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ABSTRACT 

The objective of the present communication is to study the problem of micropolar fluid flow with temperature dependent thermal conductivity over a 
nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation. Due to the nature of heat transfer in the flow 
past vertical surface, Cattaneo-Christov heat flux model and Joule heating effects are properly accommodated in the energy equation. The governing 
partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable 
similarity transformations.  Runge-Kutta and Newton’s methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical 
results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent 
parameters on velocity, micropolar velocity and temperature profiles are presented graphically and analyzed in detail.  Further, the variations of skin 
friction coefficient and local Nusselt number are displayed for the sundry flow parameters. It is found that fluid temperature profile declines for 
larger thermal relaxation parameter. Both temperature and thermal boundary layer thickness decreases for enhancing values of Prandtl number. 
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1. INTRODUCTION 

The concept of micropolar fluids has come into prominence because of 
the conventional Newtonian fluids cannot accurately represent the 
features of fluid flow in various engineering applications  namely  
polymeric fluids, paints and colloidal solutions, biology etc. A class of 
fluids has also considering its microstructure is known as micropolar 
fluids. Micropolar fluids are physically represent fluids in which the 
deformation of the particles omitted in the fluids and consisting of a 
suspension of rigid, spherical particles in a viscous medium.  The 
micropolar fluids model was introduced by Eringen (1966) and covering 
in both theory and applications than the classical one. An analysis of 
boundary-layer theory for a micropolar fluid has extended by Peddieson 
and McNitt (1970). Heat transfer flow in  a polar fluid  towards a non-
isothermal stretching surface with suction and blowing have been 
numerically investigated by Hassanien and Gorla (1990).  For the 
formulation of mathematic model they are utilizing the Erigen theory of 
micropolar fluids. Rama Subba Reddy (1995) have investigated the 
problem of mixed convection boundary layer on unsteady micropolar 
flow over a vertical plate and reveals that the friction factor and rate of 
heat transfer enhances to the improve of buoyancy force. Hady (1996) 
studied an analytical solution of heat transfer in micropolar fluid over a 
non-isothermal permeable stretching sheet. The flow characteristics of 
micropolar fluid in moving wedge and flat plate have been analyzed by 
Ishak et al. (2006). By the same authors (2008) have presented to the 
heat transfer analysis on micropolar fluids in a stretching surface. Mixed 
convection flow of a micropolar fluid towards a non-linear stretching 
surface investigated Hayat et al. (2008). The series solution retained by 
imposing HAM to the transformed coupled non-linear ordinary 

differential equations. The problem of micropolar fluid filled a porous 
channel was discussed by Sajid et al. (2009). 

The interaction of MHD (magnetohydrodynamic) has more 
significant applications in the fields of aerospace engineering, medicine 
and geo and astrophysics. Several equipments including turbulent 
pumps, bearings, MHD generators and boundary layer control flow are 
influenced due to the interaction between the electrically conducting 
liquid and magnetic field. Ashraf and Batool (2013) studied the 
magnetohydrodynamic flow and heat transfer behavior of a micropolar 
fluid past a stretchable disk. It is predict that the fluid flow of magnetic 
field strengthen the skin friction coefficient. Mahmoud and Waheed 
(2012) studied heat transfer flow in micropolar fluid through a 
stretching sheet in the presence of magnetic field. Heat generation 
effect on steady hydromagnetic flow of micropolar fluid over a moving 
surface was presented by Gnaneswara Reddy (2013). Viscous 
dissipation effect for the convection flow of a micropolar fluid towards 
a stretching surface is examined by El-Aziz (2013).  Gnaneswara Reddy 
and Venugopal Reddy (2015) have reported the interaction of Joule 
heating on magnetohydrodynamic peristaltic transport of a Nanofluid. 
The interaction of heat transfer and hydromagnetic on a rotating 
micropolar fluid was recently analyzed by Mehmood et al. (2016). 
Gnaneswarara Reddy (2014, 2014) have reported the effect of viscous 
dissipation on steady MHD flow over stretched surface. Alam et al. 
(2016) have discussed the analysis of temperature dependent thermal 
conductivity on magnetohydrodynamic flow with distinct nanoparticles. 
The peristaltic transport of Jeffrey nanofluid over an asymmetric 
channel with magnetic field investigated recently Gnaneswara Reddy 
and Makinde (2016). Sandeep and Gnaneswara Reddy (2017) have 
recently analyzed the impact of heat transfer on MHD thermal radiative 
flow in two distinct geometries. 
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The classical Fourier's (1822) heat conduction is amongst the best 
utilized models in classical physics and which is used for the description 
of heat transfer transport mechanism in various associated situations.  
The one of major limitation for parabolic energy equation for 
temperature is that unique disturbance and simultaneously it dispute the 
principle of causality throughout whole medium. Fourier’s law of heat 
conduction is modified in context of thermal relaxation by Cattaneo 
(1948). Hyperbolic type energy equation exists in presence of Cattaneo’s 
expression. Christov (2009) improved the heat conduction analysis of 
Cattaneo (1948) by introducing thermal relaxation time along with 
Oldroyd’s upper-convicted derivative, in order to attain the material 
invariance of the model. Cattaneo–Cheristov heat flux model is the 
modified Fourier’s form which gives thermal relaxation time. Cattaneo-
Christov model with influence of thermal convection was studied by 
Straughan (2010). Uniqueness of Cattaneo-Christov heat flux model for 
flow of incompressible fluids has been analyzed Tibullo and Zampoli 
(2011). Han et al. (2014) reported the Cattaneo-Christov heat flux model 
on boundary layer flow of a Maxwell fluid. Mustafa (2015) investigated 
the interaction of Cattaneo–Christov heat flux model for rotating flow of 
a Maxwell fluid with heat transfer. The problem of Cattaneo-Christov 
heat flux model on Viscoelastic Flow over an exponentially stretching 
surface is recently discussed khan et al. (2015). Impact of temperature 
dependent thermal conductivity fluid and Cattaneo–Christov heat flux 
flow of over a surface is examined Hayat et al. (2016).  

Owing the above-mentioned investigations, the main goal of the 
present study is to investigate the impact of temperature dependent 
thermal conductivity and MHD convection flow of micropolar fluid 
towards nonlinear stretched surface. The convective condition is also 
considered in the energy boundary conditions. The present problem is 
the extension work of very recently published work of Waqas et            
al. (2016) to addressed the temperature dependent thermal conductivity 
and Cattaneo-Christov heat flux in energy equation. The dimensionless 
nonlinear partial differential equations are transformed into ordinary 
differential equations by utilizing suitable similarity transformations and 
are solved numerically. A detailed parametric study is presented 
graphically to explore the interaction of various controlling flow 
physical parameters on velocity, micro-rotation and temperature 
distribution. Also the friction factor and local Nusselt number are 
tabulated and analyzed. 

2. MATHEMATICAL MODELING 

Let us consider a steady two-dimensional electrically conducting free 
convection flow of a viscous and an incompressible micropolar fluid 
induced by a nonlinear stretching surface. The physical model of the 
present flow problem is shown in Fig.1. It is also further considered a 

general power-law surface velocity distribution  n
wu ax  with 0a  . 

There is a non- uniform applied magnetic field of strength 
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x axis. The Cattaneo-Christov heat flux model is considered in the 
heat transfer analysis.  It is assumed that the energy at the place is 
passively adjusted through heated fluid of temperature  fT   below the 

surface of the wall. Let T   be the temperature outside the thermal 

boundary layer. The thermal conductivity of fluid is not constant is 
retained. Viscous dissipation, convective condition and Joule heating 
effects are also invoked. It is also assumed that the electric field is 
absent whereas the induced magnetic field is neglected by assuming low 
magnetic Reynolds number. Under the above the assumptions and 
boundary layer approximation, the governing equation of motion and 
energy are given by  
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 and the relevant boundary conditions for the present model are 
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                   Fig. 1 Schematic diagram of the flow problem.

  
where the components u  and v  are the velocities along x -and y - 

axis respectively , k is the vortex viscosity ,  is the  fluid density ,  is 

the dynamic viscosity, g is the gravitational acceleration ,  is the 

thermal expansion coefficient, is the kinematic 

viscosity, *

2

k
j    

 
is the spin gradient viscosity , 1

p

k

c



 is the 

thermal diffusivity, N is the micro rotation velocity, j a
 is the 

micro inertia,  k T is the variable thermal conductivity
 

, fT is the 

convective fluid temperature, pc is the specific  heat at constant pressure,
 

0m is the boundary parameter and fh is the convective heat transfer 

coefficient .  

It is assumed that the thermal conductivity  k T   to vary linearly 

with temperature and taken of the form (Hayat et al. (2016)) 

   1k T k                      (6) 
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where k is the thermal conductivity of the ambient fluid and  is the 

small scalar parameter. 
Define the following similarity transformations and variable quantities:  
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It is obvious that the continuity equation (1) is automatically satisfied. 
The remaining governing flow equations (2) – (4) and corresponding 
boundary conditions (5), which are reduced to the following 
dimensionless, coupled ordinary differential equations 
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and the reduced conditions are: 
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where primes indicates differentiation with respect to , K the micro 

polar parameter ,  the mixed convection parameter , xGr  the thermal 

buoyancy parameter , Rex the local Reynolds number, M  the Hartman 

number, Pr  the Prandtl number,   the thermal relaxation 

parameter, Ec  the Eckert number and Bi  the Biot number. 
For physical quantities of interest, the local friction factor coefficient  

fC  with surface shear stress w  and local Nusselt number xNu  with 

surface heat flux wq are given by  
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where the quantities w  and wq  are given by 
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By incorporating the similarity transformations and quantities in to 
Equations (12) and (13), the reduced dimensionless skin friction 
coefficient and local Nusselt number are given by 
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where Re w
x

u x
  is the local Reynolds number. 

 

3. NUMERICAL SOLUTION 
 
The resultant differential equations (8) - (10) with the boundary 
restrictions (11) are not possible to find the exact solutions due to the 
equations are highly nonlinear and coupled. Hence there equations are 
resolved numerically with Runge-Kutta based shooting method. Initially, 
the set of nonlinear ordinary differential equations (8), (9) and (10) 
converted to first order ordinary differential equations, by using the 
following procedure: 
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with the corresponding boundary conditions 

 1 2 4 0 2 7 60, 1, , 1y y y m y y Bi y      
 
at  0                (21) 

2 4 60, 0, 0y y y     as                                                (22) 

  
First guess the values of undefined initial 

conditions    3 50 , 0y y and  7 0y  which are involved in equations 

(18) – (20). Once all initial conditions are found then we solve the 
equations (18)-(20) are integrated by using Runge-Kutta fourth order 
method with the successive iterative step length is 0.01.  In order to 
validates the accuracy of the present solutions with those solutions of 
Waqas et al. (2016) and Cortell (2007) and found excellent agreement 
with those solutions. 
 

4. RESULTS AND DISCUSSION 
The impact of various pertinent parameters such as magnetic field 
parameter M , material parameter K , mixed convection parameter , 

boundary parameter 0m , thermal relaxation parameter , variable 

thermal conductivity parameter , of Prandtl number Pr , Eckert 

number Ec  and Biot number Bi  on the velocity, micropolar velocity, 
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Fig. 2 Comparison of M on velocity 
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Fig. 3 Comparison of M on temperature 

 
 
 

 
Fig. 4 Influence of M on  f 
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Fig. 5 Influence of K on  f   

 

 
Fig. 6 Influence of  on  f 
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Fig. 7 Influence of M on  g   
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Fig. 8 Influence of K on  g 

 
 

 
Fig. 9 Influence of  on  g 

 
 

 
Fig. 10 Influence of 0m on  g   

 
 

 
Fig. 11 Influence of M on     
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Fig. 12 Influence of K on   
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Fig. 13 Influence of  on     
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Fig. 14 Influence of  on     
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Fig. 15 Influence of  on   
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Fig. 16 Influence of Pr on     

 
 

 

 
Fig. 17 Influence of Ec on   
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Fig. 18 Influence of Bi  on   

 
 
 
and temperature distributions have been prepared. For numerical 
computations, we have kept fixed values of the dimensionless numbers 
for this study: 0.5K  , 1.2n  , 0.2  , 0.5M  , 0.2  , 
Pr 0.7 , 0.2  , 0 0.5m  , 0.2Bi  0.01Ec  . 

Fig. 2 reveals that the comparison velocity distribution for two 
values of magnetic field parameter ( 0.5M   and 1.0M  ). It is 
evident from this figure that our numerical results are in good agreement 
with the recent published work by Waqas et al. (2016).  The comparison 
dimensionless temperature distribution for Prandtl number is also 
presented in Fig. 3. It can be showed that our results are in nice 
agreement with published work done by Waqas et al. (2016)  

Fig.4 displays the behavior of magnetic field parameter M on 
velocity distribution.  It is found that for higher values of magnetic field 
parameter decrease the magnitude of velocity distribution and reduced 
the boundary layer thickness. This is due to an increase in magnetic field 
on the fluid flow produces a resistance fore and which is called the 
Lorentz force. Further, we conclude this figure that hydro magnetic case 
is weaker than in comparison to the hydrodynamic case. It can be seen 
that transverse magnetic field resists the flow phenomena. Influence of 
micropolar parameter K  on velocity distribution is elucidated in Fig.5. 
It is observed that velocity distribution increased for larger values 
micropolar parameter. Because larger values of micropolar parameter 
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which corresponds to the low viscosity and enhance the velocity. This 
behavior coincides with the results of Gnaneswara Reddy [2013].  Fig.6 
plots the effect of mixed convection parameter on velocity distribution. 
The velocity boosts with increasing values of mixed convection 
parameter . Because increase in mixed convection parameter to 
enhance the buoyancy force and this is evident in the progressive 
increase in the flow velocity.  

Fig. 7 illustrates the influence of magnetic field parameter M on 
micro-rotation velocity profiles. From this figure we can observed that 
the micropolar velocity distribution is rises with an ascending values 
of M . The behavior of material parameter K  angular velocity is plotted 
in Fig.8. It can be found that initially angular velocity reduces by 
increasing of K  while the opposite behavior to the free stream velocity. 
Fig.9 illustrates the influence of mixed convection parameter on micro-
rotation velocity distribution. The angular velocity is decreases there is 

rise in the buoyancy parameter. The effect of boundary parameter 0m  
on the angular velocity is portrays in Fig. 10. The angular velocity is 

enhanced for larger boundary parameter 0m . The micro-rotation velocity 

is vanished for 0 0m  .  

The impact of magnetic field parameter on the temperature 
distribution is prepared in    Fig. 11.  The temperature distribution is 
enhances with the larger values of magnetic field parameter. Here 

hydrodynamic case  0M   is weaker in comparison to the hydro 

magnetic case. It can be noticed that the thickness of thermal boundary 
thickness increase with an increase in M . The behavior of magnetic 
field parameter on micro polar velocity and temperature is similar trend 
but the opposite for the velocity. The behavior of micropolar 
parameter K on temperature distribution is sketched in Fig.12. 
Temperature distribution is diminishes with the larger values of 
micropolar parameter. The velocity increases while the temperature is 
having the reverse trend with larger values of material parameter K . 
The effect of mixed convection parameter on temperature is shown in 
Fig.13. It is noticed that the temperature diminishes with enhancing the 
mixed convection parameter . The micro polar velocity and 
temperature have the similar behavior while the reverse trend the 
velocity distribution for the mixed convection parameter. Behavior of 
thermal relaxation parameter on temperature distribution is shown in 

Fig.14. It can be seen that the fluid temperature and energy boundary 
layer diminished for larger values of thermal relaxation parameter . 

This is due to reason that for larger thermal relaxation parameter the 
particles of the material require more opportunity to transfer heat to its 
adjacent particles. It is found that the heat transfers quickly throughout 
the objects for 0  . Also, the temperature is lower for Cattaneo-

Christov heat flux model when compared with Fourier’s law. This 
situation coincides with the results of Hatat et al. [2016]. The physical 
behavior of variable thermal conductivity parameter  on temperature 
profiles is plotted in Fig.15.  It can be seen from this figure that the 
temperature of the fluid increases with the higher values of variable 
thermal conductivity parameter . This is due to reason that as variable 
thermal conductivity parameter increased the thickness of the fluid 
temperature diminishes which contempt the temperature to increase. 
Fig.16 depicts the temperature profiles to the effect of Prandtl number. 
Both the thermal boundary layer thickness and temperature diminish to 
the enhancing values of Prandtl number ( Pr 0.5,0.7,1.0,2.0 ). It is 
also seen that accumulation perception temperature is considerable 
larger at Pr 0.5 when compared with Pr 2.0 . This is due to reason 
that thermal diffusivity increases for diminishing values of Pr . Influence 
of Eckert number Ec  on temperature is reports in Fig.17. The 
temperature increases for larger values Eckert number. The increase in 
the buoyancy force due to an increase in the viscous dissipation 
parameter rise the temperature. Fig.18 is plotted for the influence of Biot 
number Bi on temperature profiles. Increasing values of Biot number 

boosts the dimensionless temperature. Because the Biot number contains 
the heat transfer coefficient and which enhances for larger values of Biot 
number. 

The numerical in skin friction coefficient and Nusselt number for 
different values of dimensionless governing flow field physical 
parameters are displayed in Table 2. It is found that the magnitude of 
skin friction coefficient is boosts for higher values of material 
parameter, magnetic field parameter, Prandtl number and thermal 
relaxation parameter however the opposite results to mixed convection 
parameter, thermal conductivity parameter, Eckert number and Biot 
number. The hike in the values of magnetic field parameter, Prandtl 
number and thermal relaxation parameter enhances heat transfer rate 
while the reverse trend for material parameter, Eckert number and Biot 
number.   

The validation of the present obtained results for  0  by 

comparing with the earlier published works when Pr 1 , 0  , 0   

and Bi  is presented in Table 1. We can found a nice agreement of 
the present results with the existed literature of Cortell (2007) and           
Waqas et al. (2016). This proves the validity of the present obtained 
results along with the accuracy of the numerical technique we used in 
this study. 
 

Table1 Comparative of the present results for  0 with the existing 

literature when Pr 1 , 0  , 0   and Bi  . 

n  Ec  Waqas et al. (2016) Cortell (2007) Present results 

0.5 0.0 0.595286 0.595277 0.5952 

1.5 0.0 0.574864 0.574537 0.5948 

0.5 0.1 0.556715 0.556623 0.5568 

1.5 0.1 0.531002 0.530966 0.5310 

 
Table 2 Numerical values of skin friction coefficient and Nusselt 
number for different physical flow parameters when 0 0.5m  . 
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-1.306324 
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-1.481991 
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-1.24594 
-1.040779 
-1.96518 
-1.194466 
-1.189758 
-1.204168 
-1.200891 
-1.214544 
-1.99844 
-1.203845 
-1.212075 
-1.192537 
-1.170917 
-1.146044 
-1.179136 
-1.161394 
-1.144769 

0.169247 
0.170066 
0.170659 
0.166190 
0.155909 

0.1443660 
0.169733 
0.170175 
0.170896 
0.167840 
0.165077 
0.159171 
0.177488 
0.190089 
0.196528 
0.172221 
0.177620 
0.191302 
0.161701 
0.129030 
0.091447 
0.327393 
0.471396 
0.600466 
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5. CONCLUSIONS 
 

An analysis is reported to the impact of variable thermal conductivity 
and hydromagnetic on free convection flow of a micropolar fluid past a 
nonlinear stretched sheet with Cattaneo-Christov heat flux. The 
dimensionless governing equations are solved numerically using Runge–
Kutta based shooting technique. The important key findings of the 
present study are: 

 
1. Velocity and boundary layer thickness reduced with increasing 

values of M . 
2. Effect of   is similar on micro-rotation velocity and 

temperature. 
3. Both temperature and thermal boundary layer thickness 

decreases for enhancing values of Prandtl number.   
4. An increase in variable thermal conductivity 

parameter   corresponds to lower temperature. 
5. The enhancing values of thermal relaxation 

parameter  decrease the fluid temperature. 

6. Heat transfer rate enhances for the thermal relaxation 
parameter  and Prandtl number Pr  . 
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NOMENCLATURE 

iB   Biot number 

fC   local friction factor co-efficient 

c   specific heat at constant pressure 

Ec   Eckert number 

xGr
  

thermal buoyancy parameter 

g   Gravitational acceleration 

fh   convective heat transfer coefficient 

j   Micro inertia 

K   micropolar parameter 
   vortex viscosity 

( )k T  variable thermal conductivity 

k   thermal conductivity of ambient fluid 

M   Hartman number 

0m
 
 boundary parameter 

N   micro-rotation velocity 

xNu  Nusselt number 

Pr   Prandtl number  

wq   surface heat flux 

Rex  local Reynolds number 

T
  

temperature of the fluid 

fT   convective fluid temperature  

wT
  

stretching sheet temperature 

T   
temperature far away from the stretching sheet 

u   velocity of the fluid along the x - axis 
v    velocity of the fluid along the y - axis 

   fluid density 

   dynamic viscosity 

   thermal expansion coefficient 

   kinematic viscosity 
*   spin gradient viscosity 

   thermal diffusivity 
   small scale parameter 

   mixed convection parameter or buoyancy parameter 
   thermal relaxation parameter 

w   surface shear stress 
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