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ABSTRACT 

A computational study has been made for a three dimensional double diffusive convection with molten Pb-Sn by using finite volume method. In this 

work, two vertical walls have different temperature and different concentration while remaining walls are adiabatic. Buoyancy ratio, which changes 

between N = -0.1 and -10, is the main governing parameter during work. Other parameters are taken as fixed with Pr = 0.02, Le = 7500 and Ra = 

5×103. It is found that changing of buoyancy parameter becomes more effective on heat transfer than that of mass transfer.  
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1. INTRODUCTION 

In engineering applications, double diffusive convection problems finds 

important place such as geophysical flows, the migration of moisture in 

fibrous insulation, bio-chemical contaminants transport in the 

environment, underground disposal of nuclear wastes, crystal growth 

processes and different metalurgical applications.   

Hydromagnetic double-diffusive convection of a radiatively 

participating fluid inside a rectangular enclosure is studied 

computationaly by Borjini et al. (2005). They observed that the 

oscillatory flow, due to competition between compositional and thermal 

buoyancy forces, occurs only in thermally dominated flow and can be 

damped and stabilized by increasing of the external magnetic field. This 

increasing diminishes the delay between the two compositional 

recirculations, which seems to be necessary to the stabilization process. 

Nishimura et al. (1994) describes the occurrence and development 

of double-diffusive convection in the liquid phase during solidification 

of NH&H20 in a cavity with lateral cooling. They observed that the 

concentration in each cell becomes nearly constant, except for the initial 

development of cells. The fluid in the diffusive interface is initially 

constant, but the interface changes into a new cell under a fixed 

condition. A 3D numerical analysis by using vorticity–vector potential 

formulations with finite-volume method has been performed to study 

the double-diffusive convection in a stack of cubic enclosures by Abidi 

et al. (2008).  Their findings showed that the effect of heat and mass 

diffusive walls differs between the case of thermally dominated flow 

and the compositionally dominated one. The effect of double-diffusive 

natural convection of water in a partially heated closed space with Soret 

and Dufour coefficients around the density maximum is studied by 

Nithyadevi and Yang (2009) by using control volume technique. They 

calculated the flow pattern and heat and mass transfer for different 

governing parameters.  

Gholizadeh et al. (2016) studied of double-diffusive natural 

convection in a trapezoidal enclosure with a partial heated active right 

sidewall by using the finite difference method. Wang et al. (2016) made 

a work on oscillatory double-diffusive convection in horizontal cavity 

with Soret and Dufour effects. They used SIMPLE algorithm with 

QUICK scheme in non-uniform staggered grid distribution. They 

showed that double-diffusive convection develops from steady-state 

convection-dominated, periodic oscillatory, quasi-periodic oscillatory to 

chaotic flow, and finally return to periodic oscillation as buoyancy ratio 

increases. Bardan et al. (2000) solved nonlinear double diffusive 

convection problem in 2D closed spaces driven by lateral temperature 

and concentration differences with a combination of both analytical and 

numerical techniques. Maatki et al. (2016) thermosolutal convection of 

fluid in a cubic closed space filled with a binary mixture is studied. 

They used the formalism vector potential vorticity in a three-

dimensional configuration by using the finite volume method. They 

observed that the moderate increase in the Ha number, decreases the 

amplitude of the transversal component. Maatki et al. (2014) studied the 

effect of the magnetic field inclination on three dimensional double 

diffusive convection in a cubical closed space filled with binary 

mixture. They showed that the increasing of the inclination angle of the 

magnetic field damped the flow.  

Ibrahim and Lemonnier (2010) worked on the coupling of transient 

double diffusive convection with radiation numerically in a square 

closed space filled with a mixture of N2 and CO2. They found that the 

gas radiation modifies the structure of the velocity and thermal fields 

and accelerates the convergence to steady state in aiding case. Maatki et 

al. (2013) present a computational treatment of a double diffusive 

convection in a three dimensional closed space filled with a binary 

mixture. In their study, the vertical walls are given different 

temperatures and concentrations by using finite volume method. They 

observed that increasing of the intensity of the magnetic field causes a 

monotonic reduction of intensities of the main and three dimensional 

transverse flows. Entropy generation of double diffusive natural 

convection is analyzed for a three dimensional differentially heated 

closed space by Maatki et al. (2013). They showed that both Ra number 

and buoyancy ratio play dominant role on entropy generation and heat 

and mass transfer. Teamah (2008) worked computationally on double-

diffusive convective laminar flow in a rectangular closed space with the 
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upper and lower surfaces being insulated including uniform magnetic 

field in the presence of heat generation or absorption. He found that the 

average Nu and Sh numbers have minimum values at buoyancy ratio as 

N = 1. 

Ghenai et al. (2003) made experimental study on the solidification 

of a binary mixture of ammonium chloride and water (NH4Cl–H2O) in a 

differentially heated closed space. Their main aim was to investigate the 

effect of the initial concentration of ammonium chloride on the 

solidification. They used PIV technique in their experiments. They 

observed that the growth rate of the frozen layer is almost double at the 

bottom of the cavity. Ghachem et al. (2012) obtained numerical results 

by using finite volume method of double-diffusive natural convection in 

a 3D solar distiller for laminar flow. Also, they obtained entropy 

generation results. They found that the variation of the buoyancy ratio 

affects significantly the distributions of isotherms, iso-concentrations 

and the structure of the flow. The flow structure is 3D at N = 1. Other 

related works can be found in references of Sheikholeslami (2017a and 

2017b), Sheikholeslami and Chamkha (2017), Sheikholeslami and 

Rokni (2017a and 2017b) and Sheikholeslamia and Shehzad (2017). 

The main objective of this paper is to simulate the three 

dimensional diffusive convection for molten Pb-Sn by using a 

computational technique.  The problem of molten alloy in three 

dimensional closed space is still not extensively studied in literature  In 

this computational work, a study is proposed to analyse  the double 

diffusive natural convection with horizontal temperature and 

concentration gradients in a 3D closed space for different buoyancy 

ratio in wide range. 

2. DEFINITION OF PHYSICAL MODEL  

Physical model is presented in Fig. 1 with boundary conditions and 

coordinates. The closed space is mainly a cubical cavity. The left side 

of the cavity has height concentration and hot wall while the right side 

of the cavity has cold wall and low concentration and remaining walls 

are adiabatic. The gravity acts in negative y direction. The fluid 

contained in the cavity is assumed incompressible and the flow follows 

the Boussinesq approximation. 
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 Fig. 1 Considered physical model, boundary conditions and 

coordinates; (a): 3D configuration; (b) z = 0.5 plan 

3. CALCULATIONS 

The equations describing the double diffusive natural convection 

are the conservation of mass Eq.(1),  momentum Eq.(2), energy Eq.(3) 

and species diffusion Eq.(4) as: 
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In order to eliminate the pressure terms, we had recourse to the 

vorticity-vector potential formalism )( ωψ
��

−  in a 3-D configuration. 

The vector potential and the vorticity are, respectively, defined by the 

two following relations: 
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In the equations (1, 2, 3, 4 and 5), time 't , velocity 'V
�

, the stream 

function 'ψ
�

, the vorticity 'ω
�

, are put respectively in their 

dimensionless forms by α2
W , Wα , α  and α2

W  :  and the 

dimensional temperature and concentration are respectively defined by: 

 

)''/()''( chc TTTTT −−=  and )''/()''( lhl CCCCC −−= . 

 

By application of the )( ωψ
��

−  formalism, the dimensionless 

governing equations for the conservation of mass, momentum, energy 

and species diffusion, together in the Cartesian coordinates system 

(x,y,z), are written as follow:   

ψω
�� 2∇=−
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Where αν /Pr =  is the Prandtl number,
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β  is the ratio of buoyancy 

forces, and  
Pr

Sc

D
Le ==

α  the Lewis number (Sc is the Schmidt number). 

Thermal and diffusive gradient between the active walls of the 

cavity causes entropy generation in the system. The local entropy 

generation in a three-dimensional flow is given by: 
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Where Co and To are respectively the references concentration and 

temperature. 

The dimensionless local entropy generation can be written as: 

 

difthsdifsfrsthsS NNNNN −−−−− +++=  (11) 
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Where thSN − ., frSN − , difSN −  and difthSN −−  are respectively 

defined as local dimensionless irreversibility generation due to heat 

transfer, fluid friction, mass transfer by pure concentrations gradients 

and mass transfer by mixed product of concentration and thermal 

gradients. 

1ϕ , 2ϕ  and 3ϕ   are irreversibility’s distribution ratios related to 

velocity, concentrations and mixed product of concentration and 

thermal gradients, respectively. 

Dimensionless irreversibility distribution ratios ( 1ϕ , 2ϕ  and 3ϕ  ), are 

given by: 
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In the present work, the dimensionless irreversibility ratios are fixed 

respectively at
4

1 10−=ϕ , 5.02 =ϕ and
2

3 10−=ϕ  as in Maatki et al. 

(2014). 

Total dimensionless entropy generation is obtained by a numerical 

integration of dimensionless local entropy generation through the entire 

volume of the cavity as  

( )

difthSdifSfrSthStotS

dv
v
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v
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 (17) 

The control volume finite difference method is used to discretize 

Eqs. (6) - (9). The central-difference scheme for treating convective 

terms and the fully implicit procedure to discretize the temporal 

derivatives are retained. The grid is uniform in all directions with 

additional nodes on boundaries. The successive relaxation iterating 

scheme is used to solve the resulting non-linear algebraic equations.  

The boundary conditions of the dimensionless parameters are 

• Temperature 
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∂

∂

n

T
 on other walls (18) 

• Concentration 
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0=== zyx VVV  on all walls (26) 

Local Nusselt and Sherwood numbers are given as follows  
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The average values of Nusselt and Sherwood numbers, on the 

isothermal walls are expressed by: 

 

∫ ∫ ∂∂=
1

0

1

0

.. zyNuNuav
;  ∫ ∫ ∂∂=

1

0

1

0

... zyShShav
 (28) 

4. VALIDATION OF THE COMPUTER CODE 

The code is validated against the literature result of Bergman and 

Hyun (1996) by using stream function and concentration as given in 

Fig. 2. As seen from the figures, obtained both flow field and 

concentration results and Bergman and Hyun (1996) shows acceptable 

agreement. 

5. RESULTS AND DISCUSSION 

Double diffusive convection for molten Pb-Sn in a cubical cavity 

for different parameters as Prandtl number, Lewis number, Rayleigh 

number and buoyancy ratio. Iso-surfacess of temperature, mean Nusselt 

number and Sherwood number, iso-surfaces of concentration and 

trajectories are presented for these governing parameters.   
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Fig. 2 Stream function (on the left) and concentration (on the right) distributions for Ra = 100, N = -10 at: (a) t = 0.3, (b) t = 0.75, (c) t = 1.35  and 

(d) t = 3.15 for Pr = 0.02 and Le = 7500 

 

  
(a) (b) 

  
(c) (d) 

Fig. 3 Particles trajectories and Concentration for Ra = 100, N = -10 at: (a) t = 0.3, (b) t = 0.75, (c) t = 1.35 and (d) t = 3.15 for Pr = 0.02 and Le = 

7500 
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N=-0.1 N=-1 

  

N=-1.5 N=-2 

  
N=-3 N=-10 

Fig. 4 Velocity vector projection in z = 0.5 plan for Pr = 0.02, Le = 

7500, Ra = 5.103 and different N 

  
N=-0.1 N=-1 

  
N=-1.5 N=-2 

  
N=-3 N=-10 

Fig. 5 Some particles Trajectories for Pr = 0.02, Le = 7500 and Ra = 

5.103 and different N values  

   

N=-0.1 N=-1 N=-1.5 

   

N=-2 N=-3 N=-10 

Fig. 6 Iso-surfaces of concentration for Pr = 0.02, Le = 7500 and Ra = 5.103 and different N values
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Fig. 3 presents particle trajectories and concentration for Ra = 100, 

N = -10 at different time step and Pr = 0.02 and Le = 7500. As seen 

from the figure, the cavity is heated from the right side and 

concentration is also high at that point. At t = 0.3, the fluid start to 

enlarge from the bottom side, and it moves toward to other side with 

increasing time. In the same manner, the fluid moves from the top side 

of low concentrated side. For steady-state regime, concentration 

contours occupies almost whole space. As seen also from particle 

trajectories, multiple cells are formed inside the closed space and there 

is a transition from a constant z-plan to another. 

Fig. 4 illustrates the effect of N value for Pr = 0.02, Le = 7500 and 

Ra = 5.103. As shown from this figure, number of circulation inside the 

fluid strongly depended the buoyancy ratio (N). As well known that the 

buoyancy ratio is defined as the ratio of buoyancy due to concentration 

difference to buoyancy ratio due to temperature difference. In other 

words, single cell is formed for N = -1 and -1.5 and cells are formed at 

corners. The flow shape exhibits a complex distribution but almost 

parallelogram shaped distribution is observed for N = -3 and -10 

(solutally dominated regime). This particle movement can be seen 

clearly in Fig. 5. Some particle trajectories for Pr = 0.02, Le = 7500 and 

Ra = 5.103 are presented for different N values in Fig. 5. As seen from 

the figure, single circulation cell is formed and it shows almost two-

dimensional variation. In case of N < - 1, different circulation cells are 

formed especially at corners. For N = -3 and -10 diagonal variation is 

obtained in center of the closed space. 

 

   

N=-0.1 N=-1 N=-1.5 

   

N=-2 N=-3 N=-10 

Fig. 7 Iso-surfaces of temperature for Pr = 0.02, Le = 7500 and Ra = 5.103 and different N values 

 Fig. 6 displays the iso-surface concentration at Pr = 0.02, Le = 

7500 and Ra = 5.103 are presented for various N values. As can be seen 

from the figure, concentration distribution becomes chaotic for the 

absolute lower value of buoyancy ratio up to N = -2. For the lower 

values of N, namely N < 1, the flow is mainly conducted by thermal 

volume forces. The fluid flow is characterized by thermal vortex in the 

core region of the closed space shifted toward the right active wall (cold 

surface with light concentration) and turning clockwise direction. Iso-

surfaces of temperature is presented for different N values at Pr = 0.02, 

Le = 7500 and Ra = 5.103 in Fig. 7. Temperature distribution is almost 

same for N = -2 to N = -10. It means that changing of lower N values 

becomes insignificant on temperature distribution. As seen from the 

figure, temperature distribution becomes almost constant for N ≥ -2. 

Temperature contours are distorted for the higher N values. 

Fig. 8 is plotted to show the variation of mean Nusselt number and 

Sherwood number with N values. It is seen from the figure that Mean 

Nusselt number is decreased up to N = 0 and it increases with 

increasing of positive values of N values. On the contrary, Sherwood 

number becomes almost constant for all values of N parameter.  Fig. 9 

illustrates the local entropy generation due to concentration gradient 

irreversibility for the parameters of Ra = 100, N = -10, Pr = 0.02 and Le 

= 7500 at different time steps. At the beginning of the time, the fluid 

started to penetrate into the cavity started from left top and right bottom 

side. They are almost parallel to each other. Penetration of entropy 

generation contours increases with increasing of time. And then, 

distribution of entropy contours turn to left bottom and right top 

corners. 
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Fig. 8 Variation mean Nusselt and Sherwood number for different N 

values at Ra = 5.103 
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(a) (b) 

  

(c) (d) 

Fig. 9 Local Entropy generation due to concentration gradient 

irreversibility difSN −  for Ra = 100 and N = -10 at (a) t = 0.3, (b) t = 

0.75, (c) t = 1.35 and (d) t = 3.15 for Pr = 0.02 and Le = 7500 

 

 

  
(a) (b) 

  
(c) (d) 

 
Fig. 10 Local Entropy generation due to temperature gradient 

irreversibility thSN −  for Ra = 100, N = -10 at:(a) t = 0.3, (b) t = 0.75, 

(c) t = 1.35 and (d) t = 3.15 for Pr = 0.02 and Le = 7500 

 

 

  

(a) (b) 

  

(c) (d) 

Fig. 11 Local Entropy generation due to viscous effect irreversibility 

frSN −  for Ra = 100, N = -10 at:(a) t = 0.3, (b) t = 0.75, (c) t = 1.35 and 

(d) t = 3.15 for Pr = 0.02 and Le = 7500 

 

Fig. 10 shows the local entropy generation because of the gradient 

irreversibility with the same condition of Fig. 9. Entropy generation 

contours start to develop from left top and right bottom corners it 

penetrates into the cavity. In a similar way, local entropy generation due 

to viscous effect irreversibility is presented in Fig. 11 for different time 

steps. Finally, local entropy generation due to total irreversibility is 

given in Fig. 12. Based on obtained results in Fig. 11 the middle sides 

of the walls are active to produce entropy. On the contrary, entropy 

production contours are cumulated to the left top and right bottom side 

of the enclosure. They are presented according to time step. As seen 

from the figure, after t = 0.3, distribution of local entropy generation 

does not change with time. 

6. CONCLUSIONS 

A computational study of unsteady double diffusive convection has 

been performed in a three dimensional cubical cavity filled with molten 

Pb-Sn. The main findings can be drawn from the obtained results as 

 

• As seen from the work, the most important parameter on heat 

and mass transfer is buoyancy ratio. It is more effective on 

heat transfer than that of mass transfer.  

• Number of circulation cell is directly related with N 

parameter that number of cell enhances with decreasing of N 

parameter.  

• The problem must be solved for higher N parameter. Because 

two dimensional solution is not enough to understand the 

phenomena. 

• Entropy generation increases with increasing of time step 

inside the cavity and left top and right bottom corners are 

effective on that.  
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Fig. 12 Local Entropy generation due to total irreversibility SN  for Ra = 100, N = -10 for Pr = 0.02 and Le = 7500 at (a) t = 0.3, (b) t = 0.75, (c) t = 

1.35 and (d) t = 3.15 

 

NOMENCLATURE 

C           dimensionless species concentration ))''/()''( lhl CCCC −−  

C’h          high species concentration 

C’l         low species concentration 

D           species diffusivity 

g            acceleration of gravity 

k            thermal conductivity 

Le         Lewis number 

N          buoyancy ratio 

n
�

          unit vector normal to the control volume surface 

Nu         Nusselt number 

SN       dimensionless irreversibility 

Pr          Prandlt number 

R           ideal gas constant 

Ra         Rayleigh number 

S           entropy generation 

Sh         Sherwood number 

T           dimensionless temperature (= ))''/()''( chc TTTT −−  

t            dimensionless time (= 2
/'. Wt α ) 

T’h        hot wall temperature 

T’c       cold wall temperature 

u
�

          dimensionless velocity (= α/'.Wu
�

) 

V           entire volume of the cavity 

W          cavity side 

Greek symbols 

α  thermal diffusivity 

Tβ  coefficient of thermal expansion 

Cβ  coefficient of compositional expansion 

µ  dynamic viscosity 

 ν  kinematic viscosity 

ω
�

 dimensionless vorticity (= 2/'. Wαω
�

) 

ψ
�

 dimensionless stream function ( αψ /'
�

) 
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Superscripts 
‘                dimensional variable 
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