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ABSTRACT 

This paper studies the combined effects of Soret (thermal-diffusion) and Dufour (diffusion-thermo) on magnetohydrodynamics (MHD) boundary 
layer flow of a Jeffrey fluid past a stretching surface with chemical reaction and heat source. Using the similarity transformations, the governing 
equations are transformed into a set of non-linear ordinary differential equations (ODE’s). The resulting equations are then solved numerically by 
using the shooting method along with Runge-Kutta fourth order integration scheme. Numerical results for the velocity, temperature and concentration 
distributions as well as the skin-friction coefficient, Nusselt number and Sherwood number are discussed in detail and displayed graphically for 
various physical parameters. The results indicate that the influence of Soret and Dufour numbers are significantly active in the study of non- 
Newtonian fluid flows. The accuracy of the numerical method is tested by comparing with previously published work as a limiting case (for viscous 
flow) and the results are found to be in excellent agreement.  
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1. INTRODUCTION 

In the recent years, boundary layer flow of non-Newtonian fluids over a 
stretching surface has received special attention from the researchers 
(Ellahi et al. 2012; Nadeem et al., 2014; Bose et al., 2015; Akbar et al., 
2016; Sahoo, 2010). This is because of their advanced industrial, 
engineering science and technological applications such as glass fibber, 
wire drawing, paper production, extrusion of plastic sheet, hot rolling, 
drawing of plastic films and many others. Motivated by these facts, 
Qasim (2013) examined the heat and mass transfer of an incompressible 
viscous Jeffrey fluid flow over a stretching surface in the presence of 
heat source/sink. Hayat et al. (2014) investigated the unsteady boundary 
layer flow of an incompressible non-Newtonian Jeffrey fluid over a 
stretching sheet by using HAM. Ramesh (2015) addressed the effect of 
heat source on stagnation point flow over a stretching surface with a 
Jeffrey nano-liquid. Convective radiative flow a Jeffrey fluid over an 
inclined stretching cylinder has been studied by Hayat et al. (2015). 
Ramachandra Prasad et al. (2015) analyzed the heat and mass transfer 
of an incompressible Jeffrey non-Newtonian fluid past a vertical porous 
plate. Recently, the flow and heat transfer of a nanofluid in a rotating 
system with first order chemical reaction is discussed by Venkateswarlu 
and Satya Narayana (2015). Further, several researchers have explored 
the flow behaviour due to the non-Newtonian phenomenon in various 
configurations (Sheikholeslami et al., 2014; Hayat et al., 2015; Jail et 
al., 2013; Rashidi et al., 2015). 

The study of the hydrodynamic flow of an electrically conducting 
non-Newtonian fluid over stretching surface is motivated by its great 
values in engineering problems such as plasma studies, geothermal 
energy extraction, cooling of nuclear reactors and many other fields. In 

view of these applications, Sigey et al. (2013) studied the MHD free 
convection flow past a vertical porous plate with Joule heating. Akram 
and Nadeem (2013) examined the effect of induced magnetic field and 
heat transfer on the peristaltic motion of a Jeffrey fluid in an 
asymmetric channel. Shehzad et al. (2014) investigated the MHD three-
dimensional flow of Jeffrey fluid with Joule heating. Ellahi and Hussain 
(2014) studied the partial slip effect on MHD peristaltic flow of a 
Jeffery fluid in a rectangular duct. Recently, Rashidi et al. (2015) 
presented the free convective heat and mass transfer of MHD fluid flow 
over a vertical stretching porous sheet with radiation. Ellahi et al. 
(2013) examined the series solutions of MHD peristaltic flow of a 
Jeffrey fluid in eccentric cylinders. Satya Narayana et al. (2016) 
considered the effects of thermal radiation on MHD heat and mass 
transfer of a Jeffrey fluid due to stretching sheet with chemical reaction. 
Sheikholeslami et al. (2015) investigated the effect of space dependent 
magnetic field on ferrofluid flow and heat transfer with free convection 
of Fe3O4–water nanofluid. Interesting investigations on MHD flows can 
be seen in the references (Chamkha et al., 2014; Ibrahim et al., 2013; 
Ellahi et al., 2014; Harish Babu and Satya Narayana, 2016).  

It is also important to consider Soret and Dufour effects on heat 
and mass transfer of a non-Newtonian fluid over a stretching sheet. 
These play a very significant role in many industrial and practical 
applications such as the operation of solar ponds, the microstructure of 
the world oceans, biological systems and petrology on chemical 
engineering etc. Soret (1880) was the first who introduced the Soret 
effect in a tube at two ends. A diffusion-thermo (Dufour) effect is 
energy flux can be generated by temperature gradient as well as 
composition gradient.  Postelnicu (2007) studied the Soret and Dufour 
effects over a vertical surface in the presence of convection and 
chemical reaction. Beg et al. (2009) considered the Soret and Dufour 
effects on MHD heat and mass transfer of a saturated flow over a 
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permeable stretching sheet. Pal et al. (2013) studied the heat and mass 
transfer characteristics of a fluid over a non- isothermal wedge with 
Ohmic dissipation. Hayat et al. (2012) analyzed the Soret and Dufour 
effects on MHD flow of a Casson fluid over a stretching surface. Soret 
and Dufour effects on the stagnation point flow of Jeffery fluid with 
convective boundary condition is investigated by Shehzad et al. (2013). 
Rashidi et al. (2015) examined the heat and mass transfer of a 
viscoelastic fluid flow over a vertical stretching sheet with Soret and 
Dufour effects using HAM. Hayat et al. (2016) discussed the radial 
magnetic field of peristaltic transport in a curved channel with Soret 
and Dufour effects.  Many investigations were made to examine flow 
over various flow fields under different aspects (Goyal et al., 2014; 
Venkateswarlu et al., 2015; Hayat et al., 2015; Satya Narayana, 2015; 
Sheikholeslami et al., 2015). 

The physical situation defined in all the above investigations is 
connected to the process of uniform temperature and concentration over 
Newtonian fluid flows (Kumar, 2009; Ali, 1995; Elbashbeshy, 1998; 
Andersson et al. 1992). Whereas, the influence of power law form of 
temperature and concentration on non-Newtonian fluid flows has 
received a little attention even though it has huge applications in many 
industrial and engineering sciences. This motivates the present work to 
explore the Soret and Dufour effects on MHD electrically conducting 
non-Newtonian Jeffrey fluid over a linear stretching sheet in the 
presence of chemical reaction and heat source. After using similarity 
transformations, the governing equations are converted to a system of 
non-linear ordinary differential equations. The resulting equations are 
then solved numerically by using fourth order Runge-Kutta method 
along with shooting technique. The effect of different parameters on 
velocity, temperature and concentration profiles are shown with the 
help of graphs and tables. Further, the skin friction coefficient, Nusselt 
and Sherwood numbers are computed and analyzed. 

  

2. FORMULATION OF THE PROBLEM 

We consider the steady two-dimensional flow of an incompressible, 
electrically conducting Jeffery fluid past a stretching sheet in the 
presence of Soret and Dufour effects. The sheet is stretched with linear 
velocity ( ( )wU x cx= ) and the free stream velocity are assumed to 

proportional with the distance x − from the origin (see Fig.1). The flow 
is confined to y >0. The surface of the sheet is also assumed to be 

subjected to power law form of temperature ( 1( / )m
wT T A x l∞= + ) and 

concentration ( 2( / )m
wC C A x l∞= + ). Where T∞  and C∞ are the 

ambient fluid temperature and concentration respectively, 

1 2, , 0l m A A= >  are constants. Further, a uniform strength of magnetic 

field 0B is applied transversally to the direction of the flow. The 

magnetic Reynolds number is assumed to be small and thus the induced 
magnetic field is negligible. It is also assumed that Dufour effect may 
be defined by a second order concentration derivative with respect to 
the oblique coordinate in the energy equation whereas Soret effect is 
defined by the second order temperature derivative in the mass 
diffusion equation. The fundamental equations for Jeffrey fluid can be 
written as (Nadeem et al., (2009)) 

pI Sτ = − +  

1
1 1 1.

1

R
S R V R

t

μ λ
λ
 ∂ = + + ∇  + ∂  

 

The Rivlin-Ericksen tensor defined by 
 1 ( ) ( )R V V ′= ∇ + ∇  

 Under these assumptions, the governing boundary layer equations 
are (see Refs. Hayat et al., 2014; Hayat et al., 2015; Satya Narayana 
and Harish Babu, 2016)  
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Fig. 1 Schematic diagram of Jeffrey fluid flow over a stretching 

Surface 
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The following boundary conditions are appropriate in order to 
employ the effect of stretching of the boundary surface may be written 
as 

( ), 0, ,      0w w wu U x v T T C C at y= = = = =  

0, 0, ,   u u T T C C as y∞ ∞′→ → → → → ∞                 (5) 

Employing the Roseland diffusion approximation the radiative heat flux 

rq is given by 
* 44

3r
s

T
q

K y

σ ∂= −
∂

                  (6)  

where sK and *σ is the Roseland mean absorption coefficient and the 

Stefan-Boltzman constant respectively.  
We assume that the temperature differences within the flow are 

sufficiently small such that 4T may be expressed as a linear function of 

temperature, we can expand 4T in Taylor’s series about T∞  and 

neglecting the higher order terms beyond the first degree (T- T∞ ), we 

get 
4 3 44 3T T T T∞ ∞≈ −                     (7) 

With the help of equations (6) and (7), equations (3) can be written as  
2 3 2 2

2 * 2 2

 1 16
       ( )

3
T

P P P P S

T T k T T T Q Dk C
u v T T

x y c y c k y c c c y

σ
ρ ρ ρ

∞
∞

∂ ∂ ∂ ∂ ∂+ = + − − +
∂ ∂ ∂ ∂ ∂

 (8) 

The following similarity transformations are used to transform the 
boundary layer flow heat and mass transfer equations to non-linear 
ordinary differential equations  

, ( ), ( ),

( ) , ( )
w w

c
y u cxf v c f

T T C C

T T C C

η η υ η
υ

θ η φ η∞ ∞

∞ ∞

′= = = −

− −= =
− −

                    (9) 

where η  is the similarity variable and ( )f η  is the dimensionless 

stream function and , ,f θ φ′  respectively, are the dimensionless 

velocity, temperature and concentration. 
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Using the similarity transformations of equation (9), equations (2), 
(4) and (8) are transformed to the following ordinary differential 
equations  

2 2(1 )( ) ( ) (1 ) 0f ff f f ff Mfλ β λ′′′ ′′ ′ ′′ ′′′′ ′+ + − + − − + =               (10) 

4
1 Pr Pr( ) Pr 0

3 fR f mf Dθ θ γ θ φ  ′′ ′ ′ ′′+ + − + + = 
 

                    (11) 

( ) 0Scf Sc mf Kr ScSrφ φ φ θ′′ ′ ′ ′′+ − − + =                (12) 

Where 1cβ λ= is the Deborah number and 
2
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p
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c
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D
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Schmidt number and 
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is the Dufour number, 
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 is the 

soret number. 
In view of the transformations, Eq. (5) takes the following non-

dimensional form 
( ) 0, ( ) 1, ( ) 1, ( ) 1 0

( ) 0, ( ) 0, ( ) 0, ( ) 0      

f f at

f f as

η η θ η φ η η
η η θ η φ η η

′= = = = =
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              (13) 

The most important physical quantities for the problem are skin-
friction coefficient fC , local Nusselt number Nu and Sherwood number 

Sh which are defined by the following relations: 
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Where, k is the thermal conductivity of the fluid. 
The skin friction on the sheet wτ , rate of heat transfer wq , D is the 

mass diffusivity, and the rate of mass transfer wm  are given by 
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Substituting eq.(9) in eq.(14) using eq.(15), we get 

{ }1
2

1
Re (0) (0)

1x fC f fβ
λ

′′ ′′= +
+

,
1

2
4

Re 1 (0)
3x xNu R θ−   ′= − + 

 
,

1
2Re (0)xSh φ− ′= −                                              (16) 

where Re w
x

xu

υ
= is the local Reynolds number.      

3. NUMERICAL PROCEDURE 

The coupled non-linear ODE’s (10)–(12) that are subject to the 
boundary conditions (13) have been solved numerically using shooting 
method. In this method, the fourth order non-linear Eq. (10) and 
second-order Eqs. (11)-(12) have been reduced to eight simultaneously 
first order ordinary differential equations for which only eight 
unknowns following the method of superposition (Na, (1979). To solve 
this system we require eight initial conditions. Thus we employ 
numerical shooting technique with Runge–Kutta scheme. In order to 
determine η∞ for the boundary value problem stated by equations (10)-

(12), we start with some initial guess value for some particular set of 
physical parameters to obtain (0)f ′′ . The solution procedure is repeated 

with another large value ofη∞ until two successive values of (0)f ′′  

differing only by the specified significant digit. The last valve of η∞ is 

finally chosen to be the most appropriate value of the limit η → ∞ for 

the particular set of parameters. The value ofη  may change for another 
set of physical parameters. Once the finite value of η is determined 
then the coupled boundary value problem given by equations (10)-(12) 
are solved numerically using the shooting method. 

4. RESULT AND DISCUSSION  

The present work focuses on MHD radiative heat and mass transfer of a 
Jeffrey fluid over a stretching sheet in the presence of Soret and Dufour 
effects. The velocity, temperature, concentration, local skin friction 
coefficient, Nusselt and Sherwood number profiles for different 
parameters are displayed in Figs.2-16. In the present study we have 
chosen M=0.2, m=2.0, R=0.1, Df =0.3, Kr=0.2, Pr=0.72, Sc=0.3, 
Sr=0.2, β =1.0, γ =0.1 and λ =1.0. The accuracy of the present numeri-
cal solution is validated by comparing the present results with those of 
Grubka and Bobba (1985) and Chen (1998) for the viscous case. The 
numerical results are in good agreement with those obtained 
numerically as shown in Table 1. It can be observed that, in the absence 
of Soret and Dufour numbers, the present problem reduces to those of 
Satya Narayana and Harish Babu (2016).It is also noticed that, the 
present problem reduces to a regular viscous fluid (see Ref. Chen 
(1998)) if we choose β = λ =0 in Eq. (10). 

Table 1 Heat transfer coefficient (0)θ ′−  for various values of Pr when 
m=2.  

Pr 
Grubka and 

 Bobba (1985) 
Chen (1998) Present 

1.0 1.333 1.33334 1.33333 

3.0 2.5097 1.50972 1.50972 

10.0 4.7969 4.79686 4.79673 
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    Fig. 2 Effect of β  on ( )f η′ , ( )θ η  and ( )φ η  profiles 

 
Fig. 2 depicts the velocity ( )f η′ , temperature ( )θ η  and 

concentration ( )φ η  profiles for various values of Deborah number β . It 

is noticed that, ( )f η′ increases with the increase of β . From the 

definition of Deborah number, one can see that β is directly 

proportional to the rate of stretching sheet. Hence, the larger β has 
higher fluid motion in the boundary layer which in turn raises the fluid 
velocity. On the other hand, ( )θ η and ( )φ η decrease for larger values 

of β . Physically, β is proportional to retardation time and hence 

retardation time increased when β  increases. Hence, an increase in 
retardation time corresponding to the lower temperature and weaker 
thermal boundary layer thickness. 
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Fig. 3 Effect of λ  on ( )f η′ , ( )θ η  and ( )φ η  profiles 

The influence of the ratio of relaxation to retardation time’s 
parameter λ on the velocity, temperature and concentration distributions 
is shown in Fig. 3. The effect of increasing values of λ is to reduce the 
velocity profile and the boundary layer thickness. Conversely, ( )θ η and 

( )φ η  are enhanced with an increase of λ . It is also observed that 

λ and β has opposite effects on velocity, temperature and concentration 
profiles.  
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Fig. 4 Effect of M on ( )f η′ , ( )θ η  and ( )φ η  profiles  

Fig. 4 illustrates the effect of magnetic field parameter M on the 
velocity, temperature and concentration profiles. It is observed that 

( )f η′ decreasing behaviour for increasing values of M. Physically, the 
application of normal magnetic field has the propensity to give rise to a 
resistive type force called the Lorentz force and hence results in 
impeding the velocity profile and therefore, decreases the momentum 
boundary layer. On the other hand, both ( )θ η  and ( )φ η  increase with 
increasing values of M. Hence, the magnetic field tends to retard the 
velocity field which in turn induces the temperature and concentration 
fields increases for larger values of M. These results are same in both 
Newtonian and non-Newtonian cases and hence obviously maintained 
from the physical point of view. 

The effects of Soret and Dufour numbers on ( )θ η  and 

( )φ η distributions across the boundary layer are shown in Figs. 5 and 6 
respectively. It is clear from Fig. 5 that, the temperature distribution 
across the thermal boundary layer thickness reduces with increase of Sr. 
The reason behind this phenomenon is that, higher values of Sr reduces 

the thermal diffusivity, while opposite behavior can be observed for 
concentration distribution with the increasing values of Sr. Further, it is 
witnessed from Fig. 6 that both the temperature and concentration fields 
decrease with the increase of Df along the surface. Physically, higher 
values of Df produces the combined effects of thermal and solutal 
buoyancy forces, enhance convection velocity which is, in turn, leads to 
decreasing the temperature and concentration of the fluid. It is also 
noticed that the impact of Df on concentration profiles is very less as 
compared to the temperature profiles.  

It is observed from Fig. 7 that both ( )θ η  and ( )φ η  decrease with 
the increase of m. Physically, the fluid flow is caused by stretching 
sheet temperature and stretching sheet temperature is greater than the 
free stream temperature (i.e. wT T∞>  ) and hence the temperature 

decreases with the increase of m. The influence of Schmidt number (Sc) 
on temperature and concentration profiles is shown in Fig. 8. It is 
observed that both ( )θ η and ( )φ η decrease with increase of Sc. 
Physically, an increase of Sc means decreases of molecular diffusion 
and hence ( )φ η is higher for smaller values of Sc and lower for larger 
values of Sc.  
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Fig. 5 Effect of Sr on ( )θ η  and ( )φ η  profiles  
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Fig. 6 Effect of Df on ( )θ η  and ( )φ η  profiles  

 
The influence of heat source ( γ >0) / sink ( γ <0) parameter on 

temperature and concentration distributions is highlighted respectively 
in Figs. 9(a) and 9(b). It can easily be seen that ( )θ η increases in 
positive values γ and decreases for negative values γ . Physically, an 
increase of heat source in the boundary layer generates energy which 
causes the temperature of the fluid to increase and whereas heat sinks 
provide a decrease in the temperature of the fluid. Thus, the presence of 
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heat sink in the boundary layer absorbs energy which results in the 
temperature of the fluid to decrease and hence heat sink is better suited 
for effective cooling of stretching sheet. Further, an opposite trend is 
observed in the case of concentration profile for different values of heat 
source/sink parameter γ .  

Figure 10 shows the influence of chemical reaction parameter Kr 
on ( )θ η  and ( )φ η . It is obvious that the behaviour of increasing values 
of Kr produces a decrease in the temperature and concentration 
distributions. Thus, the bigger Kr, results in the steeper curves in the 
temperature and concentration boundary layer and hence this result 
shows the thinner boundary layer thickness and weaker molecular 
diffusivity. 

Figure 11 illustrates the variation of dimensionless temperature 
and concentration profiles for different values of the thermal radiation 
parameter R. It is noticed that, ( )θ η  increases with increasing values of 

R and opposite trend is seen in the case of ( )φ η . This is due to the fact 
that thermal boundary layer thickness and the flux of energy transport 
to the fluid temperature increases with the increase of R. 

Figure 12 shows the influence of Prandtl number Pr on 
temperature and concentration profiles. It is obvious that the behaviour 
of increasing values of Pr produces a decrease in the temperature 
distributions. Physically, larger Prandtl number corresponds to weaker 
thermal diffusivity which tends to the lower temperature and thinner 
thermal boundary layer thickness. Consequently, opposite behavior is 
observed in the case of ( )φ η .  
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Fig. 7 Effect of m on ( )θ η  and ( )φ η  profiles 
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Fig. 8 Effect of Sc on ( )θ η  and ( )φ η  profiles 
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Fig. 9 Variation of ( )θ η  and ( )φ η  at a) heat source b) heat sink  
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       Fig. 10 Effect of Kr on ( )θ η  and ( )φ η  profiles  

 
Figure 13 exhibits the skin friction coefficient (0)f ′′ against λ for 

different values of Deborah number β . It is noticed that (0)f ′′  

decreases with the increase of β . This is due to the fact that the higher 

values of β  lead to increasing movement of fluid particles in the 
boundary layer. Hence, the boundary layer thickness decreases which 
results in lower values of (0)f ′′ . On the other hand, the same behavior 

can be observed for (0)f ′′ with increase of λ . This is an agreement 

with the physical realities that the (0)f ′′  remains high as compared to 
the case of Ref. [22] (i.e. Df =0, Sr=0). Hence, it is understood that the 
influence of Soret and Dufour numbers are greatly effective in the study 
of non- Newtonian fluid flows over a stretching sheet. 
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Fig.13 Effect of β  on (0)f ′′ against λ   

 
Effects of magnetic field parameter M and Prandtl number Pr on 

the rate of heat transfer (0)θ′−  and local Sherwood number (0)φ′− for 
Newtonian and non-Newtonian cases are respectively shown in Figs. 
14 and 15. It is noticed that both (0)θ′− and (0)φ′− decrease with the 

increase of M and Pr values. It is also hypothesized that the rise in β  
will increases the resistance of fluid motion. So, in the absence of non-
Newtonian effects the present model reduces to the Newtonian model 
for a viscous fluid. These results clearly supported from the physical 
point of view.  Figs. 16(a) and 16(b) respectively, display the effect of 

Soret number (Sr) against the ratio of relaxation to retardation time’s 
parameter ( λ ) and chemical reaction parameter (Kr) on local 
Sherwood number (0)φ′ . It is observed that (0)φ′ decreases as Sr 
increase. 
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5. CONCLUSIONS 

In the present investigation, we study the Soret and Dufour effects on 
MHD radiative heat and mass transfer flow of a Jeffrey fluid over a 
stretching sheet in the presence of chemical reaction. The governing 
equations are transformed into a system of non-linear ordinary 
differential equations and are then solved numerically by using fourth 
order Runge-Kutta- method along with shooting technique. The main 
observations of present research can be summarized as follows. 

 The velocity profile and momentum boundary layer thickness 
are enhanced with the rise of Deborah number β whereas 
opposite trend in the temperature and concentration 
distributions. 

 An increase in the relaxation to retardation time’s parameter 
λ  leads to a reduction in the velocity field and reverse trend 
in temperature and concentration profiles.  

 The increase in Sr and Pr show a decrease in temperature and 
increase in concentration profiles.  
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 The fluid velocity, temperature and concentration of non-
Newtonian Jeffrey fluid are less when compared to 
Newtonian fluid. 

 The heat and mass transfer coefficients are far away from the 
stretching surface when the fluid changes from Newtonian to 
non-Newtonian (Jeffrey). 
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    NOMENCLATURE 

B0 magnetic induction [tesla] 

C concentration [kmol/m3] 

Cf skin-friction co-efficient 

pc  specific heat at constant pressure  [Jkg-1K-1] 

wC  species concentration at the wall [kmol/m3] 

C∞  species concentration far from the wall [kmol/m3] 
D diffusion coefficient [m2/s] 
F non-dimensional stream function 
f ′  dimensionless velocity 

K fluid thermal conductivity [Wm-1K-1] 

sK  Roseland mean absorption coefficient 
*Kr  chemical reaction parameter 

l  characteristic length 
M surface temperature parameter 

wm  rate of mass transfer 
M magnetic parameter 
Nu Nusselt number 
Pr Prandtl number

rq  radiative heat flux[Wm-2] 

wq  rate of heat transfer 

R radiation parameter 

Rex  local Reynolds number 

1R  Rivlin-Ericksen tensor 

S extra stress tensor
Sc Schmidt number 
Sh Sherwood number 

wT  temperature at the wall (K) 

T∞   temperature far away from the wall (K) 

u, v  velocity components in the x-,y-directions 
respectively [ms-1] 

x distance along the wall [m] 
y distance normal to the wall [m] 
Greek symbols 
β Deborah number
γ heat source/sink parameter  
η similarity variable 
 ratio of relaxation and retardation times  

1λ  relaxation time [s] 

 dynamic viscosity [Pa/s] 
υ  kinematic viscosity [m2s-1] 

φ  non-dimensional concentration 

ρ fluid density [kgm-3] 
σ electric conductivity 

*σ  Stefan-Boltzman constant  

θ  non-dimensional temperature 
τ Cauchy stress tensor 

wτ  skin- friction on sheet 

β Deborah number
Subscripts
w  sheet surface 
∞ Infinity 
Superscript
' differentiation with respect to η  
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