0 1.0 1 1.537527 0.000000 0.305228
0.3 1 1.0 1 1.750517 -0.142651 0.294051
0.5 1 1.0 1 1.959351 -0.291564 0.283342
0.8 1 1.0 1 2.57905 -0.710582 0.253065
0.5 0.1 1.0 1.0 0.649682 -0.127284 0.067754
0.5 1 1.0 1.0 1.593042 -0.251223 0.219462
0.5 5 1.0 1.0 1.959351 -0.291564 0.283342
0.5 10 1.0 1.0 2.022233 -0.29819 0.294465
0.5 1.0 0 1.0 1.106618 -0.198623 0.20424
0.5 1.0 1 1.0 1.593042 -0.251223 0.219462
0.5 1.0 3 1.0 2.399576 -0.328708 0.239398
0.5 1.0 5 1.0 3.086638 -0.388064 0.253076
0.5 5.0 1.0 0.05 1.283075 -0.156822 0.197751
0.5 5.0 1.0 0.1 1.530281 -0.204481 0.231549
0.5 5.0 1.0 0.3 1.813237 -0.261512 0.266797
0.5 5.0 1.0 0.5 1.892408 -0.277765 0.275907

The third set of Figs. 4(a)-4(d) presents the influence of Darcy num-
ber on non-dimensional velocity, microrotation, temperature and species
concentration with fixed values of other parameter N = 0.5, Da = 1,
K = 1, Ks = 0.5 and Bi = 5. From Fig. 4(a), it notices that with
increase in Darcy number the velocity of the fluid enhances near the wall
and farther from the plate it shows opposite trend. Increase in Darcy num-
ber means relatively there is rise in permeability Kp. The porous matrix
structure becomes less and less prominent with increasing of permeabil-
ity. As Darcy number tends to infinity (i,e.,Da→∞) and porosity ε =1,
the present problem reduces to the free convection flow of a micropolar
fluid with a convective boundary condition. Fig. 4(b) reveals that the mi-
crorotation show opposite trends within the boundary. From Figs. 4(c)
and 4(d) it observes that the temperature and species concentration of the
fluid show a reverse trend with an increase in Darcy number. d) With
Varying values of homogeneous and heterogeneous reactions (K and
Ks)

The fourth and fifth set of Figs. 5(a)-5(d) refer to the variation
of strength of homogeneous and heterogeneous reactions parameter on
species concentration h and the rate of mass transfer across the bound-
ary layer for fixed values of other parameter. As an increase in value of
K corresponds to increase in the strength of homogeneous reaction rate.
From Figs. 5(a) and 5(b) depict that an increase in homogeneous reac-
tion causes decrease in species concentration and rate of mass transfer.
As the heterogeneous reaction parameter Ks increases, then the strength
of heterogeneous reaction rate increases. It is clear from Figs. 5(c) and
5(d) that the species concentration and the rate of mass transfer decreases
with the increase of heterogeneous reaction parameter Ks. And also no-
tice that the influence of heterogeneous reaction is more about the species
concentration as compared with the homogeneous reaction.

6.2. Skin friction, Wall couple stress and heat transfer coefficient

Table. (3) displays the variations of CfGr
1/4
x , MwGr

1/2
x , and

Nux

Gr
1/4
x

which are proportional to the coefficients of skin-friction, wall couple
stress and heat transfer rate with combined effects of the coupling number
N , Biot numberBi, nonlinear convection parameter χ and Darcy number
Da for fixedK andKs parameters. The effect of coupling numberN for
fixed Bi = 5, χ = 1.0 and Da = 1, is shown in Tab.(3). Generally, the
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Fig. 4 Effect of Da on (a) Velocity, (b) Microrotation, (c) Temperature,
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Fig. 5 Effect of K on (a) Concentration profile h, (b) mass transfer rate
h(0), Effect of Ks on (a) Concentration profile h, (b) mass trans-
fer rate h(0).

skin friction of micropolar fluid is larger than the viscous fluids (N = 0).
Since micropolar fluids offer a heavy resistance (resulting from vortex
viscosity) to the fluid movement and causes larger skin friction factor
compared to viscous fluid. From Tab. (3) it observes that by enhancing
the coupling number N , increases the skin friction, but reduce the wall
couple stress and heat transfer rate. Also for fixed N = 0.5, χ = 1.0
and Da = 1.0, the skin-friction as well as heat transfer rate increase,
whereas wall couple stress diminishes with the increasing value of Biot
numberBi. From Tab. (3) it is noticed that with the increase of nonlinear
convection parameter for fixed parameters N = 0.5, Bi = 1 and Da =
1, both skin friction and heat transfer rate rises and wall couple stress
reduces. It is clear from the table that the skin friction and heat transfer
rate increases and wall couple stress decreases with an increase of the
Darcy number for fixed values of N = 0.5, Bi = 5 and χ = 1.0.

7. CONCLUSIONS

This paper analyzes the effects of nonlinear convection and homogeneous-
heterogeneous reactions on micropolar fluid flow along a vertical plate in
a saturated porous medium with the convective boundary condition. The
resulting equations are solved numerically by spectral quasi-linearization
method. The main findings are summarized as follows:

• It is observed that an enhancement in Biot number Bi leads to
reduce the wall couple stress coefficient and enhance the skin fric-
tion, heat transfer rate, temperature distribution and species con-
centration. Moreover, velocity rises near the plate, but shows the
reverse behavior far away from the plate. It noticed that the micro-
rotation profile depicts reverse rotation near two boundaries within
the boundary layer.

• In the presence of nonlinear convection parameter χ, it is con-
cluded that less temperature and wall couple stress coefficient, but
more velocity, species concentration, skin friction and heat trans-
fer rate. Further, microrotation shows opposite trend far away from
the wall.

• It is found that the skin friction, heat transfer rate, species concen-
tration and velocity near the plate are increasing, whereas the wall
couple stress and temperature are decreasing with the influence of
Darcy number.

• It is clear that with an increase in strength of homogeneous and het-
erogeneous reaction parameters K and Ks, species concentration
and mass transfer rate decrease. And also noticed that the influ-
ence of heterogeneous reaction is more at species concentration as
compared with homogeneous reaction.
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