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ABSTRACT 

One row of heated elliptical cylinder with aspect ratio 0.6 and 0.8 are studied to know the forced heat transfer performance.  The transversal 

distance between the cylinders are changed and the heat transfer is observed. Numerical observation of the study is done by using finite volume 

method to solve the momentum equations in two dimension domains. The pressure term instead of velocity is obtained by measurement in a subsonic 

wind tunnel and then it is injected into the momentum equation. The results of the hydrodynamic calculation are then injected into the energy 

equation which is solved by the over relaxation iteration method. The results of numerical calculation show that the drag coefficient due to flow 

friction changes with the distance between two elliptic cylinders. At certain distance, the cylinders behave as single cylinder and no influence each 

other. The Heat transfer performance for small distance between the cylinders has lower values compared to larger distance. It increases with the 

increase of distances and at a certain distance, there is no more increases. It means that the heat transfer tends to a constant value. Heat transfer ability 

is depending on the aspect ratio of elliptic cylinder. 
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1. INTRODUCTION 

The analytical models for the heat transfer of tube banks of in-line and 

staggered arrangement are developed by Khan et al. (2006). These 

models are developed in terms of longitudinal and transversal distance, 

Reynolds and Prandtl numbers. In this study, the authors explore the 

convection heat transfer associated with crossflow over the tubes for 

certain transverse distance. Minter Cheng (2004) gives numerical study 

of the influence of transverse distance from two elliptic cylinders on 

heat transfer. Equations of momentum in x and y directions are solved 

by finite volume method. In this case the pressure distribution is 

guessed and then it is corrected until all variables converge. The Heat 

transfer increase with dimensionless transverse distance ranging from 1 

to 1.5 and it decreases with transversal distance from the distance 

greater than 1.5. The heat transfer equals to that of single cylinder if 

transverse distance equal to 2. Heat transfer of each row of the heat 

exchanger is not the same, the smallest value is found in the first row 

and it increases from second and third row as shown experimentally by 

Mehrabian (2007). 

A study concerning with complex flows and heat transfer of the 

laminar flow regime around a single row of tubes in a channel is given 

by Cho J. and Son C. (2009). The time-dependent numerical approach 

predicted the generation and evolution of vortical structures, wakes 

interactions, and their effects on the drag, lift and heat transfer of the 

range of Reynolds number 20 to 180. Most heat transfer of flow around 

an elliptic cylinder occurs to the zone between stagnation point and 

separation point (Khan et al. 2005). Local variations in heat transfer are 

presented over the entire cylinder surface, including the zone beyond 

the separation points. At low Reynolds Numbers, the heat transfer of 

the rear portion of a tube is at a minimum values (Nakamura et 

al.,2004; A.M. Abdel-Raouf et al.,2010; Buyruk, 2002; Kaptan et 

al.,2008, and R. Rahman et al, 2005). The effects of longitudinal and 

transverse transversal distance on heat transfer from both arrangements 

are studied by Khan et al. (2006). They show that in both arrangements, 

the heat transfer increases mainly with decreasing longitudinal pith 

ratio, and to a lesser extent with increasing transversal distance. A 

laminar boundary layer develops from the front stagnation point of a 

cylinder in cross-flow and grows in thickness around the tube. The 

distributions of local heat transfer coefficients around cylinders are 

almost the same, except for the front half of the first row (Wang et al, 

2000; Tahsee et al, 2013).  Transient numerical simulations of heat 

transfer are performed by Andrej Horvat and Andrej at al. (2006) for 

heat exchanger segments with cylindrical and ellipsoidal tubes in the 

staggered arrangement. The drag coefficient and the Stanton number 

are lower for the ellipsoidal form in comparison to the cylindrical form 

of tube cross section. 

It is well established that an effect of transverse distance from 

tubes bundles has important role in heat transfer, however, not work has 

been reported on the optimum limit of transverse distance especially in 

single row of elliptic cylinder. The purpose of this study is to 

investigate the optimum limit of transversal distance from 

hydrodynamic characteristics and heat transfer performance for one row 

elliptic cylinder. 

2. GOVERNING EQUATIONS 

Figure 1 shows the coordinate system, and parameters of this study. As 

shown in the figure, one row of two isothermal heated elliptic cylinders 

is place in a uniform stream flow. The x axis is in longitudinal direction 

of flow and the y axis is in direction normal to the cylinder surface. ST 

is the length of distance between two cylinders. The point of θ = 0o is 

the point of stagnation on surface of cylinder.
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Fig. 1 Single row of elliptic cylinder 

 

The governing continuity, momentum, and energy equations in x-

direction for steady incompressible flow of a Newtonian fluid with 

constant thermos-physical properties, no heat generation, and negligible 

viscous dissipation are 
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Momentum equation: 

 

2

21

y

u

dx

dp

y

u
v

x

u
u

∂

∂
+−=

∂

∂
+

∂

∂
υ

ρ
               (2) 

 

Energy equation: 
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with boundary conditions as follows 

 

u = v = 0, T = TS   at the cylinder surface 

u = Ue   ,   T = T∞  far from cylinder  

 

The dimensionless variables: 
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By introducing the dimensionless variables, the equations (1), (2) and 

(3) become  
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and the boundary condition become  

 

u+ = v+ = 0, T+ = 1   at the cylinder surface 

u+ = Ue
+,    T+ = 0  far from cylinder  

 

 

3. METHOD OF SOLUTION 
 
We use the finite volume method to solve the equation (4) and (5). This 

method is integrating the equation (5) and (6) on a small element. 

(Cousteix, 1980). The discretization indexes in x and y direction is 

represented by subscript i and j respectively. The number of nodes is 90 

in x direction and the number of nodes increases to y direction as x 

increases where it is 140 nodes near the rear of cylinder. The 

calculation of velocity is carried out along the zone of boundary layer 

that develops on the surface of semi-elliptic cylinder from stagnation 

point until rear part of cylinder. The above hydrodynamic equations eq. 

5 and 6 can be expressed as a general expression below  
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where φ  is the dependent variable, N is the diffusion, and S is the 

source term. 

After integrating the equation (8) in a small element V in 

discretization and we obtain the following expression (Cousteix, 1980) : 
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After evaluating the integration of equation (9), the discretized equation 

is obtained. This equation forms a tridiagonal matrix that can be solved 

easily by the Cholesky method to obtain the velocity distribution in 

hydrodynamic boundary layer. The first term of the right hand of 

equation (6) is obtained by the measurement the static pressure in wind 

tunnel with test section of 40 x 40 cm2 and length 100 cm. Two elliptic 

cylinders with aspect ratio of ɛ = 2b/2a = 0.6 and 0.8 are placed as the 

arrangement shown by Fig. 1. The static pressures are measured at the 

surface of cylinder from θ = 0o to 180o. The calculation of Reynolds 

number is based on the measured maximum velocity between the 

cylinders. After calculation, we obtain maximum velocity Umax = 15 

m/s for the cylinders with the smallest transverse distance and the 

Reynolds number is 8.4 x 104 which is laminar flow and it is less than 

the value of the transition Reynolds number (John et al. 2008).  

The solution to the energy equation (7) is carried out with iteration 

method. The equation is discretized with finite difference method to 

obtain the discretized equation and then it is easily solved by the 

iteration method using factor of relaxation. The number of nodes of x 

and y direction in the calculation of the temperature is equal to the 

number of nodes in velocity calculation. We use the backward and 

centered difference in the left side of the equation (7). After 

transformation process, equation (7) becomes the discretized equation 

as follows. 
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The velocity distribution in equation (10) are known from previous 

calculation (eq. 9). We use Pr = 0.71 for air and for all calculation in 

this study. 

The pressure drag coefficient is calculated from the common 

equation as follows 
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The skin friction drag is calculated starting from stagnation point to 

point of separation. The drag coefficient is given by  
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or using the variables in equation (4), the drag coefficient due friction 

becomes   
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and the average Nusselt number is written 
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4. RESULTS AND DISCUSSION 
 

The solution of the energy equation by using the iteration method need 

the factor of relaxation of 0.5 and the number of iteration is about 700. 

The temperature variables at of all nodes converge to the solution where 

the absolute convergence are less than 10-6.  The calculation of all 

parameters is carried out from stagnation point to the separation point 

of flow. The coefficients of pressure are presented in Fig. 2 and 3 for ε 

= 0.6 and 0.8 respectively. The dimensionless transversal distance is 

represented by ST+ = ST/2b in which 2b is minor axis of elliptic 

cylinder (Fig.1). In pressure measurements, the distance between 

cylinders ST is set at constant values for all aspect ratio of elliptic 

cylinders, while the length of minor axis is different. It is the reason that 

the values of ST+ are quite different for two type of elliptic cylinder. It 

is noted that the length of minor axis increases when the aspect ratio 

increases and, vice versa, the length of minor axis decreases when the 

aspect ratio decreases. That is why, ST+ has different values for ε = 0.6 

and 0.8 as shown in Fig. 2 and 3 where. ST+ has higher values for ε = 

0.6.  

Figures 2 and 3 show that for small distance between cylinders, the 

pressure decrease to the lowest values compared to the other distances. 

The region near the stagnation point, the pressure seems constant to the 

certain distance compared to the pressure of other cylinder in the same 

areas. This leads to constant velocity due to small areas passes between 

cylinders. When the distances increase, the pressure coefficient slightly 

difference in values and its similar. The elliptic cylinder with aspect 

ratio ɛ = 0.6, the pressure at the rear region of cylinders are greater than 

that of cylinder with aspect ratio of 0.8 (Fig.3) since the pressure 

coefficient Cp is about -1.5 for ɛ = 0.6 while the Cp is about -2.0 for ɛ = 

0.8. As shown by the equation (11) that the pressure parameter pi 

changes along the surface of cylinder while the others parameters are 

constant values. The lower aspect ratio of elliptic cylinder tends to have 

streamline flow at the rear region, but the higher aspect ratio tends to 

increase the wake region at the rear part so the pressure decreases. The 

higher value of aspect ratio makes the wake region of rear cylinder 

higher so the pressure decreases. The other observation is near 

stagnation point, in which the pressure for ɛ = 0.6 decrease rapidly 

compared to the cylinder of ɛ = 0.8. ST+ ≈ 0.11 for both ε = 0.6 and 0.8 

on the rear part of cylinder, the pressure decreases far from the the 

others values of ST+ > 1.1 since the flow between cylinder becomes a 

jet flow which induces high pressure decrease.  

 

 
 

Fig. 2 Pressure Coefficient for ε = 0.6 

 
 

 
 

Fig. 3 Pressure Coefficient for ε = 0.8 
 

The pressure coefficient leads to have the total drag coefficient due 

to static pressure as shown by Fig. 4. The distance between cylinders 

may not be zero in order to have fluid flows. Therefore, the curves start 

from small distances. It is clear that the drag coefficient profile is 

different to significant values of all aspect ratios. For all aspect ratios of 

cylinder, the maximum values are observed when the distances are 

small and its decrease to the minimum values for large distance. It is 

clear that the total drag coefficient is larger for ɛ = 0.8 compared with 

that of coefficient for ɛ = 0.6 in all ST+. For ɛ = 0.6, the coefficient 

decreases significantly starting from about ST+ ≈ 0.6. After this value, 

the coefficient decreases slowly and the influence may be neglected. So 

the elliptic cylinders behave as a single cylinder, practically, there is no 

influence of each other. For ɛ = 0.8, the coefficient decreases with ST+ 

more rapidly compared with that of ɛ = 0.6. Small distance leads to 

small frontal area between cylinders, so the fluid accelerates and the 

pressure drops. 
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Fig. 4 Pressure Drag Coefficient  

 

The velocity distributions in the boundary layer produce the drag 

coefficient due to friction. The friction drag coefficient of two types of 

elliptic cylinder is shown by Fig. 5. CDF.Re1/2 represents the parameter 

of dimensionless shear stress at the surface of cylinder as shown by 

equation (12) which relates to the velocity gradient at the wall. 

Furthermore, this parameter represents the velocity at the position very 

close to the surface of cylinder. For ɛ = 0.6, the drag coefficient profile 

is smaller than that for ɛ = 0.8. It is clear from the figure that the 

coefficient decreases with increasing ST+. The increase in ST+ makes 

the flow area between cylinders increases that causes the decrease of 

velocity.  

 

 
 

Fig. 5 Friction Drag Coefficient 

 

For brevity, the complete results of temperature distribution are 

not presented here. Two examples of the dimensionless temperature 

profile distributions are presented by Fig. 6 and 7 for certain ST+ and 

for some angle θ. The figures show the fluid temperatures in direction 

normal to the cylinder surface and have similar trends. The 

dimensionless temperature at the cylinder surface (y* = 0) for all aspect 

ratios is equal to unity and temperature toward zero far from the surface 

since the boundary condition is imposed on the solution to the equation 

(7). In this case, the convection occurs starting from the cylinder 

surface to the fluid or the surface temperature is greater than the fluid 

temperature. The elliptic cylinder with ɛ = 0.6 shows that the curves are 

practically coinciding for θ ≤ 30.5o. It means that the temperature 

distributions of front region of cylinder are practically the same each 

other. The same case for ɛ = 0.8, the curves are coinciding each other in 

wide region of about θ ≤ 76.1o. For all cases, from the surface, the 

curves seem to decrease linearly with y* to at a certain value and then 

reach to zero asymptotically far from the surface. In case of larger θ, the 

temperature profiles have the difference distribution of that of smaller 

θ, but still similar.  The temperatures distribution has greater than that 

of smaller θ since the thermal boundary layer develops starting from 

point of stagnation to near point of separation. As θ increases, the 

temperature profiles differ from that for small θ. In this case, the 

temperature distributions are larger than for small angle. The increase in 

temperature is caused by the decrease in thermal boundary layer 

thickness. Thus for ε = 0.6, the thermal boundary layer develops more 

rapidly than for ε = 0.8. 

 

 
 

Fig. 6 Temperature Profile for ɛ = 0.6 and ST+ = 0.67 

 

 
Fig. 7 Temperature Profile for ɛ = 0.8 and ST+ = 0.5 

 

Figure 8 compares the local heat transfers for different distances 

ST+ and for ɛ = 0.6. It seems that the results are strongly influenced by 

the nature of transversal distances small distance ST+ <1.35  since the 

curves seem to be coincided each other after ST+ ≥ 1.35. For higher ST+ 

there is no influence on heat transfer performance. It can be also 

observed that for small transverse distance, the heat transfer 

performance profile is lower than that of larger distance. However, for 

all ST+, starting at the maximum values of Nul/Re1/2 at stagnation point 
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θ = 0o, Nu/Re1/2 decreases with increasing of θ as a result of laminar 

boundary layer development. The minimum heat transfer is reached 

near the separation point. The decrease in Nu/Re1/2 is due to a 

corresponding increase in hydrodynamic boundary layer thickness. The 

cross section of flow produced by two elliptic cylinders with ε = 0.6 

decreases gradually which make the variation on flow behavior. The 

flow accelerates with decrease of cross section which produces the 

decrease of pressure and after passing the minimum cross section the 

velocity is at maximum. At the rear region of cylinder, the flow 

decelerates and the pressure re-increases. Thus the boundary layer 

develops starting from stagnation point where the cross section is 

maximum.  

 

 

 
Fig. 8 Local Nusselt Number for ɛ = 0.6  

 

 

The important difference is observed between ɛ = 0.6 and ɛ = 0.8. 

of local heat transfer profile. Fig. 9 shows the parabolic profile of local 

heat transfer, particularly for ST+ = 0.28. So for very small distance, the 

local heat transfer increases with θ from stagnation point. It reaches a 

maximum at θ ≈ 75o and then decreases to the minimum value near 

separation point. A maximum value is due to the temperature 

deformation in x direction and thus the temperature gradient becomes 

important which makes the highest Nusselt number parameter. ST+ = 

0.28, the narrow spacing between cylinder influences boundary layer 

which makes the flow becomes a jet flow thus decreasing the boundary 

layer thickness. Thus the local heat transfer is more sensitive to the 

local heat transfer profile in small distance. The curve distributions of 

ST+ > 0.28 show similar profiles but we observe small differences in 

about θ ≤ 60o. In this region, the higher ST+ and the higher heat rate 

transfer and the local heat transfers increase slightly with increase of θ 

to a maximum value of θ ≈ 40o, then it decrease rapidly toward the 

separation points. This provides further evidence that temperature 

interference is almost negligible and the similarity of the temperature 

profile of each ST+ is kept. There is almost no effect on the heat transfer 

characteristics of elliptic cylinders. Further, it is observed for θ ≥ 60o, 

the heat transfer parameter curves shift to the left part of the figure 

keeping its similarity by the increase of ST+.  The heat transfer rate is 

sensitive to the variation in the rear part of the elliptic cylinder 

especially for narrow distance where the Nul/Re1/2 decrease rapidly 

approaches the separation point. This condition is due to the thinness of 

thermal boundary layer at the rear part of cylinder.  

The heat transfer ability is represented by the average Nusselt 

number parameter Nua/Re1/2  as shown by Fig. 10. It can be seen that 

the heat transfer is better for ɛ = 0.6 in range of about ST+ ≥ 0.8, but for 

lower ST+, the heat transfer is lower than that of cylinder with ɛ = 0.8. 

The significant increase in heat transfers is observed in the range of 

about 0.34 < ST+ < 1.35, while for ε = 0.8 the increase in heat transfers 

is small in the range of about 0.28 < ST+ < 1. That is why the two 

curves are intersecting at ST+ ≈ 0.8 which both elliptic cylinders have 

the same heat transfer ability. For ɛ = 0.6 and starting from ST+ ≥ 1.35, 

there is no effect on heat transfer since the curve seems to have very 

small variations. In case of elliptic cylinder with ɛ = 0.8, the influence 

seems to be important for about ST+ ≤ 1.0 but if the transversal 

distances are greater than 1.0, the effect can be neglected and the 

elliptic cylinder is considered as single cylinder. 

 

 
Fig. 9 Local Nusselt Number for ɛ = 0.8 

 

 

Fig. 10 Average Nusselt Number 

5. CONCLUSION 

Two elliptical cylinders arranged side by side are studied its heat 

transfer performance in which each cylinder has aspect ratio of  ɛ = 0.6 

and the other study has the aspect ratio of ɛ = 0.8. Study shows that the 

transversal distance between two elliptic cylinders have influence on 

hydrodynamic and thermal parameter. The influence is mostly 

significant for small distance, however, it depends on the aspect ratio of 

the elliptic cylinder. In hydrodynamic condition, the elliptic cylinder 

with ε = 0.6 has lower friction and lower pressure drag compared with 
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cylinder with ε = 0.8. In heat transfer condition, the elliptic cylinder 

with aspect ratio 0.6 has better heat transfer performance starting from 

ST+ ≈ 0.8 compared with the cylinder of aspect ratio 0.8. This study 

gives the limit of utilization of the elliptic cylinder in heat exchanger 

design. 

NOMENCLATURE 

a semimajor axis of elliptic cylinder (m)  

b semiminor axis of elliptic cylinder (m) 

CDP pressure drag coefficient 

CDF friction drag coefficient 

CP pressure coefficient 

L characteristic length = 2a (m) 

Nu Nusselt number 

p static pressure (kg/cm2) 

Pr Prandtl number 

Re Reynolds number 

ST transversal distance between cylinder (m) 

Ts surface temperature (oC) 

T∞ upstream temperature (oC) 

u  velocity in boundary layer in x direction (m/s) 

Ue velocity at boundary layer (m/s) 

U∞ upstream velocity (m/s) 

v velocity in in boundary layer in y direction (m/s) 

x coordinate (m) 

y axis (m) 

  

Greek Symbols 

υ cinematic viscosity of fluid (m2/s)  

 φ  dependent variable  

ɛ aspect ratio = 2b/2a  

θ angle (o) 

 

Superscripts 

+  Dimensionless parameter 

 

Subscripts 

i discretization number in x direction 

j discretization number in y direction 
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