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ABSTRACT 

Numerical solutions for the boundary layer flow, heat and mass transfer of a viscous incompressible fluid over an exponentially stretching sheet is 

developed. The effect of Hall current, chemical reaction and thermal radiation are taken into account. Through similarity transformations, the governing 

boundary layer equations are reduced to a set of coupled non-linear ordinary differential equations and then linearized using the successive linearization 

method. The resultant linear system is solved using the Chebyshev pseudo spectral method. The numerical results for velocity, temperature and 

concentration are shown graphically. The skin-frictions are calculated and variations with pertinent parameters are presented in tabular form. Finally, 

a comparative analysis is conducted between the present results and known results in the literature for the special cases, and are found to be in good 

agreement. 
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1. INTRODUCTION 

The study of heat and mass transfer over stretching surfaces is one 

of the important research area due to its significant use in various 

applications such as wire drawing, paper production, glass fiber, crystal 

growth, filaments spinning, food processing, continuous casting.  

Following the pioneering works of Sakiadis (1961a, 1961b) on the flow 

due to a stretching sheet, several researchers (Crane 1968, Aziz 2008, 

Bhattacharya 2011, Bachak et al. 2012, Mandal and Mukhopadyay 2013, 

Kumari and Nath 2014, Srinivasacharya and Jagadeeshwar 2017) 

considered this flow problem including the heat and mass transfer 

analysis under various physical situations. In contemporary years, the 

study of magnetohydrodynamic (MHD) flow problems has gained 

considerable attention of the researchers because of its applications in 

several engineering disciplines. The cooling of filaments or continuous 

strips and thinning and annealing of copper wires are the part of process 

of most of metallurgical industries, which are generally stretched during 

the process. Once these are brought into an electrically conducting fluid 

which is exposed to a strong magnetic field, the cooling rate can be 

adjusted so that the final product can be achieved with desired 

characteristics. Several researchers analyzed the MHD flow, heat and 

mass transfer over a stretching surface in Newtonian and non-Newtonian 

fluids with various effects.  When the strong magnetic field is utilized the 

effect of Hall current is very predominant. The study of effects of Hall 

current on MHD flows has been given much importance due to its widely 

spread applications in power generators and pumps, Hall accelerators, 

electric transformers, refrigeration coils, flight MHD, solar physics inved 

in the sunspot development, the solar cycle, the structure of magnetic 

stars, cool combustors, electronic system cooling, thermal energy 

storage,  fiber and granular insulation, oil extraction and flow through 

filtering devices and porous material regenerative heat exchangers.   El-

Aziz (2010) studied the effect of Hall currents on the flow and heat 

transfer of an electrically conducting fluid over an unsteady stretching 

surface in presence of a strong magnetic field. Shateyi and Motsa (2011) 

considered the MHD boundary layer flow over an unsteady stretching 

surface in presence of Hall currents. Srinivasacharya and Kaladhar 
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(2012) mentioned in their investigation that the fluid tangential velocity 

and temperature are increasing and the induced cross flow velocity is 

decreasing as the Hall parameter increases. Su and Zheng (2013) 

investigated the influence of Hall current and velocity slip effects on the 

flow and rate of heat transfer of nanofluid. Recently, Srinivasacharya and 

Jagadeeshwar (2017) reported the effect of Joule heating on the MHD 

boundary layer flow on an exponentially stretching surface with Hall 

current and velocity slip at the bounday. 

The effect of thermal radiation on convective flows have 

applications in physics and engineering such as space technology, solar 

power technology, propulsion devices for aircraft and other industrial 

areas. Qasim (2011) analyzed the MHD flow and heat transfer over a 

permeable stretching sheet in the presence of thermal radiation and 

Ohmic dissipation. Kameswaran et al. (2012) analyzed the effect of 

radiation on MHD Newtonian fluid over an exponentially stretching 

sheet. Mukhopadhyay and Gorla (2012) investigated the influence of 

partial slip and thermal radiation on boundary layer flow past a 

permeable exponential stretching sheet. Seini and Makinde (2013) 

studied the MHD boundary layer flow due to exponential stretching sheet 

in the presence of radiation and chemical reaction. Hussain et al. (2014) 

explained the radiative hydromagnetic flow of Jeffrey nanofluid by an 

exponentially stretching sheet. Mabood et al. (2014) studied the 

analytical solution for the flow of a viscous incompressible MHD fluid 

in presence of radiation towards an exponentially stretching sheet. 

Santosh et al. (2015) analyzed the thermal radiation effects on MHD 

boundary layer flow over an exponentially stretching surface. Ibrahim 

and Shankar (2016) investigated the effect of thermal radiation on MHD 

boundary layer flow and heat transfer past a stretching sheet embedded 

in non-Darcian porous medium. Recently, Umeshaiah et al. (2017) 

reported the nonlinear radiative heat transfer to carreau fluid over a 

nonlinear stretching sheet in a porous medium and with viscous 

dissipation. 

The study of heat and mass transfer with chemical reaction has 

received considerable attention because of its importance in chemical and 

hydro-metallurgical industries such as design of chemical processing 

equipment, polymer production, the manufacturing of ceramics or 

glassware etc.  Zaib and Shafie (2014) studied the effect of Hall currents 
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with Soret and Dufour effects on unsteady MHD flow over an unsteady 

stretching surface with Joule heating and viscous dissipation with 

thermal stratification, chemical reaction. Das (2014) investigated the 

effect of chemical reaction and viscous dissipation on MHD mixed 

convective heat and mass transfer flow of second grade fluid past a semi-

infinite stretching sheet in the presence of thermal diffusion and thermal 

radiation. Murthy et al. (2015) presented the influence of the prominent 

viscous dissipation and chemical reaction effects on boundary layer 

stagnation point flow past a stretching/shrinking sheet in a nanofluid.  

The aim of the present work is to analyze the combined effects of 

Hall current, thermal radiation and chemical reaction over an exponential 

stretching surface in the presence of strong magnetic field subject to 

velocity slip and suction or injection. 

2. MATHEMATICAL FORMULATION 

Consider a steady electrically conducting flow of incompressible viscous 

fluid (with temperature T∞ and concentration C∞) past a stretching sheet 

with temperature Tw(x) and concentration Cw(x).  Choose the coordinate 

system such that the positive x-axis is taken along the sheet in the 

direction of flow, y-axis is perpendicular to the sheet in the outward 

direction of the flow and z − axis coincides with the leading edge of the 

sheet. The sheet velocity varies as an exponential function of the distance 

x from the slit.  A strong magnetic field of strength B(x) is applied in y-

direction and the influence of Hall current is included.  The induced 

magnetic field is ignored as the magnetic Reynolds number is very low. 

The flow is three dimensional in view of the cross flow in the z −
direction induced by the presence of Hall current.  The velocity vector is 

(u, v, w), the temperature is T and the concentration is C.  The fluid is 

considered to be a gray, absorbing/emitting radiation, but non-scattering 

medium. The Rosseland approximation (Sparrow and Cess 1978) is used 

to describe the radiative heat flux in the energy equation. Also, it is 

assumed that there exists a homogenous chemical reaction of the first 

order with rate constant k1 between the diffusing species and the fluid. 

 

With the above assumptions together with the Boussinesq and the 

boundary layer approximations, the equations governing the present flow 

problem are given by 
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where ρ is density, cp is specific heat at the constant pressure, g is the 

acceleration due to gravity, µ is the dynamic viscosity of the fluid, υ is 

the kinematic viscosity of the fluid, βh is Hall parameter, α is the thermal 

diffusivity, σ* is the Stefan-Boltzmann constant, k* is the mean 

absorption coefficient and D is the mass diffusivity. 

Boundary conditions are 
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Here B(x) = B0 ex/2L is magnetic field term and B0 is the constant magnetic 

field, U = U0 ex/L is stretching velocity and U0 is reference velocity, V = 

V0 ex/2L is the special velocity at the wall and V0 is the initial strength of 

suction, N = N0 e-x/2L is the velocity slip factor which changes with x and 

N0 is the initial value of the velocity slip factor, k1 = k0 ex/L  is the 

exponential chemical reaction rate and k0 is the constant, V(x) > 0 is the 

velocity of suction and V(x) < 0 is the velocity of injection. If we take N 

= 0, no slip case can be achieved. 

 

Introducing the following Similarity variables 
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into Eqs.  (1) - (5), we obtain 
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where the prime denotes differentiation with respect to η, Pr = ν /α is the 

Prandtl number, Sc = υ/D is the Schmidt number, S = V0 02 /L Uν is 

the suction/injection parameter according as S > 0 or S < 0  respectively, 

λ=N0 0 / 2U Lν is the velocity slip parameter, Re = U0L/υ is the 

Reynolds’s number, Gr = gβT TL3/υ2 is the Grashof number, Ri = Gr/Re2 

is the Richardson number (mixed convection parameter), Ha = 

2LσB0
2/ρU0 is the magnetic  parameter, B = βc C0/βT T0 is the buoyancy 

ratio, R = 4 σ*T∞3/κ κ* is the radiation parameter and γ = 2Lk0/U0 is the 

chemical reaction parameter. 

 

The corresponding boundary conditions reduce to 
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Results of practical interest are the wall shear stress in x and z - directions, 

heat and mass transfer rates, respectively, acting on the stretching 

surface. The local skin-friction in x-direction 
2
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3. METHOD OF SOLUTION 

 
The successive linearisation method (SLM) (Motsa and Shateyi 2006, 

Awad et al. 2011) is used to linearize the system of differential equations 

(8)–(11).  The resulting linearised system of equations are solved using 

the Chebyshev pseudo spectral method (Canuto et al. 2006). 

In SLM, the functions f(η), g(η), θ(η) and φ(η) are assumed to be 

expressed as 

1 1

0 0

1 1

0 0

( ) ( ) ( ), ( ) ( ) ( ),

( ) ( ) ( ), ( ) ( ) ( )

r r

r i r i
i i

r r

r i r i
i i

f f f g g gη η η η η η

θ η θ η θ η φ η φ η φ η

− −

= =

− −

= =


= + = +  



= + = +  


       (14) 

 

where fr(η), gr(η), θr(η) and ϕr(η)  (r = 1, 2, 3, ...) are unknown functions 

and fi(η), gi(η), θi(η) and ϕi(η) (i ≥ 1) are approximations and are obtained 

by recursively solving the linear part of the system of equations that 

results from substituting Eq. (14) in the governing equations (8)–

(11).The initial approximation f0(η), g0(η), θ0(η) and ϕ0(η)  chosen so that 

they satisfy boundary conditions (12). 

 

The succeeding solutions for fr(η), gr(η), θr(η) and ϕr(η) (r ≥ 1) are 

brought by recursively solving the below linearized system of ordinary 

differential equations 
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Hence, f(η), g(η), θ(η) and ϕ(η)  are obtained as  
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M is the order of SLM approximation.  
 

The linearized equations (15) to (18) are solved using Chebyshev spectral 

collocation method (Canuto et al. 2006).  The problem is solved for [0,L] 

instead of [0,∞),  where the parameter L is used to recover the conditions 

at infinity. To apply this method the domain under consideration [0,L] is 

transformed to [-1,1] by the transformation 
2

1, 1 1
L

η
ξ ξ= − − ≤ ≤ . 

 Approximating the functions  fr, gr, θr and ϕr their derivatives 

in terms of Chebyshev interpolating polynomials at N+1 Gauss-Lobatto 

collocation points cos , 0,1,2,...,k
k

k N
N

π
ξ = =  and substituting in  (15) 

- (19) leads to the matrix equation(for details see Canuto et al. (2006)).  

Incorporating boundary conditions and solving the resulting matrix 

system, we get the solution. 

4. RESULTS AND DISCUSSIONS 

 
To validate the accuracy of the numerical method, results are obtained 

for particular values of Ri, Ha, S and λ. Table (1) provides the comparison 

between the results obtained for local skin-friction coefficient –f ΄΄(0)  

and f(∞) by using the present method and numerical results obtained by 

Magyari and Keller (1999) and found to be in good agreement. 

 

Table 1 Comparison analysis for –f ΄΄(0)  and f(∞)  calculated by the 

present method for S = 0, λ = 0, Ri = 0 and Ha = 0. 
 Magyari and Keller 

(1999) 

Present 

(0)f ′′−  1.281808 1.28180856 

( )f ∞  0.905639 0.90564370 

 

In order to analyze the influence of pertinent parameters, the 

numerical calculations are carried out by taking Pr = 1.0, Sc = 0.22, Ri 

= 1.0, B  = 0.5, S = 0.5, λ = 1.0, βh = 1.0, Ha = 2.0, R = 0.5, γ = 0.5, N 

= 100 and L = 20 unless otherwise mentioned. 

Figures 1(a)–1(d) represent the variation of the velocities, 

temperature and concentration with S. It is seen from these figures that 

the velocities, temperature and concentration are increasing with increase 

in the injection(S < 0). It is also observed that the suction (S > 0) reduces 

both the momentum, thermal and concentration boundary layer thickness 

which, in turn, reduce the velocity, temperature and concentration. 

The influence Ri on the velocities, temperature and concentration is 

depicted in figures 2(a)–2(d). From figure 2(a), it is noticed that the 

tangential velocity is enhanced with increase in the values of Ri. This is 

because, a favorable pressure gradient is induced as a result of the 

positive values of Ri which, in turn, increases the fluid flow. The same 

effect is observed for the secondary velocity as shown in the figure 2(b). 

From the figures2(c)–2(d), it is understood that the temperature and the 

concentration are decreasing with increasing values of Ri. This is due to 

the fact that positive values of Ri accelerates the fluid and results in 

decreasing both the thermal and concentration boundary layers. 

The variation of the velocities, temperature and concentration for 

different values of Ha is shown in the figures 3(a)–3(d). It is evident from 

the figure 3(a), that the primary velocity is decreasing with increase in 

the values of Ha. The application of uniform magnetic field normal to 

flow direction gives rise to Lorentz force which has the tendency to slow 

down the velocity in the boundary layer. From figure 3(b), it is seen that 

there is no cross flow velocity when Ha = 0 and it increases gradually 

with increase in Ha.  Hence, for large values of Ha, a cross flow is 

generated due to the Hall effect. From figures3(c)-3(d), it is clear that the 

temperature and concentration are increasing with increase in the value 

of magnetic parameter Ha. 

Figures 4(a)–4(d) represent the behavior of the velocities, 

temperature and concentration with Hall parameter βh. From figure 4(a), 

it is observed that the tangential velocity increases with increase in βh. 

Figure 4(b) shows that the cross flow velocity increases with increase in 

the value of βh. It is increasing near the plate and then gradually 

decreasing. Figures 4(c) and 4(d) depict that the temperature and 

concentration are diminishing with increase in the value of βh. 

The influence of γ on the velocities, temperature and concentration 

is presented in the figures 5(a)–5(d).  Figure 5(a) depicts that the 

temperature is decreasing with increase in the values γ. The same effect 

is observed on the secondary velocity as presented in the figure 5(b). 

Further, from figure 5(c), it is seen that the temperature is rising with 

increase in the values of γ. The concentration is reduced with increasing 

values of γ as depicted in the figure5(d). This is due to the fact that the 

reaction-rate parameter is a decelerating agent and the conversion of the 

species takes place as a result of chemical reaction and thereby reduces 

the concentration in the boundary layer and increases the thermal 

boundary layer thickness. 
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Fig. 1 Effect of S on (a) velocity, (b) transverse velocity,  

           (c) temperature and (d) concentration 
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                                            (c) 

 

 
                                            (d) 

 

Fig. 2 Effect of Ri on (a) velocity, (b) transverse velocity,  

          (c) temperature and (d) concentration 
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          (d) 

Fig. 3 Effect of Ha on (a) velocity, (b) transverse velocity, 

            (c)  temperature and (d) concentration
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Fig. 4 Effect of βh on (a) velocity, (b) transverse velocity, 

(c) temperature and (d) concentration 
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Fig. 5 Effect of γ on (a) velocity, (b) transverse velocity, 

(c)  temperature and (d) concentration 
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Fig. 6 Effect of R on (a) velocity, (b) transverse velocity, 

                    (c)  temperature and (d) concentration 
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                            (d) 

Fig. 7 Effect of  (a) Ri, (b) βh, (c)  Ha and (d) R 

          on Nusselt number. 
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Fig. 8 Effect of  (a) Ri, (b) βh, (c)  Ha and (d) R 

            on Sherwood number. 
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                              (a) 

 
                                            (b) 

Fig. 9 Effect of  (a) γ and (b) λ on Nusselt number. 
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Fig. 10 Effect of  (a) γ and (b) λ on Sherwood number. 
 

 

The behaviour of both the velocities, temperature and concentration 

profiles with the radiation parameter R is exhibited in the figures 6(a)–

6(d). From figures 6(a) and 6(b), it is observed that both the velocities 

are increasing with increase in the value of R. Applying the thermal 

radiation accumulates the momentum boundary layer thickness and 

hence, velocity rises. It is seen from the figure 6(c) that the temperature 

increases with increasing values of thermal radiation, which in turn, 

intensifies the thermal boundary layer thickness. Figure 6(d) shows that 

concentration is decreasing with thermal radiation. 

The influence of Ri, βh, Ha, R, γ and λ on the heat transfer (- θ ΄(0)) 

coefficient against S are presented in the figures 7(a)–7(d) and 9(a)-9(b), 

respectively. It is understood from the figures that heat transfer rate is 

increasing with S. It is observed from figures 7(a) and 7(b) that the heat 

transfer coefficient is increasing with mixed convection parameter Ri and 

Hall parameter βh.  On the other hand, the rate of heat transfer decreases 

with increase in the value of magnetic parameter Ha, as shown in the 

figure 7(c). It is evident from figure 7(d) that, the heat transfer rate is 

increasing with increase in the value of radiation parameter R. The heat 

transfer rate from the sheet to the fluid is decreasing with the increasing 

values of chemical reaction parameter γ as presented in the figure 9(a).  

It is seen from figures 9(b) that heat transfer from the sheet to the fluid is 

decreasing with increase in the values of λ. This is due to the fact that, 

slipperiness enhances the thermal boundary layer thickness.  

The variation mass transfer (-ϕ ΄(0)) coefficient against S are 

presented in the figures 8(a)–8(d) and 10(a)-10(b), respectively. It clear 

from the figures that mass transfer rate is increasing with increase in S. 

Figures 8(a), 8(b) and 8(d) shows that mass transfer from the sheet to 

fluid is increasing with increase in the values of mixed convection, Hall 

and thermal radiation parameters, respectively. While increase in 

magnetic parameter decreases the rate of mass transfer as shown in the 

figure 8(c).  Figures 10(a) and 10(b) shows the variation of mass transfer 

coefficient for different values of chemical reaction parameter γ and slip 

parameter λ. It is evident from these figures that increase in the value 

chemical reaction parameter, the mass transfer rate is increase. On the 

other hand, due to the slipperiness the mass transfer is decreased. 

 

Table 2 Values of skin-friction coefficients f ΄΄(0) and g΄(0) for 

different values of λ, βh, Ha, Ri,R and γ. 

λ βh Ha Ri R γ f ΄΄(0) g΄(0) 

0.0 1.0 2.0 1.0 0.5 0.5 -0.78606115 0.49875513 

0.5 1.0 2.0 1.0 0.5 0.5 -0.34456759 0.46291098 

1.0 1.0 2.0 1.0 0.5 0.5 -0.22173409 0.45234859 

2.0 1.0 2.0 1.0 0.5 0.5 -0.12964196 0.44424225 

1.0 0.0 2.0 1.0 0.5 0.5 -0.29327814 0.00000000 

1.0 0.1 2.0 1.0 0.5 0.5 -0.29212505 0.06899147 

1.0 0.5 2.0 1.0 0.5 0.5 -0.26825492 0.30509370 

1.0 2.0 2.0 1.0 0.5 0.5 -0.15664931 0.45387080 

1.0 1.0 0.0 1.0 0.5 0.5 -0.09196649 0.00000001 

1.0 1.0 0.1 1.0 0.5 0.5 -0.09855922 0.03411152 

1.0 1.0 1.0 1.0 0.5 0.5 -0.15866424 0.27790055 

1.0 1.0 3.0 1.0 0.5 0.5 -0.27779617 0.56376751 

1.0 1.0 2.0 0.0 0.5 0.5 -0.61660061 0.15023781 

1.0 1.0 2.0 0.5 0.5 0.5 -0.38724236 0.35088076 

1.0 1.0 2.0 1.5 0.5 0.5 -0.08245520 0.52482100 

1.0 1.0 2.0 3.0 0.5 0.5 0.25675371 0.67201110 

1.0 1.0 2.0 1.0 0.0 0.5 -0.24877696 0.42396587 

1.0 1.0 2.0 1.0 0.5 0.5 -0.22173409 0.45234859 

1.0 1.0 2.0 1.0 1.0 0.5 -0.20530645 0.47190037 

1.0 1.0 2.0 1.0 2.0 0.5 -0.18538544 0.49777051 

1.0 1.0 2.0 1.0 0.5 - 1.0 -0.20496139 0.46994562 

1.0 1.0 2.0 1.0 0.5 - 0.5 -0.21198405 0.47034472 

1.0 1.0 2.0 1.0 0.5   0.0 -0.21753173 0.46012738 

1.0 1.0 2.0 1.0 0.5   1.0 -0.22504567 0.44718366 

1.0 1.0 2.0 1.0 0.5   2.0 -0.23024909 0.44017046 
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The behaviour of f ΄΄(0) and g΄(0) for different values of λ, βh, Ha, 

Ri,R and γ are tabulated in Table (2). It is evident from the table that f 

΄΄(0)is raising and g΄(0) reducing with slipperiness. In presence of Hall 

parameter both the skin-frictions are increasing. It is also observed that 

when βh = 0, then there is no secondary flow velocity and hence there's 

no skin-friction in z − direction. Table (2) illustrates that, f ΄΄(0) is 

decreasing and g΄(0) is increasing with magnetic parameter. It is also seen 

that the skin-friction in z -direction is zero when Ha = 0. The positive 

values of Ri increases both the skin-frictions. In addition to this, f ΄΄(0) in 

x-direction is greatly increased with positive values of Ri. Furthermore, 

it is also identified that a unique value of f ΄΄(0) = - 0.61660061 and g΄(0) 

= 0.15023781 is attained when Ri = 0 (the case of forced convection 

flow) and for all values of radiation parameter R. Because (8) and (10) 

are uncoupled when Ri = 0. As a result, the flow and thermal fields are 

independent. Hence, there's no effect of thermal field parameters on the 

flow filed. On other hand, radiation parameter increases both the skin-

frictions. At the end of the table the influence of chemical reaction 

parameter is presented. It is noticed from the table that, f ΄΄(0) is 

increasing and g΄(0) is decreasing with γ < 0 (destructive chemical 

reaction) and both are decreasing with γ > 0 (constructive chemical 

reaction). 

 

5. CONCLUSION 

 

Viscous flow over an exponentially stretching sheet with Hall, thermal 

radiation and chemical reaction effects is studied. The governing 

equations are linearized using the successive linearization method and 

then the resulting linear differential equations are solved using the 

Chebyshev spectral collocation method. The following are the important 

findings from this study:  

 

• Increasing the values of injection, mixed convection, Hall and 

thermal radiation parameters the primary velocity increase and 

reverse trend is observed for suction and magnetic and 

chemical reaction parameters. 

• The secondary velocity increases with increase in the values of 

injection, mixed convection, magnetic, Hall and thermal 

radiation parameters. But decreases with increase in the values 

of suction and chemical reaction parameters. 

• In the presence of injection, magnetic, chemical reaction and 

radiation parameters, temperature is increasing. While the 

temperature is decreasing with increase in the values of 

suction, mixed convection and Hall parameters. 

• The heat transfer rate is increased with increase in the values 

of suction, mixed convection, radiation and Hall parameters 

while decreasing with all other parameters. 

•    The rate of mass transfer from the sheet to the fluid is 

decreasing by increasing the values of magnetic and slip 

parameters. But increasing, in all other cases.  

   

NOMENCLATURE 

 
ρ  the density,  

cp  the specific heat at the constant pressure,  

g  the acceleration due to gravity,  

µ  the dynamic vthecosity of the fluid,  

υ  the kinematic vthecosity of the fluid,  

βh  the Hall parameter,  

α  the  thermal diffusivity,  

σ*  the  Stefan-Boltzmann constant,  

k*  the mean absorption coefficient  

D  the mass diffusivity. 

B0  the constant magnetic field,  

U0  the reference velocity,  

V0  the initial strength of suction,  

N0  the initial value of the velocity slip factor,  

k0  the constant,  

Pr the Prandtl number,  

Sc  the Schmidt number,  

S  the suction/injection parameter, 

 Λ  the velocity slip parameter,  

Re   the Reynolds’s number,  

Gr   the Grashof number,  

Ri   the Richardson number (mixed convection parameter),  

Ha   the magnetic parameter,  

B   the buoyancy ratio,  

R   the radiation parameter  

γ   the chemical reaction parameter. 

fxC  the local skin-friction in x-direction  

fzC  the local skin-friction in z-direction  

xNu  the local Nusselt number  

xSh  local Sherwood number  

xRe   the local Reynolds number. 
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