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ABSTRACT 

Two-dimensional unsteady laminar double-diffusive free convective flow of a conducting fluid in a thermally insulated square enclosure except the 
left wall has been numerically studied in presence of heat generation/absorption. The Marker and Cell (MAC) method is employed for solving non-
linear momentum, energy and concentration equations and the numerical MATLAB code is validated with the previous study. The computed results 
are depicted graphically and discussed for various values of Rayleigh number (Ra), Hartmann number (Ha), Buoyancy ratio parameter (N), Lewis 
number (Le) and heat absorption/generation parameter (γ). It is observed that the rate of heat and mass transfer decreases with increasing Rayleigh 
number. 
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1. INTRODUCTION 

Natural convective fluid flows, heat and mass transfer has been 
receiving the considerable attention based on diverse fields in 
engineering and industrial applications including the wire electro-
discharge machining (Murphy KD et al., 2000; Lambert TA et al., 
2002), aerodynamic heating of air flow (Pei YC et al., 2014), magnetic 
systems (Ghasemia et al., 2011), liquid metal systems (Kakarantzas et 
al., 2014), thermal energy storage systems, chemical processes and 
drying technology etc. Based on the enormous expansion of the 
applicability of convection, the researchers are continuously exploring 
the convective heat and mass transfer effects on double-diffusive 
convection (Mchirgui et al., 2012), Magnetohydrodynamic convection 
(Elshehabey et al., 2015) under different thermosolutal boundaries. The 
major branches of continuum mechanics includes the 
Magnetohydrodynamics (MHD). Numerical studies on MHD 
convective flows in square enclosure has been studied by Davis (1983) 
and Ostrach (1988). 

Recently many researchers interest on double diffusive convection 
flows in the enclosures. Mohan and Satheesh (2016) are numerical 
examination conducted of Double-Diffusive Mixed Convection Flow in 
a Lid-Driven Porous Cavity with Magnetohydrodynamic Effect is 
observed for different Aspect ratios. Kefayati et al. (2014) made a 
numerical work on the effect of inclined magnetic field on mixed 
convection of shear-thinning fluids in a square lid driven cavity under 
the combined effects of thermal and mass diffusion with top and bottom 
walls driven in same direction. Thereafter, Tapas Ray Mahapatra et al. 
(2013) studied double-diffusive natural convection in a lid-driven 
square cavity with uniform and non-uniform thermal and concentration 
boundary conditions in presence of buoyancy ratio. Makayssi et al. 
(2008) conduct analytical and numerical analysis of natural double-
diffusive convection in a shallow cavity packed with power-law fluid. 
The effect of large density variable on thermosolutal natural convection 

in a square cavity was numerically examined by Sun et al. (2010). 
Study of the second law of thermodynamics in double diffusive 
convection for tilted porous cavity saturated with a binary perfect gas 
mixture is performed numerically. Heat and mass transfer and fluid 
flow patterns are discussed and graphically exhibited and analyzed the 
Control Volume Finite-Element Method (CVFEM) numerically by Ali 
Mchirgui et al. (2014).  Kishan Naikoti et al. (2015) has reported a 
weighted residual Galerkin finite element numerical study of 
thermosolutal convection. Studies on double diffusive convection under 
the influence of Soret and Dufour effects. Multicellular flow patterns 
were also studied in an experimental study by Han and Kuehn (1991) 
and numerically simulated successfully H. Han (1991). Hillal M et al. 
(2015) and M. Sheikholeslami et al. (2014) have studied the natural 
convection heat transfer in an enclosures with magnetic field. Teamah 
et al. (2012) carried out the numerical investigation of double-diffusive 
convective flow in a shortest insulated walls on inclined rectangular 
cavity under the uniform magnetic field. The numerical results are 
presented under the influence of Rayleigh number on streamlines, 
isotherms and concentration contours, discussed the presented results 
are various parametric conditions. The numerical computations are 
carried out for fixed Prandtl number, Pr=0.7, Hartmann number range is 
0 to 70, aspect ratio, A=2, and Lewis number, Le=2. M. 
Sathiyamoorthy et al. (2012). A numerical study is performed for 
Natural convective flow in a linearly heated adjacent walls of square 
enclosure in presence of inclined magnetic field, the governing 
equations of the problem are solved by using finite element approach. 
In this study, we investigate that the significant effects on the local and 
average Nusselt numbers on all walls influenced by magnetic field. 
Sivasankaran et al. (2011) conducted a numerical investigation on 
convective flow with Hydro-magnetic effect in a lid-driven square 
cavity with wavy heated vertical walls. The computed results are 
depicted for various combinations of phase deviation, amplitude ratio, 
Richardson number (Ri), and Hartmann number (Ha). The Nusselt 
number increases with the phase deviation up to right angle and then it 
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decreases for further enhancing in the phase deviation. If amplitude 
ratio is increased the heat transfer rate also increases are found in this 
study. Litan Kumar Saha et al. (2015) observed the effect of magnetic 
field in a square enclosure with wavy bottom wall and adiabatic side 
walls.  The numerical computation is carried out by using finite element 
formulation (Galerkin weighted residual method). In this observation, 
the lid-driven cavity with wavy bottom wall can be considered as an 
effective heat transfer mechanism under magnetic field at larger 
amplitudes of wavy surface and low Richardson numbers.  

The present examination of the effect of Hartmann number (Ha), 
Rayleigh number (Ra), Buoyancy ratio parameter (N) and Heat 
generation or absorption parameter   depicted contours of temperature, 
streamlines and concentration. The mass and thermal exchanges 
generated in the case of co-operating thermal and concentration 
buoyancy effects with uniform thermal boundary conditions have been 
analyzed.  

2. MATHEMATICAL MODELLING AND 
SIMULATION 

The computational two dimensional physical system involving 
various thermal ambience of square enclosure filled with water are 
depicted in Fig. 1 (a). Unsteady laminar MHD double-diffusive natural 
convection inside a two–dimensional square cavity with uniformly 
heated/or insulated concentrated walls in presence of heat generation or 
absorption under the boundary conditions that the left wall is 
maintained at uniform heat flux and remaining walls are thermally 
insulated as shown in Fig. 1(a). The thermophysical properties of the 
fluid in the flow field are assumed to be constant except density. The 
variations of density with temperature can be calculated using 
Boussinesq approximation.      

           

 
Fig. 1 (a) Schematic diagram of physical system 

    

 
 

Fig. 1 (b) Comparison contour plots for bottom-bottom vertical walls 
with Pr=0.7, Gr = 105, Ha=10, Kandaswamy et al. (2008) (upper row), 
Present MAC computations (lower row).  

The dimensional governing equations for this physical domain are 
based on the balance laws of mass, linear momentum, thermal energy, 
and concentration forms are 
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Where y, x and t represent vertical, horizontal distances and time 
respectively. u, v, T and C are the x  and y directional components of 

velocity, pressure, temperature and concentration respectively. T and  

C  are the thermal and solutal expansion coefficients.  , ,    and pc  
are the Kinematic viscosity, thermal diffusivity, fluid density and 
specific heat at constant pressure respectively. D is the species 
diffusivity, Th and Tc are the hot and cold temperatures of wall. Ch  and 
Cc are the concentrations at the hot and cold walls and g is gravitational 
acceleration. 0, B and 0  are the electrical conductivity, magnetic 

induction and heat generation or absorption coefficient respectively.  
The appropriate initial and boundary conditions for the problem are 
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       In processing the governing equations, the following non-
dimensional variables are introduced: 
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Using the boundary conditions 
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Here 0Ha B L    is the Hartmann Number, Le D  is the 

Lewis Number, Pr    is the Prandtl number, 
3 2PrTRa g TL     is the Rayleigh Number, /c TN C T      is 

the buoyancy ratio and 2
0 pL c   is the dimensionless heat 

generation or absorption coefficient. The evaluation of stream function 
( ) is using the relationship between velocity components and stream 
function ( ) (Batchelor., 1993), the stream function usually defined as 
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clockwise circulation. In all boundaries there is no slip-condition, hence 
0   for all boundaries. The heat and mass transfer coefficients in 

terms of local Nusselt and Sherwood numbers are defined by 
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        Where n indicates normal direction of the plane. In addition, the 
average Nusselt number and Sherwood numbers of the bottom wall are 
defined as   
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3. NUMERICAL SOLUTION 

         The dimensionless governing equations (2)-(4) have been solved 
by the MAC Method (Harlow et al., 1965). In the MAC approach 
although we consider viscous flow, viscosity is not actually required for 
numerical stability (Harlow et al., 1965). Cell boundaries are indicated 
with half-integer values in the finite difference discretization. Here we 
elaborate on the numerical discretization procedure. Based on the weak 
conservative form of the unsteady non-linear partial differential 
equations, we implement a grid meshing procedure using the following 
notation at the Centre of a cell: 
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Similarly, we have: 
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The following central difference formula is used for the second order 
derivatives: 
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Applying to the Y-direction momentum conservation eqn. (10) we 
have: 
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The central difference formula for the Laplacian operator is given by: 
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Effectively the X-momentum equation discretization technique can be 
summarized as: 

( Pr . 2 _ )nutp u dt A D u     
where A = advection term, D2_u = diffusion term = Laplacian of u. 
There is a slight modification needed in the y-momentum equation due 
to the addition of a new term. Therefore, this term must be included in 
the discretized equation and we have: 
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where B = advection term, D2_v = diffusion term = Laplacian of v. It is 
further noteworthy that the temperature term T is co-located such that it 
coincides with velocity before using it in the above equation to account 
for the staggered grid. After utp and vtp are projected to get u and v, we 
can use the discretized temperature and concentration equation to get 

T and   at next time level 
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where _ , _A T A    advection term, D2T=diffusion term=Laplacian of 
T. Next, we integrate in time by an incremental step dt in each iteration 
until the final time 1.0 is reached. The variables are co-located and 
plotted. Modern variants of the MAC method utilize the conjugate 
gradient schemes which solve the Poisson equation. To confirm mesh 
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independence a grid-independence study is conducted. In computational 
fluid dynamics, of which finite difference simulation is merely one 
methodology, once a mesh provides a solution which is invariant with 
the finer meshes, the coarser mesh can be adopted. This reduces 
computational cost but retains the necessary accuracy. Table 1 shows 
that accuracy to three decimal places is achieved for Nusselt number at 
the bottom wall with a mesh of 61 x 61 which is sufficient for heat 
transfer computations and therefore this is adopted for all subsequent 
simulations.  
      Furthermore to corroborate the present computations, visualizations 
of the temperature (isotherms) and stream function distributions 
provided. These replicate the solutions of Kandaswamy et al. (2008). 
the results are in very close correlation, as observed in Fig. 1 (b) and 
confidence in the present MAC computational code is therefore 
justifiably high. 

4. RESULTS AND DISCUSSIONS 

 The influence of various values of Rayleigh number (Ra) on the 
velocity components in the mid-section of square cavity are depicted in 
Figure.3. It is observed in Fig. 2 that the velocity component increases 
with enhancement of the Rayleigh number. This is caused by the 
increased dynamic viscosity, which opposes fluid flow in the cavity. 
Fig 3. Shows the effect of the Rayleigh number on the streamlines, 
isotherms and iso-concentration contours for a square enclosure. As 
seen, flow circular cell is formed at middle of the enclosure for Ra=103, 
as the Rayleigh number increases the primary cell moves towards the 
bottom portion of left vertical wall the shape of the circulation changed 
to triangular shape. The isotherm lines occupy most of the area inside 
the cavity, the temperature value smoothly increases to right wall, the 
effect of Rayleigh number Ra=104 isotherms are spread over the total 
cavity, this is caused by increase in buoyancy force. The concentration 
of the temperature lines is decreased for increased Rayleigh number, the 
similar effects reflected in iso-concentration contours of the enclosure.
 Fig.4a-b depicts the effect of Hartmann number for Ra=104, Pr=0.7, 
Le=1.0, N=1.0, and γ=1.0 on the streamlines, isotherms and iso-
concentration respectively. The strength of the central stream lines 
gradually spread throughout the square cavity with increasing the 
Hartmann number and the streamlines split into two cells, one is formed 
at the upper (Top) wall and another is formed at the bottom horizontal 
wall. The nature of flow in the cavity is circular caused by the absence 
of Hartmann number. The clustered contour maps of isotherms near left 
vertical wall in the square enclosure for Ha=0, and the isotherm 
contours are parallel to the vertical walls for Ha=80 and Ha=100. The 
weak temperature gradients appeared in enclosure for Ha=30 and 
Ha=50. The iso-concentration gradients are linearly proportional with 
Hartmann Number, if the Hartmann number is enchased the iso-
concentration gradients are reached to constant position in the square 
cavity that means all the iso-concentration lines are parallel to left and 
right walls. In the cavity the centerline velocity is fall down with 
respect to the increased Hartmann number. It is shown in the Figure.5.  

 Heat generation or absorption (γ) parameter influence on stream 
lines isotherms and iso-concentration contours with Ha=10, Le=1.0, 
N=1.0, Pr=0.7 and Ra=104 shows in Figure.6. Heat and mass transfer is 
observed for Heat generation or absorption parameter 0,0.5and1  . 

Visual observation of streamlines are noticed there is no significant 
difference for various values of heat generation or absorption 
parameter, from the isotherms and iso-concentration contours, its 
noticed iso-concentration patterns are same for different heat generation 
or absorption (γ) parameter. Temperature lines are increased when 
increasing the heat generation or absorption (γ) parameter.  
 The effect of buoyancy ratio parameter on stream lines, isotherms 
and iso-concentration contours for uniformly heated left vertical wall 
with Ha=10, Le=1.0, γ =1.0, Pr=0.7 and Ra=104 are shows in Figure.7. 
Heat and mass transfer is observed for buoyancy ratio parameter for 
N=5, 10 and 15. A single stretched recirculation vortex is formed in the 
enclosure for N=5, 10 and 15. The buoyancy ratio parameter has been 
applied it is observed that the primary circulation vortex stretches along 

the bottom portion of left wall of the cavity. The isotherms are 
distributed parallel towards horizontal walls. Slight changes are 
observed in Isotherm patterns for increasing the buoyancy ration 
parameter (N). Iso-concentration contours patterns are parallel to 
bottom walls, the patterns are increased for increasing of buoyancy 
ration parameter (N).  
 The left wall is maintained at uniform constant heat flux and the 
remaining all three walls are thermally insulated. In Fi.8a-b, we have 
depicted the numerical results presented in the form of streamlines, 
isotherms and iso–concentration contours for various values of Lewis 
number and for fixed γ=1.0, Ra=104, N=1.0, Pr=0.7 and Ha=10. The 
streamline contours are almost nearly same there is no significant 
change in streamline contours for increasing of Lewis number (Le). It is 
noticed that dominants regimes of convection Lewis number effect is 
low. The isotherm contours are not symmetric for different Lewis 
number, flow pattern lines are gradually increased for increased Le. Iso-
concentration lines are changing for various Lewis numbers, the visual 
observation of iso-concentration contours are forming a vortex for high 
Lewis number (Le=15). It is noticed that the boundary layer is formed 
at a left vertical wall for Le=15. 

Temperature changes in mid-section of the square enclosure in 
presence of magnetic effect is exhibited in Figure.9. The temperature of 
the cavity is varying with Hartmann number, in the absence of magnetic 
field the value of temperature is low comparing with varying Hartmann 
number. The flow temperature is linearly increased with increasing of 
Hartmann number at fixed Prandtl number, The effect of Hartmann 
number on average Nusselt number and average Sherwood number for 
varying Heat generation or absorption parameter are seen in Figure.10 
when Buoyancy ratio, N=1.0, Le=1.0, Ra=104 and fixed Pr=0.71. The 
isotherm gradients are slightly changed for Heat generation parameter 
at γ=1.0, there is no significant difference of Sherwood number on mass 
transfer is predicted for γ=0 and 1.0. The present numerical study is 
wrapped by the Heat and Mass transfer with the effect of Heat 
generation or absorption parameter (γ) on average Nusselt and 
Sherwood number for various Rayleigh numbers (Ra) are presented in 
Figure 11. It is found that the average Nusselt and Sherwood numbers 
are decreases with increasing of thermal Rayleigh number (Ra) with 
N=1.0, Le=1.0, Ha=10 and Pr=0.71, the rate of heat transfer increases 
gradually with increasing of heat generation /absorption coefficient. 

 
Table. 1 Grid independent study 

 
Grid size Average Nusselt number (Nu) 
51 X 51 0.17437 

61 X 61 0.17798 

71 X 71 0.17319 

81 X 81 0.17562 

 

 
Fig. 2 Effect of Rayleigh number (Ra) on the velocity component at 

square cavity mid-section with =1.0, Le=1.0, N=1.0, Pr=0.7 and 
Ha=10 
 

Ra=103    Ra=104 
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Fig. 2 Effect of Rayleigh number (Ra) on stream lines, isotherms and 
isoconcentration  for γ=1.0, Le=1.0, N=1.0, Pr=0.7 and Ha=10. 

     Ha=0    Ha=30 

  

  

  
                                      Ha=50           Ha=80 

 

 

 
Fig. 4 (a) Effect of Hartmann number (Ha) on stream lines isotherms 
and iso-concentration contours for γ=1.0, Le=1.0, N=1.0, Pr=0.7 and 
Ra=104 (continue) 
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Fig. 4 (b) Stream lines isotherms and iso-concentration contours for 
Ha=100 with γ=1.0, Le=1.0, N=1.0, Pr=0.7 and Ra=104 (continue) 
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Fig. 5 Effect of Hartmann number on the velocity component at square 
cavity mid-section with γ=1.0, Le=1.0, N=1.0, Pr=0.7 and Ra=104. 

            

 

 

 
Fig. 6 Effect of Heat generation or absorption (γ) on stream lines 
isotherms and iso-concentration contours, Ha=10, Le=1.0, N=1.0, 
Pr=0.7 and Ra=104 

N=5         N=10              N=15 

 

 

 
Fig. 7 Effect of buoyancy ratio parameter on stream lines isotherms 
and iso-concentrations, Ha=10, Le=1.0, γ =1.0, Pr=0.7 and Ra=104. 

   
Le=1    Le=5 

 

 

    
 

Fig. 8 (a) Effect of Lewis number (Le) on stream lines isotherms and 
iso-concentration contours, γ=1.0, Ra=104, N=1.0, Pr=0.7 and Ha=10, 
(continue) 
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Le=10    Le=15 
 

 

 

 
Fig. 8 (b) Effect of Lewis number (Le) on stream lines isotherms and 
iso-concentration contours, γ=1.0, Ra=104, N=1.0, Pr=0.7 and Ha=10. 

 
 

 
Fig. 9 Effect of Hartmann number (Ha) on mid-section Temperature of 
square enclosure with γ=1.0, Le=1.0, N=1.0, Pr=0.7, Ra=104. 

 

 
 

Fig. 10 Effect of Hartmann number (Ha) on average Nusselt and 
Sherwood number for Le=1.0, N=1.0, Pr=0.7, Ra=104. 

 
Fig. 11 Effect of Heat generation or absorption (γ) on average Nusselt 
and Sherwood number Le=1.0, N=1.0, Pr=0.7, Ha=10. 

5. CONCLUSIONS 

The problem of Double-diffusive convective flow in a square cavity 
with the effect of magnetic and heat generation or absorption has been 
studied numerically using MAC Method. The visualized contour results 
for streamlines, isotherms, iso-concentrations and mid-section velocity 
fields for various parametric conditions is depicted and discussed. It is 
observed that the flow characteristics, heat and mass transfer inside the 
square cavity strongly connected with magnetic field, buoyancy ratio, 
heat generation/absorption and Lewis number effects. The behavior of 
mid-section velocity along x-axis is found to be oscillatory nature with 
increasing the Rayleigh number whereas the behavior of mid-section 
velocity along y-axis increases. The increase of Hartmann number on 
mid-section velocity fields along x-axis and y-axis has been found to be 
the sinusoidal nature and decreasing nature. Increase in Hartmann 
number leads to increase in average Nusselt and Sherwood numbers 
and the fluid circulations within the enclosure are found to be decrease. 
Further, it is noticed that the average Nusselt and Sherwood number 
increases with the increase of heat generation or absorption. The 
average Nusselt number gradually increases with increasing the 
Hartmann number under the influence of Heat generation or absorption 
parameter. Also, we found that there is no significant change in 
Sherwood number. It is predicted that the heat and mass transfer rate 
diminishes by increasing the Rayleigh number and heat generation or 
absorption parameter. 
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NOMENCLATURE 
 

0B      magnetic induction, Tesla  

C dimensionless concentration 
c concentration of species(kg/m3) 
Cp  specific heat (kJ/kg K) 
D species diffusivity (m2/s) 
g gravitational acceleration(m/s2) 
Ha Hartmann number 
k thermal conductivity (w/mk) 
L width of enclosure, m 
Le Lewis number 
N buoyancy ratio 
Nu Nusselt number 
p fluid pressure(pa) 
P dimensionless fluid pressure 
Pr Prandtl number  
 q' heat flux(W/m2) 
 q* mass flux(W/m2) 
Ra Rayleigh number 
Sh local Sherwood number 
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t time(s) 
t’                 dimensionless time (s) 
T temperature(k) 
u horizontal velocity(m/s) 
U dimensionless horizontal velocity 
v vertical velocity(m/s) 
V dimensionless vertical velocity 
x,y dimensional coordinates (m) 
X,Y dimensionless coordinates 
 

Greek Symbols  
 

  kinematic viscosity, m2/s 
  dynamic viscosity, kg/m s 
  electric conductivity 
  thermal diffusivity, m2/s 
  fluid density, kg/m3 

  dimensionless mass concentration 

  dimensionless temperature 
  streamfunction  

T  coefficient of thermal expansion, k-1 

c  coefficient of solutal expansion, m3/kg 

0  heat generation or absorption coefficient 

           dimensionless heat generation or absorption coefficient 
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