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ABSTRACT 

A theoretical and computational study of the magneto hydrodynamic flow and free convection heat transfer in an electro-conductive polymer on the 
external surface of a vertical permeable cone under radial magnetic field is presented. Thermal and velocity (hydrodynamic) slip are considered at the 
vertical permeable cone surface via modified boundary conditions. The Williamson viscoelastic model is employed which is representative of certain 
industrial polymers. The non-dimensional, transformed boundary layer equations for momentum and energy are solved with the second order 
accurate implicit Keller box finite difference method under appropriate boundary conditions. Validation of the numerical solutions is achieved via 
benchmarking with earlier published results. The influence of Weissenberg number (ratio of the relaxation time of the fluid and time scale of the 
flow), magnetic body force parameter, stream wise variable and Prandtl number on thermo-fluid characteristics are studied graphically and via tables. 
A weak elevation in temperature accompanies increasing Weissenberg number whereas a significant acceleration in the flow is computed near the 
cone surface with increasing Weissenberg number. Nusselt number is reduced with increasing Weissenberg number. Skin friction is increased 
whereas Nusselt number is reduced with greater stream wise coordinate.  The study is relevant to smart coating transport phenomena. 
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1. INTRODUCTION 

Magneto-hydrodynamics has found ever-increasing applications in 
modern smart technologies. The application of magnetic fields (static or 
alternating) has been shown to manipulate successfully the material 
characteristics of electro-conductive polymers which are finding new 
applications in aerospace, offshore and naval industries. Interesting 
studies in this regard addressing various systems emp loying magnetic 
polymers include environmental engineering (2011), thin film 
fabrication processes (2014) and design of shock dissipation systems 
with magnetic elastomers (2007). Coating applications and energy 
systems enhancement with smart magnetic polymers have also grown 
substantially in recent years. Relevant technologies in this regard are 
nuclear engineering (1998), medical engineering exploiting stimuli-
based polymers (2010) and hydromagnetic energy generation (2008). In 
the context of coating applications, it is critical to regulate heat transfer 
conditions which lead to improved bonding and homogeneity in 
engineered polymeric surfaces. Many studies have therefore examined 
the transport phenomena (i.e. coupled heat and momentum transfer) 
from different geometrical shapes including cones, pipes, disks and 
truncated bodies and spheres. The spherical geometry is particularly 
relevant to chemical engineering processes. Investigators have applied a 
variety of different material models for the coatings and also numerical 
methods to solve the associated boundary value problems. Bég et al. 
(2012) used the homotopy analysis method (HAM) to analyze flow 
from a sphere in a porous medium. Na and Chiou (1979) used a 
Quasilinearization method to simulate the laminar natural convection 
over frustum convection about a truncated cone. Noghrehabadi et al. 
(2013) studied the natural convection flow of nanofluids over a vertical 
cone embedded in non-Darcy porous media. 

The above studies were confined to Newtonian fluids. However, 
generally polymers are known to exhibit non-Newtonian characteristics. 
Engineers have therefore developed a variety of constitutive models to 
analyse the shear stress-strain characteristics of these fluids, including 
viscoplastic, viscoelastic, micro-structural and power-law models. Both 
purely fluid flow and heat transfer from a sphere to non-Newtonian 
fluids have been reported in a number of theoretical investigations. 
Radiation effect on natural convection about a truncated cone were 
examined by Yih (1999). Harish Babu and Satya Narayana (2016) 
examined the radiative flow of Jeffery fluid in a stretching porous sheet 
with power law heat flux and heat source. Satya Narayana and 
Venkateswarlu (2016) have studied heat and mass transfer on MHD 
nanofluid flow past a vertical porous plate in a rotating system. Fluid 
flow and radiative nonlinear heat transfer over a stretching sheet has 
been investigated by Satya Narayana and Harish Babu (2016). 
Venkateswarlu and Satya Narayana (2016) have analysed the chemical 
reaction, Soret and Dufour effects on the flow and heat transfer of a 
Casson fluid in a stretching surface. Hossain and Paul (2001) reported 
the free convection past a vertical permeable circular cone with non-
uniform surface temperature. Amanulla et al. (2017) investigated slip 
effects on non-Newtonian Nanofluid flow from an Isothermal sphere. 
They analyzed the behavior of fluid on velocity and temperature 
distributions when thermal and velocity slips are considered. Pop and 
Na (1999) presented the heat and mass transfer by natural convection 
about a truncated cone in the presence of magnetic field and radiation 
effects. Cheng (2011) studied the natural convection boundary layer 
flow of a micropolar fluid over a vertical permeable cone with variable 
temperature. Nadeem and Saleem (2015) presented analytical solutions 
of third grade fluid over a rotating vertical cone in the presence of 
nanoparticles. 
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These studies however did not consider the Williamson model. This is a 
shear-thinning non-Newtonian model which quite accurately simulates 
polymer viscoelastic flows over a wide spectrum of shear rates. In 
Williamson fluids the viscosity is reduced with rising shear stress rates. 
This model has found some popularity in engineering simulations. 
Prasannakumara et al. (2016) used the Runge-Kutta-Fehlberg shooting 
algorithm to analyse reactive-radiative flow of Williamson viscoelastic 
nanofluid from a stretching sheet in a permeable material. Khan and 
Khan (2014) investigated Blasius, Sakiadis, stretching and stagnation 
point flows of Williamson fluid using the homotopy analysis method, 
over a range of Weissenberg numbers. Bég et al. (2013) presented 
extensive numerical solutions for hydromagnetic pumping of a 
Williamson fluid using a modified differential transform method, 
observing that a change in Weissenberg number strongly modifies the 
pressure difference and axial velocity. Further studies of transport 
phenomena in Williamson fluids include Rao and Rao (2014), Rao et al. 
(2017) and Dapra and Scarpi (2007). 
                 In the present investigation, we consider the magneto-
hydrodynamic convection boundary layer flow of a Williamson 
polymeric fluid external to a vertical permeable cone with multiple slip 
effects. Magnetic fields have been found to profoundly influence heat 
transfer and velocity characteristics in curved body flows. Relevant 
examples include Bég et al. (2014) (for cylindrical geometries), 
Alkasasbeh et al. (2014) who addressed radiative effects also, Rao et al. 
(2017) who considered Partial Slip effects and Kasim et al. (2013) who 
used a viscoelastic model. Slip effects have been shown to be 
prominent in certain polymeric flow processes. Momentum 
(hydrodynamic) slip relates to the non-adherence of the polymer to a 
solid boundary and arises in polymer melts, emulsions, petro-chemical 
suspensions and also foams (1998, 1994, 1995, 1989, 1993, 1992, 2000, 
1991, 1992). The presence of momentum slip invalidates the classical 
“no-slip” boundary condition. Thermal slip may also arise in heat 

transfer problems and can also significantly modify both velocity and 
temperature characteristics both at the solid surface and deeper into the 
boundary layer. Several researchers have examined multi-physical 
flows with velocity and/or thermal slip effects including Jamil and 
Khan (2001), Tripathi et al. (2014) (for viscoelastic fluids), Bég et al. 
(2014) for magnetohydrodynamic heat and mass transfer and Devi and 
Devi (2011) for swirling disk hydromagnetic flows with cross diffusion. 
Sreenadha et al. (2014) have studied analytically the wall slip effects in 
peristaltic propulsion and heat transfer of Williamson fluids in inclined 
conduits. The present study employs a finite difference numerical 
method due to Keller for solving the two-dimensional steady slip flow 
and heat transfer in a Williamson polymeric liquid boundary layer from 
a vertical permeable cone. Verification of the computations is 
conducted for the special case of non-magnetic, Newtonian flow in the 
absence of slip with earlier published literature. The study finds 
applications in electro-conductive thermal polymer processing systems. 

2. MAGNETOHYDRODYNAMIC VISCOELASTIC 
SLIP THERMOFLUID MODEL 

The regime under investigation is illustrated in Fig. 1. Steady, 
incompressible hydromagnetic Williamson non-Newtonian boundary 
layer flow and heat transfer from vertical cone body under radial 
magnetic field is considered. For an incompressible Williamson fluid, 
the continuity (mass conservation) and momentum equations are given 
as: 
 

 div V=0,                                                                                            (1) 
 

dV
ρ =divS+ρb,

dt
                                                                               (2) 

 

Where ρ  is the density of the fluid, V  is the velocity vector, S  is the 

Cauchy stress tensor, b represents the specific body force vector, and 

d/dt represents the material time derivate. The constitutive equations of 
the Williamson fluid model (2016, 2014, 2013, 2007) are given as: 
 

S=-pI+τ                                                                                              (3) 

0
1,

( - )
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 
 
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 
                                                                   (4) 

Here p  is the pressure, I  is the identity vector,  is the extra stress 

tensor, 0 are the limiting viscosities at zero and at infinite shear rate, 

 is the time constant (>0), 1A is the first Rivlin-Erickson tensor and 

γ is defined as follows: 

1

2
                                                                                            (5) 

2
1( )trace A                                                                                     (6) 

Here we considered the case for which 0  and Γ 1.  Thus eq. 

(4) can be written as: 
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Or by using binomial expansion we get: 
 

 0 11 A                                                                                (8) 

 

 
 

Fig. 1 Magnetohydrodynamic non-Newtonian heat transfer from a 
vertical permeable cone 

 
             The two-dimensional mass, momentum and energy boundary 
layer equations governing the flow in an (x,y) coordinate system may 
be shown to take the form: 
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The boundary conditions for the considered flow with velocity and 
thermal slip are: 

At 0 00, , 0, w
u T

y u N v T T K
y y

 
    

 
 

As , 0, 0,y u v T T                                                    (12) 

Here 0N  is the velocity slip factor, 0K  is the thermal slip factor and 

T  is the free stream temperature. For 0 00N K  , one can recover 

the no-slip case. The stream function   is defined by ru
y





 

and rv
x


 


, and therefore, the continuity equation is automatically 

satisfied. In order to write the governing equations and the boundary 
conditions in dimensionless form, the following non-dimensional 
quantities are introduced: 
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The emerging momentum and heat (energy) conservation equations in 
dimensionless from assume the following form:  
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The transformed dimensionless boundary conditions are reduced to: 
 

At 0, 0, (0), 1 (0)f Tf f S f S           

As , 0, 0f                                                                (16) 

 
               The skin-friction coefficient (cone surface shear stress) and 
the local Nusselt number (cone surface heat transfer rate) can be 
defined, respectively, using the transformations described above with 
the following expressions:  

3/4 21
( ,0) ( ( ,0))

2 2f
We

Gr C f f                                           (17)                              

1/4 ( ,0)Gr Nu                                                               (18) 

 
All parameters are defined in the nomenclature.  

3. COMPUTATIONAL SOLUTION WITH 
KELLER BOX IMPLICT METHOD 

 

The transformed, nonlinear, multi-physical boundary value 
problem defined by Eqns. (14) - (16) can be solved via a number of 
numerical schemes. Here we implement a popular, second order 
accurate implicit finite difference method originally developed by 
Keller (1976). Recent studies featuring this method in the context of 
Magnetohydrodynamic and rheological flows include Sajid et al. (2016) 

who studied Ferro fluid flows in curved conduits, Gaffar et al. (2016) 
who investigated hydromagnetic tangent hyperbolic non-Newtonian 
convection from a cone and convective boundary layer flows by Rao et 
al. (2017). In the Keller box scheme, the multi-degree, multi-order 
coupled partial differential equations defined in (14) and (15) are first 
reduced to a system of first order equations. These equations are then 
discretized with the finite difference approximations with appropriate 
step lengths in each coordinate direction. Introducing the new variables: 
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Eqns. (14) - (15) reduce then to the form: 
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where primes denote differentiation with respect to  .In terms of the 
dependent variables, the boundary conditions (16) become: 
 

 

At 0, 0, (0), 1 (0)f Tf f S f S           

As , 0, 0f                                                                (25)                                        
 

A two-dimensional computational mesh (grid) is imposed on the -η 
plane as shown in Fig.2. The stepping process is defined by: 
 

 

0 10, , 1,2,..., ,j j j Jh j J                                         (26) 
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nk n N                                                  (27) 

 
 

where kn and hj denote the step distances in the ξ and η directions 
respectively. 
 

 
 

Fig. 2 Keller Box element and boundary layer mesh 
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The finite-difference approximation of equations. (20) – (24) for the 

mid-point  1/2 , n
j 

 assume the form given below: 
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Here the following abbreviations apply : 
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The boundary conditions take the form: 
 

0 0 00, 1, 0, 0, 0n n n n n n
J J Jf u u v                                                (39) 

                (39) 

The emerging non-linear system of algebraic equations is linearized by 
means of Newton’s method and then solved by the block-elimination 
method. The accuracy of computations is influenced by the number of 
mesh points in both directions. After experimenting with various grid 
sizes in the η-direction (radial coordinate) a larger number of mesh 
points are selected whereas in the ξ direction (tangential coordinate) 
significantly less mesh points are utilized. ηmax has been set at 10 and 
this defines a sufficiently large value at which the prescribed boundary 
conditions are satisfied. ξmax is set at 1.0 for this flow domain. Mesh 
independence is therefore achieved in the present computations. The 
computer program of the algorithm is executed in MATLAB running 
on a PC.  

4. VALIDATION OF KELLER BOX 
SOLUTIONS  

       The present Keller box solutions have been validated for the 
special case of non-magnetic (M = 0) Newtonian flow (We = 0) in the 
absence of thermal and partial slip (Sf = ST = 0). This case was 
considered earlier by Alam et al. (2007). Furthermore, when non-
uniform surface temperature is ignored in the model of Hossain and 
Paul (2001) in addition to prescribing M=We=Sf=ST=0 in the present 
model, it is also possible to make a comparison as the momentum 
equation and boundary conditions assume the following reduced form:  
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f f
f ff f f f 

 
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At 0; 0; 0, 1f f      

At : 0; 0f    . 
 

               The energy equation (15) is identical to that considered in 
Alam et al. (2007). The comparison of solutions is documented in 
Table 1. Excellent correlation is achieved and confidence in the present 
solutions is therefore justifiably high. 
 

Table. 1 Comparison values of ( ,0)f  and ( ,0)   for 

various values of  . 
 

  

( ,0)f   ( ,0)   

Alam et al. 
(2007) 

Present 
Solutions 

Alam et al. 
(2007) 

Present 
Solutions 

0 0.891936 0.891940 0.420508 0.420502 

0.5 0.896407 0.896403 0.620748 0.620744 

1.0 0.856963 0.856965 0.848025 0.848030 

1.5 0.779210 0.779211 1.129365 1.129369 

2.0 0.674111 0.674110 1.441742 1.441747 

3.0 0.434152 0.434151 2.202662 2.202661 

 
5. RESULTS AND DISCUSSION 

 

Extensive computations have been conducted using the Keller 
box code to study the influence of the key thermo-physical parameters 
on velocity, temperature, skin friction and Nusselt number. These are 
visualized in figs. 3a-b to 8a-b and tables 2-3. 
               Figs 3a-b illustrate the influence of Weissenberg number (We) 
on velocity and temperature profiles. We arises only in the momentum 
eqn. (14) in the mixed derivativeWef f  . Weissenberg number (We) 

measures the relative effects of viscosity to elasticity. Weissenberg 
number of zero corresponds to a purely Newtonian fluid, and infinite 
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Weissenberg number corresponds to a purely elastic solid. Intermediate 
values correlate quite well with actual polymeric viscoelastic properties. 
With increasing We, there is a general increase through the boundary 
layer in velocity magnitudes. The boundary layer flow is therefore 
accelerated as viscous effects are depleted since resistance to the flow is 
reduced.  
              The momentum boundary layer is therefore depleted with 
greater Weissenberg number. We note that in fig. 3a the magnetic body 
force parameter, M, is set at unity implying that the Lorentzian 
magnetic drag and viscous hydrodynamic force are of the same 
magnitude. Fig. 3b shows that a consistent elevation is computed in 
temperature of the viscoelastic fluid with greater values of Weissenberg 
number, We. The acceleration in the flow aids in momentum 
development which also assists in thermal diffusion, leading to heating 
of the boundary layer. Thermal boundary layer thickness is therefore 
enhanced with increasing We values i.e. decreasing viscosity and 
increasing elastic effects. Effectively therefore Newtonian fluids (We 
=0) achieve lower velocities and temperatures than Williamson fluids. 
Similar trends have been reported by Hayat et al. (2016) and Khan and 
Khan (2014). 

 

 
 

(a) 
 

 
(b) 

 

Fig. 3 Effect of We on (a) velocity profiles and (b) temperature profiles 

Figs. 4a-b depict the evolution in velocity and temperature 
characteristics with transverse coordinate i.e. normal to the vertical 
cone surface for various Prandtl numbers, Pr. Relatively high values of  
Pr are considered since these physically correspond to industrial 
polymers (2004). Prandtl number embodies the ratio of momentum 
diffusivity to thermal diffusivity in the boundary layer regime. It also 
represents the ratio of the product of specific heat capacity and dynamic 
viscosity, to the fluid thermal conductivity. For polymers momentum 
diffusion rate greatly exceeds thermal diffusion rate. The low values of 
thermal conductivity in most polymers also result in a high Prandtl 
number. With increasing Pr from 7 to 100 there is evidently a 
substantial deceleration in boundary layer flow i.e. a thickening in the 
momentum boundary layer (fig. 4a). The effect is most prominent close 
to the vertical cone surface. Also fig. 4b shows that with greater Prandtl 
number the temperature values are strongly decreased throughout the 
boundary layer transverse to the vertical cone surface. Thermal 
boundary layer thickness is therefore significantly reduced. The 
asymptotically smooth profiles in the free stream (high  values) 
confirm that an adequately  large infinity boundary condition has been 
imposed in the Keller box numerical code. 
 

 
 

(a) 

 
 

(b) 
 

Fig. 4 Effect of Pr on (a) velocity profiles and (b) temperature profiles 
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Figs. 5a-b present the evolution in velocity and temperature functions 
with a variation in magnetic body force parameter (M). The radial 
magnetic field generates a transverse retarding body force. This 
decelerates the boundary layer flow and velocities are therefore reduced 
as observed in fig. 5a. The momentum development in the viscoelastic 
coating can therefore be controlled using a radial magnetic field. The 
effect is prominent throughout the boundary layer from the cone surface 
to the free stream. Momentum (hydrodynamic) boundary layer 
thickness is therefore increased with greater magnetic field. Fig. 5b 
shows that the temperature is strongly enhanced with greater magnetic 
parameter. The excess work expended in dragging the polymer against 
the action of the magnetic field is dissipated as thermal energy (heat). 
This energizes the boundary layer and increases thermal boundary layer 
thickness. Again the influence of magnetic field is sustained throughout 
the entire boundary layer domain. These results concur with other 
investigations of magnetic non-Newtonian heat transfer including 
Kasim et al. (2013) and Megahed (2010). 
 

 
(a) 

 

 
(b) 

 

Fig. 5 Effect of M on (a) velocity profiles and (b) temperature profiles 
 

Figs. 6a-b illustrate the impact of the momentum 
(hydrodynamic) slip parameter (Sf) on the velocity and temperature 
distributions. Near the cone surface there is a distinct elevation in 
velocity with greater momentum slip effect. Sf features in the velocity 

wall boundary condition in eqn. (16) i.e. f /(0)=Sf f 
//(0). With increasing 

values of Sf the polymer slips i.e. shears more easily against the cone 
surface. This boosts momentum in the boundary layer and accelerates 
the flow (fig. 6a). However, with progressive penetration into the 
boundary layer, this effect is reversed (as expected) and the flow is 
decelerated with greater momentum slip further from the cone surface.  

 The velocity slip effect is strongest at the cone surface ( = 
0). A similar observation has been made by Yarin and Graham (1998) 
and also by Jamil and Khan (2011). The momentum slip effect is 
prominent and substantially modifies the velocity growth structure. 
Temperature is conversely reduced consistently throughout the 
boundary layer with greater momentum slip. The viscoelastic polymer 
is therefore cooled with wall momentum slip and this reduces thermal 
boundary layer thickness. The implication is therefore that with an 
absence of velocity slip in mathematical models, temperature is over-
predicted (the maximum value corresponds to Sf =0). It is therefore 
important in more realistic simulations of polymer coating dynamics to 
incorporate wall slip effects. 

 

 
(a) 

 

 
(b) 

 

Fig. 6 Effect of fS on (a) velocity profiles and (b) temperature profiles 
 

Figs. 7a-b present the response in velocity and temperature 
distributions to a modification in the thermal jump (slip) parameter (ST). 
A marked depletion in velocity (fig. 7a) accompanies an increase in 
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thermal slip effect and this trend is sustained throughout the boundary 
layer. The thermal slip parameter indirectly influences the momentum 
field via coupling to the energy equation (thermal slip is only simulated 
in the wall thermal boundary condition in eqn. 16). With greater 
thermal slip, there is also a very profound depletion in temperature at 
the cone surface and in close proximity to it (fig. 7b). However, this 
effect weakens considerably with further distance from the cone surface 
and is effectively eliminated before reaching the free stream. 
Temperature profiles decay from a maximum at the cone surface to the 
free stream. All profiles converge at a large value of transverse 
coordinate, again showing that a sufficiently large infinity boundary 
condition has been utilized in the numerical computations. Again the 
absence of thermal slip achieves higher temperatures indicating that 
without this modification in the thermal boundary condition at the wall 
(cone surface) the temperature is over-predicted, which can be critical 
to heat treatment of polymeric coatings (2015). 

 

 
(a) 

 

 
(b) 

 

Fig. 7 Effect of TS on (a) velocity profiles and (b) temperature profiles 
 

Figs. 8a-b illustrate the influence of the stream wise 
(tangential) coordinate, ξ, on the velocity and temperature distributions. 
A weak deceleration in the boundary layer flow is experienced with 
greater ξ, as shown in fig. 8a. Momentum boundary layer thickness is 
therefore increased marginally with ξ values. Conversely a weak 

enhancement in temperature is computed in fig. 8b, with increasing ξ 
values. Thermal boundary layer thickness is increased therefore as we 
progress from the lower stagnation point on the cone surface around the 
cone periphery upwards.  

 

 
(a) 

 

 
(b) 

 

Fig. 8 Effect of  on (a) velocity profiles and (b) temperature profiles 

 
Table 2-3. Illustrate the skin friction and Nusselt number 

distributions with various values of momentum slip parameter (Sf) and 
thermal slip effect (ST). A marked depreciation in skin friction is 
observed with greater momentum slip. Conversely a strong elevation in 
Nusselt number is generated with greater momentum slip effect. The 
momentum slip effect is consistent for all values of stream wise 
parameter (ξ). The influence of momentum (hydrodynamic) slip is non-
trivial and demonstrates that a sizeable modification in surface thermo-
fluid characteristics is induced with slip and indeed that the 
methodology employed to simulate it quite realistically simulates real 
macroscopic effects of certain molecular phenomena at polymer/solid 
interfaces. Both skin friction and Nusselt number are strongly reduced 
with an increase thermal slip (ST). The boundary layer is therefore 
decelerated and heated with stronger thermal slip. With thermal slip 
absent therefore the skin friction is maximized at the cone surface. The 
inclusion of thermal slip, which is encountered in various slippy 
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polymer flows, is therefore important in more physically realistic 
simulations. 
 

Table. 2 Values of ( ,0)f   for different ,f TS S and  

fS  
TS  

( ,0)f   

1.0   2.0   3.0   

0.0 

1.0 

0.3473 0.4415 0.4506 

0.1 0.3376 0.4280 0.4344 

0.2 0.3280 0.4144 0.4182 

0.3 0.3183 0.4009 0.4020 

0.5 0.2989 0.3738 0.3694 

0.8 0.2699 0.3330 0.3204 

1.0 0.2504 0.3058 0.2876 

0.5 

0.0 0.3382 0.4241 0.4218 

0.5 0.3187 0.3991 0.3957 

1.5 0.2790 0.3481 0.3427 

2.0 0.2587 0.3222 0.3157 

2.5 0.2381 0.2958 0.2884 

3.0 0.2172 0.2690 0.2606 
 

Table. 3 Values of ( ,0)   for different ,f TS S and  

fS  
TS  

( ,0)   

1.0   2.0   3.0   

0.0 

1.0 

0.6521 0.5687 0.4466 

0.1 0.6641 0.5795 0.4554 

0.2 0.6761 0.5904 0.4638 

0.3 0.6883 0.6013 0.4727 

0.5 0.7125 0.6234 0.4904 

0.8 0.7492 0.6563 0.5173 

1.0 0.7726 0.6786 0.5351 

0.5 

0.0 0.8421 0.7374 0.5814 

0.5 0.7767 0.6798 0.5355 

1.5 0.6494 0.5678 0.4462 

2.0 0.5875 0.5134 0.4029 

2.5 0.5272 0.4601 0.3607 

3.0 0.4680 0.4080 0.3194 

 
Tables 4-5, presents the influence of magnetic parameter (M) 

and Weissenberg number (We), on skin friction and Nusselt number, 
along with a variation in the Prandtl number (Pr). A significant 
depletion is caused in skin friction with greater magnetic field, which 
corresponds to a retardation of the boundary layer flow. The maximum 
skin friction therefore is achieved only in the absence of a radial   
magnetic field i.e. M = 0. For M < 1, the magnetic body force is 
exceeded by the viscous hydrodynamic force in the regime. For M > 1 
the contrary is the case. The reduction in Nusselt number with greater 
M values implies that the transfer of heat from the boundary layer to the 
wall (cone surface) is reduced. This physically indicates therefore that 
greater heat is conveyed away from the cone surface to the fluid which 
explains the higher temperatures associated with strong magnetic field 
in the earlier computations. Magnetic field is therefore a potent 
mechanism for controlling thermal and velocity characteristics in 
electrically-conducting polymer dynamics. With progressively greater 
We values the elasticity in the polymer is increased. This aids in 

momentum development and accelerates the boundary layer flow. The 
Weissenberg number indicates the degree of anisotropy or orientation 
generated by the deformation, and is appropriate to describe flows with 
a constant stretch history, and therefore appropriate for polymers. A 
strong reduction in Nusselt number arises with an elevation in 
Weissenberg number i.e. heat is transferred from the cone surface to the 
boundary layer, wherein temperature (and thermal boundary layer 
thickness) are found to be enhanced with Wiessenberg number. The 
cone surface is therefore effectively cooled with greater Weissenberg 
numbers. Increasing Prandtl number (Pr) reduces skin friction but 
enhances heat transfer rate (Nusselt number) and furthermore provide 
benchmarks against which other researchers may validate extensions of 
the present model. 

 
Table. 4 Values of ( ,0)f   for different values of 

,We M and Pr  

We  M  
( ,0)f   

Pr 7  Pr 10  Pr 20  Pr 25  
0.0 

1.0 

0.2960 0.2730 0.2294 0.2157 

0.5 0.3008 0.2769 0.2316 0.2176 

1.0 0.3049 0.2803 0.2341 0.2198 

2.0 0.3122 0.2864 0.2382 0.2234 

3.0 0.3185 0.2916 0.2417 0.2265 

4.0 0.3240 0.2964 0.2449 0.2294 

0.3 

0.0 0.3760 0.3444 0.2870 0.2698 

0.5 0.3302 0.3029 0.2529 0.2376 

1.0 0.2989 0.2753 0.2308 0.2170 

2.0 0.2538 0.2352 0.1988 0.1872 

3.0 0.2203 0.2052 0.1745 0.1645 

4.0 0.1936 0.1809 0.1546 0.1457 

 
 

Table. 5 Values of ( ,0)   for different values of 

,We M and Pr  

We  M  
( ,0)   

Pr 7  Pr 10  Pr 20  Pr 25  

0.0 

1.0 

0.7145 0.8098 1.0370 1.1239 

0.5 0.7104 0.8063 1.0322 1.1190 
1.0 0.7072 0.8028 1.0289 1.1158 

2.0 0.7012 0.7966 1.0226 1.1095 

3.0 0.6961 0.7912 1.0168 1.1036 

4.0 0.6917 0.7865 1.0117 1.0986 

0.3 

0.0 0.8013 0.9019 1.1364 1.2267 

0.5 0.7497 0.8463 1.0747 1.1628 

1.0 0.7125 0.8089 1.0330 1.1213 

2.0 0.6568 0.7512 0.9736 1.0593 

3.0 0.6144 0.7072 0.9277 1.0122 

4.0 0.5799 0.6710 0.8902 0.9735 

6. CONCLUSIONS 

         Motivated by applications in thermal processing of magnetic 
polymers in coating systems, a mathematical model has been developed 
for the magneto-hydrodynamic flow and heat transfer in an electro-
conductive viscoelastic Williamson fluid from a vertical permeable 
cone body under radial magnetic field. To simulate slippery polymer 
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interfacial effects, both thermal and momentum slip have been 
incorporated into the model. The normalized, nonlinear two-
dimensional, steady state boundary layer equations for momentum and 
heat (energy) have been solved with a finite difference scheme, with 
verification of computational accuracy demonstrated via benchmarking 
with earlier non-magnetic, no slip, Newtonian solutions in the literature. 
The present computations have shown that  increasing Weissenberg 
number accelerates the near-wall flow and also increases temperatures 
(i.e reduces Nusselt number). Stronger magnetic parameter serves to 
decelerate the flow and to elevate temperatures i.e. decreases Nusselt 
numbers. With greater momentum slip the flow is accelerated near the 
cone surface whereas temperatures are depressed i.e. Nusselt numbers 
are increased. With greater thermal slip surface skin friction and 
Nusselt number are both significantly suppressed. The present work has 
ignored transient and porous medium effects in viscoelastic flow (2010) 
which will be considered in the future. 
 
NOMENCLATURE 
 

A    Half angle of the cone 
B0   externally imposed radial magnetic field 
Cf   skin friction coefficient 
f   non-dimensional steam function 
Gr    Grashof number 
g    acceleration due to gravity 
k    thermal conductivity of fluid 
K0    thermal jump factor 
Nu    local Nusselt number 
M         magnetic body force parameter 
Pr       Prandtl number  
N0    velocity (momentum) slip factor 
Sf    non-dimensional velocity slip parameter 
ST    non-dimensional thermal jump parameter 
T    temperature 
u, v     non-dimensional velocity components along the x- and y- 

  directions, respectively 
We      Weissenberg (viscoelasticity) number 
x     stream wise coordinate 
y  transverse coordinate  
 
Greek Symbols  
 

      thermal diffusivity 
      coefficient of thermal expansion  

       dimensionless transverse coordinate  

      kinematic viscosity 

      non-dimensional temperature 
      density of viscoelastic fluid 

      electrical conductivity of viscoelastic fluid 
      dimensionless steam wise coordinate 

      dimensionless stream function 

      time-dependent material constant 
 
Subscripts 
  
w     conditions on the wall 
       Free stream conditions 
 

Acknowledgment 
 

The authors appreciate the constructive comments of the reviewers 
which led to definite improvement in the paper. The first two authors are 
thankful to the management of Madanapalle Institute of Technology & 
Science, Madanapalle for providing research facilities in the campus.  
 
 

REFERENCES 

Alam, M.M., Alim, M.A., and Chowdhury, M.M.K., 2007, “Free 
Convection from a Vertical Permeable Circular Cone with Pressure 
Work and Non-Uniform Surface Temperature,” Nonlinear Analysis: 
Modelling and Control, 12(1), 21–32.  
 
Alkasasbeh, H.T., Salleh, M.Z., Nazar, R., and Pop, I., 2014, 
“Numerical Solutions of Radiation Effect on Magnetohydrodynamic 
Free Convection Boundary Layer Flow about a Solid Sphere with 
Newtonian Heating,” Applied Mathematical Sciences, 8(140), 6989-
7000. 
http://dx.doi.org/10.12988/ams.2014.48649  
 
Aly, A.A., 2015, “Heat Treatment of Polymers: a review,” Int. J. 
Materials Chemistry and Physics, 1(2), 132-140. 
 
Amanulla, C.H., Nagendra, N., Surya Narayana Reddy, M., Subba Rao, 
A., and Anwar Bég, O., 2017, “Mathematical Study of Non-Newtonian 
Nanofluid Transport Phenomena from an Isothermal Sphere,” Frontiers 
in Heat and Mass Transfer, 8, 29. 
http://dx.doi.org/10.5098/hmt.8.29  
 
Amanulla, C.H., Nagendra, N., and Suryanarayana Reddy, M., 2017, 
“Multiple Slip Effects on MHD and Heat Transfer in a Jeffery Fluid 
over an Inclined Vertical Plate,” International Journal of Pure and 
Applied Mathematics, 113(7), 137-145. 
 
Amanulla, C.H., Nagendra, N., and Surya Narayana Reddy, M., 2017, 
“Numerical Study of Thermal and Momentum Slip  Effects on MHD 
Williamson Nanofluid from an Isothermal Sphere,” Journal of 
Nanofluids, 6(6), 1111–1126. 
https://doi.org/10.1166/jon.2017.1405  
 
Bég, O.A., Keimanesh, M., Rashidi, M.M., and Davoodi, M., 2013, 
“Multi-Step DTM Simulation of Magneto-Peristaltic Flow of a 
Conducting Williamson Viscoelastic Fluid,” Int. J. Appl. Math. Mech. 
9(6), 1-19. 
 
Bég, O.A., Uddin, M.J., Rashidi, M.M., and Kavyani, N., 2014, 
“Double-Diffusive Radiative Magnetic Mixed Convective Slip Flow 
with Biot and Richardson Number Effects,” J. Engineering 
Thermophysics, 23(2), 79–97.  
http://dx.doi.org/10.1134/S1810232814020015  
 
Bég, O.A., Zueco, J., Norouzi, M., Davoodi, M., Joneidi, A.A., and 
Elsayed, A.F., 2014, “Network and Nakamura Tridiagonal 
Computational Simulation of Electrically-Conducting Biopolymer 
Micro-Morphic Transport Phenomena,” Computers in Biology and 
Medicine, 44, 44–56. 
http://dx.doi.org/10.1016/j.compbiomed.2013.10.026  
 
Bég, T.A., Bég, O.A., Rashidi, M.M., and Asadi, M., 2012, “Homotopy 
Semi-Numerical Modelling of Nanofluid Convection Flow from an 
Isothermal Spherical Body in a Permeable Regime”, Int. J. Microscale 
Nanoscale Therm. Fluid Transp. Phenom., 3(4), 237–265. 
  
Black, W.B., 2000, “Wall Slip and Boundary Effects in Polymer Shear 
Flows,” PhD Thesis, Chemical Engineering, University of Wisconsin – 
Madison, USA. 
 
Brochard, F., and Gennes, P.G.D., 1992, “Shear-Dependent Slippage at 
a Polymer/Solid Interface,” Langmuir, 8(12), 3033-3037. 
http://dx.doi.org/10.1021/la00048a030  
  
Cheng, C.Y., 2011, “Natural Convection Boundary Layer Flow of a 
Micropolar Fluid over a Vertical Permeable Cone with Variable 
Temperature,” Int. Commun. Heat Mass Transf. 30(4), 429–433. 



Frontiers in Heat and Mass Transfer (FHMT), 8, 40 (2017)
DOI: 10.5098/hmt.8.40

Global Digital Central
ISSN: 2151-8629

    10 

Dapra, I., and Scarpi, G., 2007, “Perturbation Solution for Pulsatile 
Flow of a Non-Newtonian Williamson Fluid in a Rock Fracture,” Int. J. 
Rock Mechanics and Mining Sciences, 44(2), 271-278. 
http://dx.doi.org/10.1016/j.ijrmms.2006.07.003   
 
Devi, S.P.A., and Devi, R.U., 2011, “Soret and Dufour Effects on MHD 
Slip Flow with Thermal Radiation over a Porous Rotating Infinite 
Disk,” Comm. Nonlinear Science and Numerical Simulation, 16(4), 
1917-1930. 
http://dx.doi.org/10.1016/j.cnsns.2010.08.020  
 
Gaffar, S.A., Prasad, V.R., Reddy, S.K., and Bég, O.A., 2016, 
“Magnetohydrodynamic Free Convection Boundary Layer Flow of 
Non‑ Newtonian Tangent Hyperbolic Fluid from a Vertical Permeable 
Cone with Variable Surface Temperature,” J. Braz. Society Mech. Sci. 
Eng., 39(1), 101–116.  
http://dx.doi.org/10.1007/s40430-016-0611-x  
 
Hatzikiriakos, S.G., and Dealy, J.M., 1992, “Wall Slip of Molten High 
Density Polyethylenes. II. Capillary Rheometer Studies,” J. Rheology, 
36(4), 703-741.  
http://dx.doi.org/10.1122/1.550313   
 
Hatzikiriakos, S.G., and Dealy, J.M., 1991, “Wall Slip of Molten High 
Density Polyethylene. I. Sliding Plate Rheometer Studies,” J. Rheol., 
35(4), 497-523.  
http://dx.doi.org/10.1122/1.550178   
 
Harish Babu, D., Satya Narayana, P.V., (2016), “Joule Heating Effects 
on MHD Mixed Convection of a Jeffrey Fluid over a Stretching Sheet 
with Power Law Heat Flux: A Numerical Study ,” Journal of Magnetism 
and Magnetic Materials, 412, 185–193. 
https://doi.org/10.1016/j.jmmm.2016.04.011  
 
Hayat, T., Shafiq, A., and Alsaedi, A., 2016, “Hydromagnetic Boundary 
Layer Flow of Williamson Fluid in The Presence of Thermal Radiation 
and Ohmic Dissipation,” Alexandria Engineering J., 55(3), 2229–2240. 
http://dx.doi.org/10.1016/j.aej.2016.06.004   
  
Hossain, M.A., and Paul, S.C., 2001, “Free Convection from a Vertical 
Permeable Circular Cone with Non-Uniform Surface Temperature,” 
Acta Mech., 151(1), 103–114. 
http://dx.doi.org/10.1007/BF01272528  
    
Jamil, M., and Khan, N.A., 2011, “Slip Effects on Fractional 
Viscoelastic Fluids,” Int. J. Differential Equations, 2011(2011), 1-19. 
http://dx.doi.org/10.1155/2011/193813  
    
Kasim, A.R.M., Mohammad, N.F., Anwar, I., and Shafie, S., 2013, 
“MHD Effect on Convective Boundary Layer Flow of a Viscoelastic 
Fluid Embedded in Porous Medium with Newtonian Heating,” Recent 
Advances in Mathematics, 4, 182-189. 
  
Khan, N.A., and Khan, H., 2014, “Boundary Layer Flows of Non-
Newtonian Williamson Fluid,” Nonlinear Engineering, 3(2), 107–115. 
http://dx.doi.org/10.1515/nleng-2014-0002  
   
Lim, F.J., and Schowalter, W.R., 1998, “Wall Slip of Narrow Molecular 
Weight Distribution Polybutadienes,” J. Rheol., 33(8), 1359-1382. 
http://dx.doi.org/10.1122/1.550073  
   
Megahed, A.M., 2012, “Variable Viscosity and Slip Velocity Effects on 
The Flow and Heat Transfer of a Power-Law Fluid over a Non-Linearly 
Stretching Surface with Heat Flux and Thermal Radiation,” Rheologica 
Acta, 51(9), 841–847.   
http://dx.doi.org/10.1007/s00397-012-0644-8   

Meng, H., and Hu, J., 2010, “A Brief Review of Stimulus-Active 
Polymers Responsive to Thermal, Light, Magnetic, Electric, and 
Water/Solvent Stimuli,” J. Intelligent Material Systems and Structures, 
21(9), 859-885. 
https://doi.org/10.1177/1045389X10369718  
 
Migler, K.B., Hervet, H., and Leger, L., 1993, “Slip Transition of a 
Polymer Melt Under Shear Stress,” Physical Review Letters, 70, 287-
290.  
https://doi.org/10.1103/PhysRevLett.70.287  
 
Na, T.Y., and Chiou, J.P., 1979, “Laminar Natural Convection over a 
Frustum of a Cone,” Appl. Sci. Res. 35(5), 409–421.  
http://dx.doi.org/10.1007/BF00420389  
   
Nadeem, S., and Saleem, S., 2015, “Analytical Study of Third Grade 
Fluid over a Rotating Vertical Cone in The Presence of Nanoparticles,” 
Int. J. Heat Mass Transf., 85, 1041–1048. 
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.02.007  
  
Nagendra, N., Reddy M.V.S, and Jayaraj, B., 2008, “Peristaltic Motion 
of a Power-Law Fluid in an Asymmetric Vertical Channel,” Journal of 
Interdisciplinary Mathematics, 11(4), 505-519. 
http://dx.doi.org/10.1080/09720502.2008.10700577  
 
Noghrehabadi, A., Behseresht, A., and Ghalambaz, M., 2013, “Natural 
Convection Flow of Nanofluids over a Vertical Cone Embedded in 
Non-Darcy Porous Media,” J. Thermophys. Heat Transf. 27(2), 334–

341. 
http://dx.doi.org/10.2514/1.T3965  
 
Piau, J.M., Kissi, N.E., Toussaint, F., and Mezghani, A., 1995, 
“Distortions of Polymer Extrudates and Their Elimination Using 
Slippery Surfaces,” Rheol. Acta, 34(1), 40-57. 
http://dx.doi.org/10.1007/BF00396053  
   
Piau, J.M., and Kissi, N.E., 1994, “Measurement and Modelling of 
Friction in Polymer Melts During Macroscopic Slip at The Wall,” J. 
Non-Newtonian Fluid Mech., 54, 121-142.   
http://dx.doi.org/10.1016/0377-0257(94)80018-9  
 
Pop, I., and Na, T.Y., 1999, “Natural Convection over a Vertical Wavy 
Frustum of a Cone,” Int. J. Non Linear Mech., 34(5), 925–934. 
http://dx.doi.org/10.1016/S0020-7462(98)00066-3  
 
Prasannakumara, B.C., Gireesha, B.J., Gorla, R.S.R., and 
Krishnamurthy, M.R., 2016, “Effects of Chemical Reaction and 
Nonlinear Thermal Radiation on Williamson Nanofluid Slip Flow over 
a Stretching Sheet Embedded in a Porous Medium,” J. Aerosp. Eng., 
29(5). 
http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000578  
  
Rao, K.S., and Rao, P.K., 2014, “Fully Developed Free Convective 
Flow of a Williamson Fluid Through a Porous Medium in a Vertical 
Channel,” Int. J. Conceptions on Computing and Information 
Technology, 2(1), 54-57. 
 
Rao, S.A., Amanulla, C.H., Nagendra, N., Surya Narayana Reddy, M., 
and Bég, O. A., 2017, “Computational Analysis of Non-Newtonian 
Boundary Layer Flow of Nanofluid Past a Vertical Plate with Partial 
Slip ,” Modelling, Measurement and Control B, 86(1), 271-295. 
 
Rao, S.A., Amanulla, C. H., Nagendra, N., Bég, O. A., Kadir, A., 2017, 
“Hydromagnetic flow and Heat Transfer in a Williamson Non-
Newtonian fluid from a Horizontal Circular Cylinder with Newtonian 
Heating,” Int. J. Appl. Comput. Math., 1-21 
http://dx.doi.org/10.1007/s40819-017-0304-x 



Frontiers in Heat and Mass Transfer (FHMT), 8, 40 (2017)
DOI: 10.5098/hmt.8.40

Global Digital Central
ISSN: 2151-8629

    11 

Rao, S.A., Amanulla, C.H., Nagendra, N., Surya Narayana Reddy, M., 
and Bég, O. A., 2017, “Hydromagnetic Non-Newtonian Nanofluid 
Transport Phenomena Past an Isothermal Vertical Cone with Partial 
Slip: Aerospace Nanomaterial Enrobing Simulation,” Heat Transfer – 
Asian Research. 
http://dx.doi.org/10.1002/htj.21299  
 
Rojas, J.A., and Santos, K., 2011, “Magnetic Nanophases of Iron Oxide 
Embedded in Polymer. Effects of Magneto-Hydrodynamic Treatment 
of Pure and Wastewater,” 5th Latin American Congress on Biomedical 
Engineering CLAIB 2011 May 16-21, 2011, Habana, Cuba. 
 
Sajid, M., Iqbal, S.A., Naveed, M., and Abbas, Z., 2016, “Joule Heating 
and Magneto Hydrodynamic Effects on Ferrofluid (Fe3O4) Flow in a 
Semi-Porous Curved Channel,” J. Molecular Liquids, 222, 1115-1120. 
http://dx.doi.org/10.1016/j.molliq.2016.08.001  
 
Sato, S., Oka, K., and Murakami, A., 2004, “Heat Transfer Behavior of 
Melting Polymers in Laminar Flow Field,” Polymer Engineering and 
Science, 44(3), 423-432.  
http://dx.doi.org/10.1002/pen.20038 
 
Satya Narayana, P.V., and Venkateswarlu, B., 2016, “Heat and Mass 
Transfer on MHD Nanofluid Flow Past a Vertical Porous Plate in a 
Rotating System,” Frontiers in Heat and Mass Transfer, 7, 8. 
http://dx.doi.org/10.105098/hmt.7.8  
 
Satya Narayana, P.V., and Harish Babu, D., (2016), “Numerical Study 
of MHD Heat and Mass Transfer of a Jeffrey Fluid over a Stretching 
Sheet with Chemical Reaction and Thermal Radiation,” Journal of the 
Taiwan Institute of Chemical Engineers, 59, 18–25. 
http://dx.doi.org/10.1016/j.jtice.2015.07.014   
 
Sreenadha, S., Govardhana, P., and Kumar, Y.V.K.R., 2014, “Effects of 
Slip and Heat Transfer on The Peristaltic Pumping of a Williamson 
Fluid in an Inclined Channel,” Int. J. Appl. Sci. Eng., 12(2), 143-155. 
 
Stepanov, G.V., Abramchuk, S.S., Grishin, D.A., Nikitin, L.V., 
Kramarenko, E., and Khokhlov, A.R., 2007, “Effect of a Homogeneus 
Magnetic Field on The Viscoelastic Behavior of Magnetic Elastomers,” 
Polymer, 48(2), 488–495.  
http://dx.doi.org/10.1016/j.polymer.2006.11.044  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tripathi, D., Bég, O.A., and Curiel-Sosa, J.L., 2014, “Peristaltic Flow 
of Generalized Oldroyd- B Fluids with Slip Effects,” Computer 
Methods in Biomechanics Biomedical Engineering, 17(4), 433-442. 
http://dx.doi.org/10.1080/10255842.2012.688109  
 
Venkateswarlu, B. and Satya Narayana, P.V., 2016, “Influence of 
Variable Thermal Conductivity on MHD Casson Fluid Flow over a 
Stretching Sheet with Viscous Dissipation, Soret and Dufour Effects,” 
Frontiers in Heat and Mass Transfer, 7, 16. 
http://dx.doi.org/10.5098/hmt.7.16  
 
Yamaguchi, H., Zhang, X.R., Higashi, S., and Li, M., 2008, “Study on 
Power Generation Using Electro-Conductive Polymer and Its Mixture 
with Magnetic Fluid,” J. Magnetism and Magnetic Materials, 320(7), 
1406–1411.  
http://dx.doi.org/10.1016/j.jmmm.2007.12.014  
    
Yarin, A.L., and Graham, M.D., 1998, “A Model for Slip at 
Polymer/Solid Interfaces,” J. Rheol., 42(6), 1491-1504.  
http://dx.doi.org/10.1122/1.550898  
 
Yih, K.A., 1999, “Effect of Radiation on Natural Convection about a 
Truncated Cone,” Int. J. Heat Mass Transf. 42(23), 4299–4305. 
http://dx.doi.org/10.1016/S0017-9310(99)00092-7    

Yonemura, H., Takata, M., and Yamada, S., 2014, “Magnetic Field 
Effects on Photoelectrochemical Reactions of Electrodes Modified with 
Thin Films Consisting of Conductive Polymers,” J. Appl. Phys. 53. 

Zengyu, X., Chuanjie, P., Weihong, J., Wenhao, W., Wenzhong, L., and 
Jiapu, Q., 1998, “MHD Effects Caused by Insulator Coating 
Imperfections,” Fusion Engin. Design, 39-40(1), 739- 798. 
http://dx.doi.org/10.1016/S0920-3796(98)00303-2  
 
Zueco, J., Bég, O.A., and Ghosh, S.K., 2010, “Unsteady Natural 
Convection of a Short-Memory Viscoelastic Fluid in a Non-Darcian 
Regime: Network Simulation,” Chemical Engineering 
Communications, 198(2), 172-190. 
http://dx.doi.org/10.1080/00986445.2010.499842 


