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ABSTRACT 

We report on a mathematical model for analyzing the effects of homogeneous-heterogeneous chemical reaction and slip velocity on the MHD 
stagnation point flow of electrically conducting micropolar fluid over a stretching/shrinking surface embedded in a porous medium. The governing 
boundary layer coupled partial differential equations are transformed into a system of non-linear ordinary differential equations, which are solved 
numerically using the MATLAB bvp4c solver. The effects of physical and fluid parameters such as the stretching parameter, micropolar parameter, 
permeability parameter, strength of homogeneous and heterogeneous reaction parameter on the velocity and concentration are analyzed, and these 
results are presented through graphs. The solute concentration at the surface is found to decrease with the strength of the homogeneous reaction, and 
to increase with heterogeneous reactions, the permeability parameter and stretching or shrinking parameters. Comparison between the previously 
published results and the present numerical results for various special cases has been done and are found to be an excellent agreement. 
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1. INTRODUCTION 

 
Micropolar fluid is a non-Newtonian fluid that belongs to a class of 
fluids with non-symmetrical stress tensor and is referred to as polar 
fluid. Micropolar fluids are fluids with internal structures in which 
coupling between the spin of each particle and the microscope velocity 
field is taken into account. They represent fluids consisting of rigid, 
randomly oriented or spherical particles suspended in a viscous 
medium, where the deformation of fluid particles is ignored. Micropolar 
fluid theory was introduced by Eringen (1966) in order to describe 
physical systems, which do not satisfy the Navier-Stokes equations. The 
equations governing the micro polar fluid involve a spin vector and a 
micro inertia tensor in addition to the velocity vector. The dynamics of 
micro polar fluids provides some practical applications, for example 
turbulent shear flow, the flow of colloidal suspensions, polymeric 
fluids, liquid crystals, additive suspensions, human and animal blood, 
analyzing the behaviour of exotic lubricants. The potential importance 
of micro polar fluids in industrial applications has motivated many 
researchers to extend the study in numerous ways to include various 
physical effects. The essence of the theory of micro polar fluid lies in 
particle suspension (Hudimoto and Tokuoka, 1969), liquid crystals 
(Lockwood et al., 1987); animal blood (Ariman et al., 1974a), exotic 
lubricants (Erigen, 1976), etc. An excellent review of the various 
applications of micro polar fluid mechanics was presented by (Ariman 
et al.,1974b), Hayat et al., 2016, Ramzan et al., 2016, Sajid et al., 

(2009a) investigated the exact analytic solution for the three thin film 
flow problems of a micro polar fluid. The main advantage of using a 
micro polar fluid model to study the boundary layer flow in comparison with 
other classes of non-Newtonian fluids is that it takes care of the rotation of the fluid 
particles by means of an independent kinematic vector called the micro-rotation 
vector was investigated by Sajid et al., (2009).        

The flow of a non-Newtonian fluid over a stretching sheet has 
attracted considerable attention during the last two decades due to its 
vast applications in industrial manufacturing such as hot rolling, wire 
drawing, glass fiber and paper production, drawing of plastic films, 
polymer extrusion of plastic sheets and manufacturing of polymeric 
sheets. For the production of glass fiber/plastic sheets, thermo-fluid 
problem involves significant heat transfer between the sheet and the 
surrounding fluid. Sheet production process starts solidifying molten 
polymers as soon as it exits from the slit die. The sheet is then collected 
by a wind-up roll upon solidification. To improve the mechanical 
properties of the fiber/plastic sheet we use two ways, the extensibility 
of the sheet and the rate of cooling. Crane (1970) was the first who 
reported the analytical solution for the laminar boundary layer flow past 
a stretching sheet. Several researchers viz. Gupta and Gupta (1977), 
Dutta et al. (1985), Chen and Char (1988) extended the work of Crane 
by including the effects of heat and mass transfer under different 
situations. 

Magneto hydrodynamic (MHD) is the science which deals with the 
motion of highly conducting fluids in the presence of a magnetic field. 
The motion of the conducting fluid across the magnetic field generates 
electric currents which change the magnetic field and the action of the 
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magnetic field on these currents gives rise to mechanical forces which 
modify the flow of the fluid. The Magneto hydrodynamic (MHD) 
character of fluid especially in physiological and industrial processes 
seems too much important. Such consideration is useful for blood 
pumping and magnetic resonance imaging (MRI), cancer therapy, 
hyperthermia etc. Abo-Eldahab and Ghonaim (2003) investigated 
convective heat transfer in an electrically conducting micropolar fluid at 
a stretching surface with uniform free stream. Wang et al., (2011) 
studied with the magnetohydrodynamic flow of a micropolar fluid in a 

circular cylindrical tube. Eldabe and Ouaf (2006) solved the problem of 
heat and mass transfer in a hydro magnetic flow of a micropolar fluid 
past a stretching surface with Ohmic heating and viscous dissipation 
using the Chebyshev finite difference method. 
Hiemenz (1911) first reported the stagnation point flow towards a flat 
plate. It is worthwhile to note that the stagnation flow appears whenever 
the flow impinges to any solid object and the local fluid velocity at a 
point MHD stagnation point flow of a micropolar fluid over a stretching 
surface with heat source (called the stagnation-point) is zero. Chiam 
(1994) extended the works of Hiemenz (1911) replaced the solid body a 
stretching sheet with equal stretching and straining velocities and he 
was unable to obtain any boundary layer near the sheet. Whereas, 
Mahapatra and Gupta (2001) reinvestigated the stagnation-point flow 
towards a stretching sheet considering different stretching and straining 
velocities and they found two different kinds of boundary layers near 
the sheet depending on the ratio of the stretching and straining 
constants. The study of a steady two-dimensional stagnation point flow 
of a micropolar fluid over a stretching sheet when the sheet was 
stretched in its own plane and the stretching velocity was proportional 
to the distance from the stagnation point was examined by Nazar et al. 
(2004). The resulting coupled equations of nonlinear ordinary 
differential equations were solved numerically. Hayat et al. (2009a) 
investigated the two-dimensional Magneto hydrodynamic (MHD) 
stagnation-point flow of an incompressible micropolar fluid over a 
nonlinear stretching surface. Hayat et al. (2009b) analyzed the steady 
two dimensional MHD stagnation point flow of an upper convected 
Maxwell fluid over the stretching surface. The governing nonlinear 
partial differential equations were reduced to ordinary ones using the 
similarity transformation. The homotopy analysis method (HAM) was 
used to solve these equations. Bhattacharyya (2013) investigated the 
boundary layer stagnation-point flow of Casson fluid and heat transfer 
towards a shrinking/stretching sheet. Yacos et al. (2011) have been 
investigated melting heat transfer in boundary layer stagnation-point 
flow toward a stretching/shrinking sheet in a micropolar fluid.  

The combined heat and mass transfer problems with chemical 
reactions are of importance in many processes, and therefore have 
received a considerable amount of attention in recent years. In 
processes, such as drying, evaporation at the surface of a water body, 
energy transfer in a wet cooling tower and the flow in a desert cooler, 
the heat and mass transfer occurs simultaneously. Many chemically 
reacting systems involve both homogeneous and heterogeneous 
reactions, with examples occurring in combustion, catalysis, 
biochemical systems, crops damaging through freezing, cooling towers, 
fog dispersion, hydrometallurgical processes etc.  The interaction 
between the homogeneous reactions in the bulk of fluid and 
heterogeneous reactions occurring on some catalytic surfaces is 
generally very complex, involving the production and consumption of 
reactant species at different rates both within the fluid and on the 
catalytic surfaces. A simple mathematical model for homogeneous-
heterogeneous reactions in stagnation-point boundary-layer flow was 
initiated by Chaudhary and Merkin (1995(a)). They modeled the 
homogeneous (bulk) reaction by isothermal cubic kinetics and the 
heterogeneous (surface) i reaction was assumed to have first-order 
kinetics. Later Chaudhary and Merkin (1995(b)) extended their 
previous work to include the effect of loss of the autocatalyst. They 
studied the numerical solution near the leading edge of a flat plate. A 
model for isothermal homogeneous-heterogeneous reactions in 

boundary layer flow of a viscous fluid flow past a flat plate was studied 
by Merkin (1996). Effects of homogeneous and heterogeneous reactions 
in flow of nanofluids over a nonlinear stretching surface with variable 
surface thickness was reported by Hayat et al., (2016) and observed 
that the homogenous and heterogeneous parameters have opposite 
behaviors for concentration profile.	Ziabakhsh et al. (2010) studied 
the problem of flow and diffusion of chemically reactive species over a 
nonlinearly stretching sheet immersed in a porous medium. Chambre 
and Acrivos (1956) studied an isothermal chemical reaction on a 
catalytic in a laminar boundary layer flow. They found the actual 
surface concentration without introducing unnecessary assumptions 
related to the reaction mechanism. The effect of flow near the two-
dimensional stagnation point flow on an infinite permeable wall with a 
homogeneous-heterogeneous reaction was studied by Khan and Pop 
(2010). They solved the governing nonlinear equations using the 
implicit finite difference method. It was observed that the mass transfer 
parameter considerably affects the flow characteristics. Melting and 
homogeneous/heterogeneous reactions effects in nanofluid flow by a 
cylinder are addressed by Hayat et al., (2016).  It is found that 
maximum heat transfer and minimum thermal resistance for base fluid 
suspended multi-wall carbon nanotubes (MWCNTs) when compared 
with other nanofluids.	The behavior of homogeneous parameter K on 
concentration profile is sketched for water and kerosene oil base fluids 
by Hayat et al., (2016).  It is analyzed that the concentration field is 
decreasing function of homogeneous parameter K for base fluids water 
and kerosene oil. In fact higher values of homogeneous reaction 
parameter correspond to larger chemical reaction which consequently 
reduces the concentration distribution. Hayat et al., (2016) developed 
numerical analysis for homogeneous-heterogeneous reactions and 
Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-
Eyring fluid by a stretching cylinder and noticed that the flow 
accelerates for large values of Powell-Eyring fluid parameter.	Hayat et 
al., (2016) disclose the effects of homogeneous–heterogeneous 
reactions and melting heat phenomenon in the Magnetohydrodynamic 
second grade fluid flow. Heat transfer is tackled with heat 
generation/absorption. Khan and Pop (2012) studied the effects of 
homogeneous-heterogeneous reactions on the viscoelastic fluid toward 
a stretching sheet. They observed that the concentration at the surface 
decreased with an increase in the viscoelastic parameter. 

Flow through porous media has various physiological applications 
such as the flow of blood in the micro-vessels of the lungs which may 
be treated as a channel bounded by two thin porous layers (Misra and 
Ghosh (1997)). It is realized that fluid slips at the walls in certain 
physiological and engineering situations. The no slip boundary 
condition is a core concept in fluid dynamics in which the fluid and the 
boundary move with same velocity. Beaver and Joseph (1967) were the 
first to propose slip boundary condition. The boundary condition 
proposed by Beaver and Joseph was simplified by Saffman (1971). The 
existence of slip phenomenon at the boundaries and interfaces has been 
observed in the flows of rarefied gases, physiological flows, hypersonic 
flows of chemically reacting binary mixture etc. Also, flows with slip 
occur for certain problems in chemical engineering, for example, flows 
through pipes in which chemical reactions occur at the walls, certain 
two-phase flows and flows in porous slider bearings. Haliza Rosali et 
al. (2012) studied a micropolar fluid flow towards a permeable 
stretching or shrinking sheet in a porous medium. Mhd Flow and Heat 
Transfer through a Porous Medium over a Stretching/Shrinking Surface 
with Suction was analyzed by F. Ahmad1 et al. (2015). Homogeneous-
heterogeneous reactions in micropolar fluid flow from a permeable 
stretching or shrinking sheet in a porous medium was studied by Shaw 
et al. (2013). 

 At the macroscopic level, it is well accepted that the boundary 
condition for a viscous fluid at a solid wall is one of no-slip, i.e., the 
fluid velocity matches the velocity of the solid boundary. While the no-
slip condition has been processed experimentally to be accurate for a 
number of macroscopic flows, it remains an assumption that is not 
based on physical principles. In many practical applications, the particle 
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adjacent to a solid surface no longer takes the velocity of the surface. 
The particle at the surface has a finite tangential velocity. It slips along 
the surface. The flow regime is called a slip-flow regime, and this effect 
cannot be neglected. The study of magneto-micro polar fluid flows in 
the slip-flow regimes with heat transfer has important engineering 
applications, e.g., in power generators, refrigeration coils, transmission 
lines, electric transformers, and heating elements. Mahmoud and 
Waheed (2010) performed a theoretical analysis to study heat transfer 
characteristics of magneto hydrodynamic mixed convection flow of a 
micro polar fluid past a stretching surface with slip. Hayat et al., (2016) 
presented the effect of Partial slip effect in flow of magnetite Fe3O4 
nanoparticles between rotating stretchable disks. Bakr (2011) analyzed 
Chemically Reacting Unsteady Magneto hydrodynamic Oscillatory Slip 
Flow of a Micropolar Fluid in a Planer Channel with Varying 
Concentration. Hayat et al., (2016) analyzed that larger values of first 
order slip velocity parameters and magnitude of second order slip 
velocity parameters correspond to lower velocity. With an increase in 
slip velocity parameters, stretching velocity is partially transferred to 

the fluid so velocity profiles decrease.  The Effects of Chemical 
Reaction, Hall, and Ion-Slip Currents on MHD Micropolar Fluid Flow 
with Thermal were studied by S.  S. Motsa1  and  S.  Shatey  (2012). 
Hayat et al., (2016) studied the MHD three-dimensional flow of 
nanofluid with velocity slip and nonlinear thermal radiation.  Hayat et 
al., (2016) looks	 at	 the	 influence	 of	 an	 inclined	magnetic	 field	 on	
peristaltic	 transport	 of	 hyperbolic	 tangent	 nanofluid	 in	 inclined	
channel	 having	 flexible	 walls.	 Alireza et al. (2013) presented an 
analytical solution for MHD stagnation point flow and heat transfer 
over a permeable stretching sheet with chemical reaction. 
 

2. MATHEMATICAL FORMULATION 
 

Let us consider the steady two-dimensional stagnation point flow of 
viscous, incompressible and electrically conducting micropolar fluid 
over a stretching sheet embedded in a porous medium. The Cartesian 
coordinate system is used with the x-axis along the sheet and the y-axis 
normal to the sheet. Two equal but opposite forces are applied to the 
stretching sheet so that the surface is stretched, keeping the position of 
the origin unaltered. A magnetic field B0 is applied perpendicular to the 
sheet. It is assumed that the magnetic Reynolds number is much less 
than unity so that the induced magnetic field is negligible in comparison 
to the applied magnetic field. Keeping the origin fixed, it   is assumed 
that the surface is stretched/shrunk with a linear velocity UW(x) = Uwx, 
where UW is a constant with UW > 0 for a stretching sheet, UW < 0 for a 
shrinking sheet and UW =0 for a static sheet.  Also, we consider a 
simple model for the interaction between a homogeneous-
heterogeneous reaction involving the two-chemical species A and B in a 
boundary layer flow proposed by Chaudhary and Merkin (1995a,1995b) 
of the following form:  

2 3 ,A B B   Rate = 2
ck ab                                   (1) 

,A B  Rate = sk a                                                    (2) 

Where a and b are concentrations of chemical species A and B 
respectively, and kc, ks are the constants. It is assumed that the ambient 
fluid moves with a velocity ( ) ,eu x U x

 

where U
is a constant, in 

which there is a uniform concentration a0 of reactant A and in which 
there is no auto catalyst B over a flat surface. Under these assumptions 
and boundary layer approximations the steady two-dimensional 
stagnation point flow of micropolar fluid towards a stretching sheet 
embedded in a porous medium is described by the following equations:   
 Continuity Equation 

0
u v

x y

 
 

 
                                                                                (3) 

Linear Momentum Equation 

22
0

2
1

( ) ( )effe
e e e

du Bu u k u k N
u v u u u u u

x y x y y k


   

     
             

                  (4)             

Angular Momentum Equation  
2

2
2

N N N k u
u v N

x y j y j y


 

    
        

                                                  (5) 

Energy Equation  
2

2
2A c

a a a
u v D k ab

x y y

  
  

  
                                                     (6)      

Species Equation  
2

2
2A c

b b b
u v D k ab

x y y

  
  

  
                                                     (7)    

where u and v are the velocity components in the x and y directions 

respectively, eu is the velocity outside  the boundary layer,   is the 

dynamic viscosity, eff  is the effective dynamic viscosity, k  is the 

vortex viscosity,  is the density of the fluid, N is the micro rotation, 

 is the electrical conductivity,, 
0B is the uniform magnetic field, 

1k is the permeability of the porous medium, 
j

U






is the micro 

inertia per unit mass,  is the spin gradient viscosity defined as 

1
,

2
pK

j 
 

  
 

p

k
K


 is the material or micropolar parameter, DA is the 

diffusive species coefficient of A and DB is the diffusive species 
coefficient of B. 
 The corresponding boundary conditions are  

( ) ,w

u
u u x N

y
 

 


,wv v
 

A,D ,s

u a
N n k a

y y

 
  

    

DB s

b
k a

y




    

at     y = 0 

( ),eu u x    0,N    0 , 0a a b     as y                                  (8)                 
Where wv is the constant mass flux with wv  <   0 for suction and 

wv >0 for injection (blowing) respectively; N is the slip velocity 

coefficient and n is a constant ( 0 1n  ). Here n = 0 represents the 
strong concentration (Guram and Smith, 1980), and n = 1 represents the 
turbulent boundary layer flow (Peddieson, 1972). The case n = 1/2 
indicates the vanishing of the antisymmetrical part of the stress tensor 
and denotes weak concentration (Ahmadi, 1976), which is the case 
considered in the present study.  
Now, introducing the following transformation 

0 0

, ( ), ( ), ( ) , ( )
U U a b

y U xf N U x p g h
a a

      
 
 

 
          
                (9)                 
Where  is the similarity variable and ( , )x y  is the stream 

function.  The velocity components are defined by 

, .u v
y x

  
  

 
    

Substituting (9) into the Equations (4) -(7) and (8), we get the following 
set of ordinary differential equations 

  21 1 ( ) (1 ) (1 ) 0p pK f ff f K p M f D f              
            

 (10) 

1 (2 ) 0
2

p
p

K
p fp f p K p f

 
         

 
                                    (11)                 
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21
0g fg kgh

Sc
                                                 (12)                                                                                        

2 0h fh kgh
Sc

                                                    (13)                                                            

The corresponding boundary conditions are  
(0) , (0) (0),p(0) (0),vf S f S f nf       ( ) 1, ( ) 0f p             (14)   

(0) (0), (0) (0),s sg K g h K g    ( ) 1, ( ) 0g h               (15)

 where the primes denote the differentiation with respect to , 
2
0B

M
U


 

 is the magnetic parameter, 

1

e ffD
U k

 



 is the permeability 

parameter, 

A

Sc
D


  is the Schmidt number, 2

0ck a
K

U

  is a measure of 

the strength of the homogeneous reaction, B

A

D

D
   is the ratio of the 

diffusion coefficient, wS
U





 is the suction parameter ( 0S   

represents impermeable, 0S  represents suction and 0S  represents 
the injection or blowing), w

e

u

u
 

is the stretching parameter 

( 0  represents the shrinking surface, 0  represents the 
stretching  surface and 0  represents the forced convection flow 
towards the stagnation point on a static surface, 

vS N U   is the 

slip parameter, 
1

2Res
s

A

k l
K

D



  is a measure of the strength of the 

heterogeneous reaction and Re
U l


 is the Reynolds number. It is 

assumed that the diffusion coefficients of chemical species A and B to 
be of a comparable size. This argument provides us to make further 
assumption that the diffusion coefficients DA and DB are equal i.e., 

1  and thus: 
( ) ( ) 1.g h                                    (16) 

 
Now Esq. (12) and (13) reduces to 

21
(1 ) 0g fg kg g

Sc
                                     (17) 

With the boundary conditions  
 (0) (0), ( ) 1.sg K g g                                    (18) 

Also the quantity of physical interest in this problem is the skin friction 
coefficient which is defined by 

2 / 2
w

fC
U





                                                    

where  

0

.w

y

u

y
 



 
                                                       

                      (19) 

 

Using the similarity variables in Eq. (19), we get  

 
1

2Re 1 (0)2x f
KC f                                   (20)    

Where ( )
Re e

x

xU x


 is the local Reynolds number.  

 

3. SOLUTION OF THE PROBLEM 

 
The set of equations (12) to (13) were reduced to a system of first-order 
differential equations and solved using a MATLAB boundary value 
problem solver called bvp4c. This program solves boundary value 
problems for ordinary differential equations of the 
form  ' , , ,y f x y p a x b   , by implementing a collocation method 

subject to general nonlinear, two-point boundary conditions 

 ( ), ( ),g y a y b p . Here p is a vector of unknown parameters. Boundary 

value problems (BVPs) arise in most diverse forms. Just about any BVP 
can be formulated for solution with bvp4c. The first step is to write the 
ODEs as a system of first order ordinary differential equations. The 
details of the solution method are presented in Shampine and Kierzenka 
(2000). 
 

4. RESULTS AND DISCUSSIONS 
 
The numerical computations have been carried out using the MATLAB 
bvp4c solver for several values of the physical parameters arised in the 
study then acquired results are presented in graphs. 

The variations of the velocity and concentration profiles are plotted 
as a function of η for some values of λ in Figures 1 and 2 for Kp = 0.1, χ 
= 0.1, Sc = 1, K = 1, s = 0.5, n = 0.5,      Ks = 1. In Fig.1, (i) for λ >0 
(stretching surface), the fluid velocity is becoming increasingly greater 
than the free stream. In this case the fluid velocity decreases with the 
value of η and converges at unity as per the condition. (ii) For λ=0 
(static surface), the fluid velocity initially is stationary, but with η value 
it increases in a non-linear way. (iii) For λ < 0 (shrinking surface), the 
fluid velocity is initially negative, but it increases with η, and after a 
certain value of η, it becomes positive. For the concentration profile in 
figure 2, all the curves are started from the origin and they increase 
nonlinearly with η to follow ‘S’ shape and finally reach unity according 
to the given condition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 1 Velocity profiles for some values of   

  

( )f   = -1.2, -0.5, 0.0, 1.0, 2.0, 3.0, 4.0 

 = -1.2, -0.5, 0.0, 1.0, 2.0, 3.0, 4.0 

g( )

  
Fig. 2 Concentration profiles for some values of    
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The variations of the velocity and concentration profiles are plotted for 
different values of M in Figures 3 and 4. In Fig.3, for λ >0 (stretching 
surface), the fluid velocity is becoming increasingly greater than the 
free stream. In this case the fluid velocity decreases with the value of η 
and converges at unity as per the condition. For λ< 0 (shrinking 
surface), the velocity decreases with the increase of magnetic parameter 
M for opposing, assisting and steady state cases.  That is because the 
application of a magnetic field in the y-direction to an electrically 
conducting fluid gives rise to a flow resistive force called the Lorentz 
force.  The concentration profile in figure 4, for λ >0 (stretching 
surface), the fluid concentration increases with increasing magnetic 
parameter M and opposite case is observed for λ< 0 (shrinking surface).  
All the curves are started from the origin and they increase nonlinearly 
with η to follow ‘S’ shape and finally reach unity. 

The solute velocity, however, increase with the permeability for 
stretching/shrinking parameters is observed from Fig.5.  A 
concentration profile for different values of permeability parameter is 
shown in Fig.6. For λ >0 (stretching surface), the fluid concentration 
decreases with increasing the permeability parameter D and opposite 
case is observed for λ < 0 (shrinking surface).  
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Fig. 3 Velocity profiles for some values of M  
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Fig. 4 Concentration profiles for some values of M  
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Fig. 5 Velocity profiles for some values of D  
  
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Fig. 6 Concentration profiles for some values of D  
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Fig. 7 Velocity profiles for some values of Sv  
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The variations of the velocity and concentration profiles are plotted for 
different values of slip parameter (Sν) in Figures 7 and 8. In Fig.7, for λ 
> 0 the fluid velocity increases with the increase of slip parameter and 
an opposite effect is seen when λ < 0. The increase in the slip parameter 
has the tendency to reduce the friction forces which reduces the fluid 
velocity.  The fluid concentration enhances when Sν enhances for λ > 0 
and decreases for λ < 0 in Fig.8. 

The effect of heterogeneous and homogeneous reactions on the 
concentration profile are separately shown through Figures 9 and 11 for 
stretching sheet and Figures 10 and 12 for shrinking sheet respectively. 
It is evident that the concentration boundary layer of the reactants is 
increasing with η in both cases, and after a certain η value, they all 
coincide, i.e., after a certain η value, the homogeneous and 
heterogeneous reactions have no e�ect on the concentration of the 
reactants. This critical value of η (η∞) depends on the strength of the 
homogeneous reaction and increases with the value of K, but it does not 
depend on the strength of the heterogeneous reaction. A similar 
phenomenon is observed for the second solution. The graphs for these 
condition solutions with Ks = 0.2 and 1 coincide. It is observed that the 
first solution is more stable and converges more easily than the second 
solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 Concentration profiles for some values of K for 
shrinking sheet  

K = 0.0, 2.0, 4.0, 6.0 
g( )

 

Fig. 11 Concentration profiles for some values of Ks for 
stretching sheet  
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g( )
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                      0.5    
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Fig. 8 Concentration profiles for some values of Sv  
  
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Fig. 9 Concentration profiles for some values of K for 
stretching sheet  

  
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Fig. 12 Concentration profiles for some values of Ks for 
shrinking sheet  
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The concentration of the reactants depends on the Schmid tnumber (Sc) 
and heterogeneous reaction parameter. The variation of the 
concentration with K for di�erent values of the Schmidt number is 
shown in Figures 13 and 14. The Schmidt number is the ratio between a 
viscous di�usion rate and a molecular di�usion rate. For a fixed 
molecular di�usion rate, with increase in Schmidt number, the viscous 
di�usion rate increases, which helps to increase the concentration of 
the fluid for both stretching and shrinking sheet. 

Figs.15 and 16 are aimed to shed light on the effect of suction 

( 0S   represents impermeable, 0S  represents suction and 
0S  represents the injection or blowing) on the velocity and 

concentration profiles.  From these, we observed that the velocity 
decreases with an increase in the suction parameter whereas 
concentration increases for stretching sheet this is due to the fact that 
the heated fluid is pushed towards the wall where the buoyancy forces 
can act to retard the fluid due to high influence of viscosity.  This effect 
acts to decrease the wall shear stress. The effect of the velocity and 
concentration profiles for different suction parameter S is shown in 
Figures 17 and 18. The velocity of the fluid increases due to increase of 
S, and this leads to an increase in the solute concentration for shrinking 
sheet.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sc = 1.0, 2.0, 3.0, 4.0, 5.0 

Fig. 13 Concentration profiles for some values of Sc for 
stretching sheet 
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Fig. 14 Concentration profiles for some values of Sc for 
shrinking sheet 
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Fig. 15 Velocity profiles for some values of S for stretching 
sheet 
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Fig. 16 Concentration profiles for some values of S for 
stretching sheet 


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Fig. 17 Velocity profiles for some values of S for shrinking 
sheet 

( )f 

  



Frontiers in Heat and Mass Transfer (FHMT), 8, 24 (2017)
DOI: 10.5098/hmt.8.24

Global Digital Central
ISSN: 2151-8629

 8    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Values of the dimensionless skin friction coefficient (0)f    for several 
values of S , suction parameter in the absence of micropolar parameter, 
magnetic parameter, permeability parameter and the slip velocity 
parameter are given in Table 1. The values reported by Katagiri 
(1971) using an iterative numerical quadratures and by Lok et al. 
(2007) using the Keller-box method were also included in this table. It 
is seen that the present results are in excellent agreement with both 
results obtained by Katagiri (1971), Lok et al. (2007) and Khan and 
Pop (2010). We notice that for an impermeable wall (S = 0) the values 

of (0)f  reported by Hiemenz (1911) is S = 1.233.  
 
Table 1 Comparison of (0)f  for several values of S in the absence of 

micropolar parameter, magnetic parameter, permeability parameter and 
the slip velocity parameter. 
 

S Katagiri 
(1971) 

Lok et al. 
(2007) 

Khan and 
Pop (2010) 

Present 

-3 0.329456 0.3295 0.32945 0.32945 
-2 0.47581 0.4759 0.47581 0.47581 
-1 0.756574 0.7567 0.75657 0.75657 
0 1.232588 1.2327 1.23259 1.23258 
1 1.889303 1.8895 1.88931 1.88931 
2 2.670006 2.6703 2.67006 2.67005 
3 3.526497 3.5268 3.52664 3.52664 
4 4.428673 4.4291 4.42895 4.42895 

 
Table 2, present the excellent correlation between previous 

literatures [Wang (2008), Ishak et al.  (2010), Rosali et al. (2012)] and 

the present study of the comparison of (0)f  for several values of  in 
the absence of micropolar parameter, magnetic parameter, permeability 
parameter, suction parameter and the slip velocity parameter for a 
stretching sheet. This investigation confirms that the existence and 
uniqueness of solution depends on the stretching/shrinking sheet 

parameter. 0   Represents the forced convection flow towards the 
stagnation point on a static surface.  It is clear that the skin friction is a 

decreasing function of . All values of the skin friction coefficient are 

positive for  <1, while they are negative when  >1.Physically, the 
negative values of the skin friction coefficient correspond to the surface 
exerting a drag force on the fluid and the opposite sign implies the 

inverse phenomenon. The skin friction coefficient is zero when   = 1 

regardless of the values of other parameters. This is because for   = 1, 
there is no shear stress at the surface as the surface and fluid move with 
the same velocity. 
 
Table 2 Comparison of (0)f  for several values of  in the absence of 

micropolar parameter, magnetic parameter, permeability parameter, 
suction parameter and the slip velocity parameter 
 

  Wang 
(2008) 

Ishak et al.
(2010) 

    Rosali et al. (2012)               Present 

Kp= 0, S 
= 0, D = 
0 

Kp = 1, S 
= 0.8, D 
= 0.5 

Kp= 0, S 
= 0, D = 
0    

Kp= 1, S 
= 0.8, D 
= 0.5 

0.0 1.232588 1.232588 1.232588 1.476217 1.232588 1.476217 
0.1 1.14656 1.146561 1.146561 1.353345 1.146561 1.353345 

0.2 1.05113 1.051130 1.05113 1.224482 1.05113 1.224482 

0.3 - - 0.946816 1.089841 0.946816 1.089841 

0.4 - - 0.834072 0.949614 0.834072 0.949614 

0.5 0.71330 0.713295 0.713295 0.803979 0.713295 0.803979 

1.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
2.0 -1.88731 -1.887307 -1.887307 -1.941163 -1.887307 -1.941163

3.0 - -4.276541 -4.276541 -4.260253 -4.276541 -4.260253

4.0 - -7.086378 -7.086378 -6.904439 -7.086378 -6.904439

5.0 -10.26475 -10.26479 -10.26479 -9.837608 -10.26479 -9.837608

 
From Table 3 it is clear that as the micro polar parameter or the 

magnetic parameter increases both (0)f    and g(0) increases. As the 

diffusion coefficient and Schmidt number increases both (0)f    and 

g(0) remains constant. As   increases a tremendous decrease is seen 
in (0)f  , a reverse effect is seen when a slip parameter increases. 

Homogeneous and heterogeneous reactions do not effect  (0)f   and 

g(0). Here n = 0 represents the strong concentration and n = 1 
represents the turbulent boundary layer flow. The case n = 1/2 indicates 
the vanishing of the anti-symmetrical part of the stress tensor and 
denotes weak concentration which is the case considered in the present 
study.  
 
Table 3 The values of skin friction coefficient and dimensionless 

concentration for various values of Kp, M, D, Sc, ,  and Sv Ks, K and 

n. 
 
Kp M D Sc S  Sv Ks K n )0(f  (0)g  

1.0 0.5 0.5 1.0 0.5 2.0 0.2 1.0 1.0 0.5 -1.2533 0.5472 
2.0 0.5 0.5 1.0 0.5 2.0 0.2 1.0 1.0 0.5 -1.1128 0.5509 
1.0 1.0 0.5 1.0 0.5 2.0 0.2 1.0 1.0 0.5 -1.1947 0.5487 
1.0 0.5 1.0 1.0 0.5 2.0 0.2 1.0 1.0 0.5 -1.3064 0.5459 
1.0 0.5 0.5 2.0 0.5 2.0 0.2 1.0 1.0 0.5 -1.2533 0.6653 

1.0 0.5 0.5 1.0 1.0 2.0 0.2 1.0 1.0 0.5 -1.3623 0.6153 

1.0 0.5 0.5 1.0 0.5 3.0 0.2 1.0 1.0 0.5 -2.6734 0.5738 

1.0 0.5 0.5 1.0 0.5 2.0 1.0 1.0 1.0 0.5 -0.6138 0.5308 

1.0 0.5 0.5 1.0 0.5 2.0 0.2 2.0 1.0 0.5 -1.2533 0.3747 

1.0 0.5 0.5 1.0 0.5 2.0 0.2 1.0 2.0 0.5 -1.2533 0.5274 

1.0 0.5 0.5 1.0 0.5 2.0 0.2 1.0 1.0 1.0 -1.4587 0.5420 

 
CONCLUSIONS 

 
The present analysis investigates the effect of the homogeneous and 
heterogeneous chemical reaction and slip velocity on MHD stagnation 
flow of a micropolar fluid flow through a permeable 
stretching/shrinking sheet embedded in a porous medium. The 
momentum and concentration equations were transformed into a set of 

S = -2.0, -1.0, 0.0, 1.0, 2.0 

Fig. 18 Velocity profiles for some values of S for shrinking 
sheet 

g( )  

  
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coupled nonlinear differential equations using similarity 
transformations and solved numerically by Matlab bvp4c package. We 
discussed the effects of the governing parameters on the fluid flow and 
concentration characteristics. A new feature that emerges from our 

results It is found that these solutions terminate at   = 0 with values 
given in Table 1. The concentration profiles g(g) appear to be similar in 

shape for different values of  , K and Ks. There is an excellent 
correlation between previous literatures and the present study. 
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