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ABSTRACT 

Present investigation represent the study of Cattaneo-Christov heat flux model on boundary layer flow of hyperbolic tangent fluid which is 

generalized non-Newtonian fluid model over a continuously moving porous surface with a parallel free stream velocity. Mathematical formulation is 

completed in the presence of Magneto-hydrodynamics (MHD). Suitable relations transform the partial differential equations into the ordinary 

differential equations. Nonlinear flow analysis is computed and velocity and temperature profiles are obtained by shooting algorithm. Graphs are 

plotted to analyze the behavior of various involved physical parameters. Furthermore both type of flows Sakaidis ( 1=λ ) and Blasius flow 

( )10 <≤ λ  are discussed significantly. Special emphasis has been given to flow patterns for both types of flows, presented through stream functions 

contour and 3D plots. Key finding includes: Boundary layer thickness is an increasing function of power law index  and Suction parameter  for the 

case of Blasius flow, opposite to Sakaidis flow and dwindle of thermal boundary layer is witness for rising values of Pr,γ and S , while augmented 

boundary layer is observed for increasing values of Mn, and fluid parameter. 
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1. INTRODUCTION 

This article investigates pseudo plastic fluids flow over a continuously 

moving surface taking into account Cattaneo-Christov heat flux. 

Applications of fluids flow on a moving surface are mostly encounter in 

polymer industries and many engineering processes such as cooling of 

polymer films or sheets, metallic plates on conveyers, filament 

disentangle incessantly from a die, long fiber travelling amid in feed 

roll and a wind up roll, etc. Sakiadis (1961) attempted to analyze 

boundary layer flow for an incompressible Newtonian fluid on an 

invariantly moving surface. He discovered that these types of flow 

problems leads to substantially different solutions compare to boundary 

layer flow on a stationary semi-infinite smooth shield examined by 

Blasius in (1908). Latterly, Pop in (1990) and (1992) highlighted some 

particular aspects of this flow. 

It is well known that most of the fluids occurring in practical 

applications such as molten metal or plastics, polymers, pulps, food etc. 

have rheological characteristics of non-Newtonian fluids. Considerable 

effort has been directed towards understanding their friction and heat 

transfer characteristics because of the growing usage of such fluids. 

However, in chemical engineering researchers and scientist encounter 

inelastic non-Newtonian fluids known as power law fluids where shear 

varies to a power function of deformation rate. Tangent hyperbolic fluid 

discussed by Ali (2005) is among many other power law fluids which 

describe rheological behavior of pseudo plastic fluids. Harfoush et al. 

(1989) contributed by numerical investigation on analyzing 

electromagnetic wave scattering from moving surfaces in one and two 

dimensions. Grosan et al. (2000) carried out similarity solutions for 

boundary layer flow on a moving surface in non-Newtonian fluids. 

Elliott et al. (1983) explained breakdown of boundary layer in detail 

which turned to be a major contribution to the present dramatically 

growing applications of flow on a moving surface. The consequence of 

transpiration on self alike border line layer flow on moving surfaces 

was exploded by Weidman et al. (2006). Latterly, Bachok et al. (2010) 

inspected such flow of nanofluids in a flowing fluid. 

Keeping the important of heat transfer in engineering procedures 

and industries, researchers and analyst are very keen in studying heat 

transfer attributes of different fluids in various flow problems. This 

phenomenon has been examined through established Fourier law of 

heat conduction (1822) till Cattaneo (1948) floated an adjustment in it 

by incorporating thermal relaxation effects. Christov (2008) upgraded 

his contribution by adding Oldroyd's upper convected derivatives. His 

modification is termed as Cattaneo-Christov heat flux model. Many 

researchers have examined the heat transfer of various fluids for 

different flow problems few are Han et al. (2014), Khan et al. (2015), 

Tibullo et al. (2011), Nadeem et al. (2016), Muhammad et al. (2017) 

and (2017), Li et al. (2016), Sui et al. (2016), Liu et al. (2017) and 

 

Frontiers in Heat and Mass Transfer 

 
Available at www.ThermalFluidsCentral.org  

* Corresponding author Email: ehtsham@uaar.edu.pk  



Frontiers in Heat and Mass Transfer (FHMT), 8, 25 (2017)
DOI: 10.5098/hmt.8.25

Global Digital Central
ISSN: 2151-8629

  2

Mukhopadhyary (2009). To the best of author's knowledge up till now 

no one has attempted to study the heat transfer by taking into account 

Cattaneo-Christov heat flux model for pseudo plastic fluid on travelling 

surface with an equivalent free stream. Present analysis is may be 

beneficial in academic research in the field of heat transfer and 

industry. 

2. PROBLEM DEVELOPMENT 

We take boundary layer flow of an incompressible Hyperbolic Tangent 

Fluid over a moving surface. We consider constant velocity wu  in the 

same direction as that of the uniform free stream velocity ∞u . It is 

assumed that the wall and free stream temperatures wT  and ∞T are 

constants with ∞> TTw . The geometry of present physical flow 

phenomena is presented in figure 1. 

 
 

Fig. 1 Engineering Flow Diagram 

Assume that a uniform magnetic field of strength 0B is applied in the 

positive −y direction normal to the plate, and the induced magnetic 

field due to the magnetic Reynolds number is taken to be small enough 

and assumed to be negligible in comparison to the applied magnetic 

field. The boundary layer equations governing the flow for hyperbolic 

tangent fluid are 
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Where u and v  are the velocity components along x  and y  directions, 

respectively. ρ is density of fluid and is kinematic viscosity. 

Expression for Cattaneo-Christov heat flux model discussed by (2009) 

is 
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in which q is heat flux, Λ is relaxation time of heat flux, T is 

temperature,  k  is thermal conductivity and V  is the velocity vector. 

In view of above expression temperature profile governs following 

relation  
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associated boundary conditions are 
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Here α is thermal diffusivity, wT is temperature at the wall, and ∞T  is 

the ambient fluid temperature. We introduce following dimensionless 

quantities 

  ,   ,)()(
2

1
   ),(

ν
ηηηη

ν
η

x

U
yff

x

U
vUfu =





 −−==

′′

  

( ) , 
∞

∞

−

−
=

TT

TT

w

ηθ                           (7) 

in which ∞+= uuU w . Invoking above mathematical relations into Eq. 

(1) which is identically satisfied and Eqs. (2), (3), (5) and (6) are 

reduced to 
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where Sf =)0(  with 0<S  corresponds to suction case and 0>S   

implies injection, λ  is a constant parameter,  Pr  is Prandtl number,  

We  is Weissenberg number and γ  is the Deborah number with respect 

to heat flux. Definitions of these physical parameters are 
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It is worth mentioning here that  0=λ   corresponds to the flow over a 

stationary surface caused by the free stream velocity (Blasius flow). 

Whereas 1=λ  corresponds to moving plate in fluid (Sakaidis flow). 

The case 10 << λ is when plate and fluid are moving in same 

direction. If 1>λ , free stream is directed toward negative −x  direction 

whereas plate moves toward positive  −x  direction. 

Skin friction coefficient fC is defined as 
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in which expressions of wall skin friction )( wτ  is defined by 
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With the help of dimensionless variables (7) we have 
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where  vUxx /Re =   is the local Reynolds number. 
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3. COMPUTATIONAL PROCEDURE 

Solution of Eqs. (8) and (9) subject to boundary conditions (10) by 

using shooting method with fifth order RK procedure. Initially using the 

similarity transform we get a system of nonlinear ordinary differential 

equation then we convert higher order nonlinear ordinary differential 

equations into system of first order ordinary differential equation by 

making suitable substitution in the form 

( ) ( ),,,,,,,,, 54321 θθ ′′′′= fffyyyyy this yield following mathematical 

relations 
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For shooting method we implemented Newton-Raphson method to find 

the targets and Runge-Kutta of order 5 method is chosen for the time 

integration in MATLAB. A step size of 0.001 is selected satisfactory 

for a convergence criterion of 10-6 in nearly all cases. 

4. ANALYSIS AND DISCUSSION 

This section presents the effects of embedding parameters on the 

velocity and temperature fields. Figure 2-10 shows the influence of 

various fluid parameters on velocity profile. Figure 2 is plotted for 

velocity profiles for various values of λ. It is observed that velocity 

field decreases rapidly with an increase in  λ . From the physical aspect, 

it is clear that an increase in plate velocity greatly reduces the velocity 

of fluid. The boundary layer thickness decreases by increasing  in the 

range 0 ≥ λ < 0.5. However when λ > 0.5 the boundary layer thickness 

grows with the increasing values of λ. Hartman number M is ratio of 

electromagnetic force to the viscous force. Increase in the values of M 

causes a decrease in viscous forces, as a result velocity of fluid decrease 

and increase in boundary layer thickness. This trend can be depicted in 

figure 3 for Sakaidis flow. For (λ = 0.2) Blasius flow similar behavior 

can be observed through figure 4. It is also analyzed that M is 

perpendicular to the moving surface so for rising values of Hartman 

number it reduces the velocity and enhances the boundary layer 

thickness. 

The effect of power law index ,n  Weissenberg number We  and 

Suction parameter S on fluid velocity are demonstrated through figures 

5, 7 and 9, respectively (Sakaidis flow λ < 1) whereas figs. 6, 8 and 10 

demonstrate Blasius flow (λ < 1) for different values of same physical 

parameters. Weissenberg number is the ratio of relaxation time of fluid 

and a specific process time. It increases thickness of the fluid, so 

velocity profile decreases with an increase in We . The power law index 

enhances the fluid velocity and boundary layer thickness, while We  

shows an opposite trend for fluid velocity. The impact of Suction 

parameter S also enhances velocity profile while boundary layer 

thickness decays in this case (see figure 10). Due to physical aspect, 

growth of boundary layer reduced by employing the suckling particles 

in the porous wall. It is quite obvious that, a suction cause reduces 

boundary layer thickness. 

Effects of various parameter on temperature and thermal boundary 

layer are examined through figures 11-16 for Sakaidisflow (λ = 1). The 

contribution of Prandtl number Pr  and Deborah number with respect to 

the relaxation time of heat flux γ on the temperature field )(ηθ  can be 

seen in figures 11 and 12. The effect of Prandtl number  Pr   on θ  can 

be visualized in Fig.11 . It is obvious that an increase in the values of  

Pr greatly reduces the thermal diffusivity, therefore temperature and the 

thermal boundary layer thickness are decreasing functions of Pr . It is 

also observed that deviation in the temperature profiles is more 

significant for small values of Pr  when compared with its larger 

values. It is important to note that  )1Pr(<  corresponds to liquid metals 

which have higher thermal diffusivity. However while large values of 

)1Pr(> lead to high-viscosity oils. The impact of non-dimensional 

relaxation time heat flux γ on the temperature field is analyzed in 

figure12 . There is a decrease in temperature when  �  enhances. 

Temperature profile ( )ηθ  in figure13 ,14  and15  are plotted against 

different values of power law index n , Weissenberg number We and 

Hartman number M , respectively. All these parameters contribute in 

rising in temperature profile with broadness in thermal boundary layer 

also observed. Viscous forces reduce for larger Hartman number M , as 

a result thermal forces increases and hence temperature of the fluid 

enhances (see figure15 ).  Figure16  depict the influence of Suction 

parameter S on temperature. Increasing suction effect tends to decrease 

the temperature and thermal boundary layer thickness. In accordance 

with the Mukhopadhyay (2009) an increase in the suction 

parameter S corresponds to a decrease in the temperature and the 

thermal boundary layer thickness. Figures 17-20 are devoted to 

illustrate flow patterns for different values of We for Sakaidis and 

Blasius flows. It is depicted that flow pattern for Sakaidis flow is 

concave down (see Figs. 17 and 18) while it is concave up (see Fig. 19 

and 20) in Blasius flow. 

The numerical values of skin friction for Sakaidis flow ( )1=λ   

and Blasius flow ( )1<λ  visualized through table1 . In both cases  

( )1=λ and ( )1<λ   the rate of shear stress at wall decreases with 

increasing values of power law index n , where an increase can be 

observed in skin friction for higher values of  We , M and S . 
 

 

 

Fig. 2 Effect of λ  on ).(' ηf  
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Fig. 3 Effect of M on )(' ηf
 
for Sakaidis flow 

 

Fig. 4 Effect of M on )(' ηf
 
for Blasius flow 

 

Fig. 5 Effect of n on )(' ηf
 
for Sakaidis flow 

 

Fig. 6 Effect of n on )(' ηf
 
for Blasius flow 

 

Fig. 7 Effect of We on )(' ηf
 
for Sakaids flow 

 

Fig. 8 Effect of We on )(' ηf
 
for Blasius flow 

 

Fig. 9 Effect of S on )(' ηf
 
for Sakaidis flow 

 

Fig. 10 Effect of S on )(' ηf
 
for Blasius flow 
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Fig. 11 Effect of Pr on )(ηθ  

 

Fig. 12 Effect of γ on )(ηθ  

 

Fig. 13 Effect of n on )(ηθ
 

 

 

Fig. 14 Effect of We on )(ηθ  

 

Fig. 15 Effect of M on )(ηθ  

 

Fig. 16 Effect of S on )(ηθ  
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3D Plot 

Fig. 17 Streamlines for Sakaidis flow when 1.0=We . 
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3D Plot 

Fig. 18 Streamlines for Sakaidis flow when 2.0=We . 

-0.216

-0.144

-0.072

0

0.072

0.144

0.216

0.288

0.36

0.432

0.504

0.504

0.576

0.576

0.648

0.648

0.72

0.72

0.792

0.864

0.936

1.008

1.08

1.152

1.224

1.296

1.368

1.44

1.512

1.584

1.656

1.728

1.8

1.872

1 2 3 4 5

0

1

2

3

4

5

6

x

y

 
Contour Plot 

 
3D Plot 

Fig. 19 Streamlines for Blasius flow when 1.0=We . 
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Contour Plot 

 

3D Plot 

Fig. 20 Streamlines for Blasius flow when 2.0=We . 

Table 1 Tabulated values of shear stress at wall for different 

parameters. 

n We M S 

FlowSkaidis

C fx )1(Re −− λ

 

FlowBlasius

C fx )2(Re −− λ

 

0.1 0.1 0.5 0.5 0.7727 0.1091 

2.0    0.7378 0.1074 

3.0    0.7010 0.1052 

4.0    0.6620 0.1022 

0.2 0.3   0.7386 0.1074 

 0.5   0.7400 0.1075 

 0.7   0.7422 0.1075 

 0.9   0.7455 0.1075 

 0.5 0.4  0.6807 0.0332 

  0.6  0.8063 0.1376 

  0.8  0.9534 0.1743 

  1.0  1.1126 0.2089 

  0.5 0.1 0.6140 0.0958 

   0.3 0.6750 0.1026 

   0.5 0.7400 0.1074 

   0.7 0.8091 0.1096 

 
5. CLOSING REMARKS 

From the above study we conclude the following findings: 

• Boundary layer thickness trend was observed to be opposite to 

boundary each other for Blasius and Sakaidis flow. 
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• Hartman number M  and fluid parameter Weissenberg number 

We  shows a decrease in velocity profile and boundary layer 

thickness for both type of flows. 

• Boundary layer thickness enhances by increasing power law index  

n   and Suction parameter S  for the case of Blasius flow, opposite 

to Sakaidis flow. 

• Dwindle of thermal boundary layer is witness for rising values of 

Pr,γ and S  while augmented boundary layer is observed for 

increasing values of Mn,  and fluid parameter. 

• Power law index n  lessen skin friction for Sakaidis and Blasius 

flow, while for all other pertinent parameters an increased skin 

friction is observed. 
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