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ABSTRACT 

In this article, the combined theoretical and computational study of the magneto hydrodynamic heat transfer in an electro-conductive polymer on the 
external surface of a vertical truncated cone under radial magnetic field is presented. Thermal and velocity (hydrodynamic) slip are considered at the 
vertical truncated cone surface via modified boundary conditions. The Williamson viscoelastic model is employed which is representative of certain 
industrial polymers. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar 
partial differential equations consisting of the momentum and energy equations via appropriate non-similarity transformations. These transformed 
conservation equations are solved subject to appropriate boundary conditions with a second order accurate finite difference method of the implicit 
type. Validation of the numerical solutions is achieved via benchmarking with earlier published results. The influence of Williamson viscoelastic 
fluid parameter, magnetic body force parameter, Thermal and velocity (hydrodynamic) slip parameters, stream wise variable and Prandtl number on 
thermos-fluid characteristics are studied graphically.  The model is relevant to the simulation of magnetic polymer materials processing.  
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1. INTRODUCTION 

Natural convection possesses immense uses for researchers with its 
presence in both nature and engineering applications. Convection cells 
appear in nature, from the thermals that rise above the sun light-warmed 
land or water, which is fundamental to all weather systems. This can 
also be observed in the rising plume of hot-air from fire, ocean currents 
and sea-wind formation. Natural convection heat-transfer is widely 
employed in the areas of engineering such as: Cooling of commercial 
high-voltage electrical power transformers, Heating of houses by 
electrical baseboard heaters, Heat-loss from steam pipe lines in power 
plants and Heat-gain in refrigerant pipelines in air conditioning 
applications. It is also employed in the Cooling of reactor cores in 
nuclear power plants, although the coolant is often driven by pumps, 
resulting in more efficient heat transfer by forced convection, 
Refrigeration of electronic devices (chips, transistors) by finned heat 
sinks, although a fan is often used to segregate the natural convection 
with forced convection. In other studies, like fluid dynamics, non–
Newtonian fluids play a very important role. In explaining the 
rheological properties of fluids, it may be said that the fluid thickness 
changes significantly with temperature. 
    Many authors have examined the vertical cone with natural 
convection heat transforms, such as Amanulla et al. (2017) studied the 
multiple slip effetcs on heat transfer in a jeffery fluid over an inclined 
vertical plate. Aurangzaib et al. (2016) employed the partial slip effect 
on mixed convection flow towards a permeable shrinking sheet with 
stagnation point. Satya Narayana and Venkateswarlu (2016) presented 
the MHD micropolar fluid past a vertical porous plate in the presence of 
thermal radiation. Siddiqi et al. (2017) investigated the MHD 
micropolar fluid flow over shrinking sheet with radiation. Hayat et al. 
(2014) studied the MHD stagnation point flow of Jeffrey’s fluid flow in 

an isothermal cone due to convective boundary conditions.   Rao et al. 
(2015) explained the non-isothermal wedge with flow of Jeffrey’s fluid. 
Nasir et al. (2016) utilized the presence of the heat source with heat 
transfer of a couple stress fluids over an oscillator-stretching sheet. 
Sadia Siddiqi et al. (2017) reported the presence of thermal radiation 
with periodic MHD natural convection boundary layer problem 
obtained by the micro-polar fluid. Ram Reddy and Pradeepa (2015) 
presented the convective boundary condition are represented by a free 
convective flow along a permeable vertical plate of a micro-polar fluid. 
Ashmawy (2015) analyzed fully developed by the micro-polar with 
natural convection. Dulal Pala and Gopinath Mandal (2017) studied the 
micropolar with MHD effects of stretching sheet of nanofluids. 
Bourantas and Loukopoulos (2014) explained the MHD field in an 
inclined rectangular with transient, laminar and natural convection flow 
of a micropolar Nano fluid. Asia et al. (2016) explained the electrically 
showing micropolar fluid in a porous channel with contracting wall 
under the exploit of MHD. Hari et al. (2015) investigated the magnetic, 
material and viscosity parameters on natural convective flow along 
vertical walls in case of both asymmetric and symmetric cooling and 
heating of the walls. Rashad et al. (2014) have obtained a mixed 
convection in two – dimensional boundary layer flow of a micropolar 
fluid in a vertical plane with the effect of chemical reaction coupled 
with heat and mass transfer. Ahmad et al. (2012) investigated the 
laminar film flow of a micro-polar fluid with boundary layer of micro-
polar fluid. Nagendra et al. (2008) investigated Peristaltic motion of a 
power-law fluid in an asymmetric vertical channel. Isaac Lare 
Animasaun (2016) analyzed the horizontal linearly stretchable melting 
surface with mixed convection of micropolar fluid. Aparna et al. (2017) 
explained the   flow of fluid with slow rotation in permeable sphere in 
micropolar fluid. Mishra et al. (2015) investigated the concentration of 
a double stratified micro-polar fluid in the presence of a magnetic field 
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with electrically conducting incompressible viscous fluid on a vertical 
plate. Naveed et al. (2016) studied radiation effect with curved 
stretching sheet of boundary layer flow of a viscous fluid. Srinivasa 
Charya and Mendu Upendar (2013) employed double stratified micro-
polar fluid with heat and mass transfer characteristics of the free 
convection on a vertical plane with a variable wall temperature and 
concentration. Ching – yang Cheng (2008) examined the micropolar 
fluids about the sphere with constant wall temperature and 
concentration by the natural convection of heat and mass transfer. 
Rawat et al. (2016) analyzed the non-darcy porous medium with 
nonlinear stretching sheet reacting micropolar fluid. Anwar Beg et al. 
(2011) studied the Isothermal sphere with micropolar regime with 
Soret/Dufour effects. Abid Hussanan et al. (2017) explained the 
micropolar fluid with nano particles in water and engine oil. 
Aurangzaib and Sharidan Shafie (2013) examined Unsteady MHD 
Stagnation-Point Flow with Heat and Mass Transfer in a Micropolar 
Fluid in the Presence of Thermophoresis and Suction/Injection. Vanita 
and Anand Kumar (2016) investigated natural convection vertical cone 
with effect of magnetic parameter. Ching-Yang Cheng (2008) examined 
the micro-polar fluids with natural convection heat transfer of a vertical 
truncated cone. Chang (2008) investigated the micro-polar fluid along a 
slender hollow cylinder in the wall conduction effect with heat transfer. 
Cheng (2008) examined a horizontal elliptical cylinder in a Newtonian 
with constant surface heat flux by the temperature dependent viscosity 
effects on the natural convection. Molla et al. (2009) studied the natural 
convection flow from a horizontal cylinder with uniform heat flux in 
the presence of heat generation. Baag et al. (2017) studied the 
micropolar fluid past a vertical flat plate with mixed convection 
stagnation point flow. Aurangzaib et al. (2016) analysis the Micropolar 
fluid flow and heat transfer over an exponentially permeable shrinking 
sheet. Amanulla et al. (2017) discussed thermal and momentum slip 
effects on hydromagnetic Convection flow of a Williamson fluid past a 
vertical truncated cone. 
    The objective of the present investigation intends to study heat 
transfer boundary layer flow of Jeffrey’s fluid from a vertical 
isothermal cone in the presence of micro-polar fluid with suction effect 
is also considered. The sequential solutions for velocity, angular 
velocity and temperature fields are computed by using Keller’s implicit 
finite difference box scheme. The effects of governing flow parameters 
on the flow, angular velocity, temperature, friction factor coefficient 
and local Nusselt number are discussed and presented here in through 
graphs and tables 
 

2. MATHEMATICAL MODEL 
 

        Consider a 2-D study free convection boundary layer flow a of 
non-Newtonian Jeffrey fluid from a vertical isothermal cone in 
micropolar fluid regime. It is assumed that both the cone and Jeffrey 
fluid are maintained initially at the same temperature. Instantaneously it 

is raised to a temperature wT T , where the latter (ambient) 

temperature of the fluid is sustained constant. The basis of the 
coordinate system is placed at the vertex of the cone, where the x-
coordinate is measured along the slant surface of the cone from the 
origin and the y -coordinate is directed normal to the surface cone (See 

Fig.1). wT T  i.e. the ambient temperature of the fluid which remains 

unchanged. 
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Where a dot above quantity denotes the material time derivative, P  is 
pressure, I  is the identity tensor,   is dynamic viscosity,   is the 

ratio of relaxation to retardation times, 1  is the retardation time and   

  is the shear rate. 
    The Jeffrey’s model deals a formulation for simulating elastic effects 
arising in non-Newtonian flows. The shear stress rate and gradient of 
shear stress rate are defined as follows 
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Fig. 1 Physical model and coordinate system 

       The Jeffery’s model provides an elegant formulation for simulating 
retardation and relaxation effects arising in polymer flows. The outline 
of the appropriate terms in a flow model is considered next. The 
resulting boundary value problem is found to be well-posed and permits 
an excellent mechanism for the assessment of rheological 
characteristics of the flow behaviour. 
     We assume that the Boussinesq and boundary layer approximations, 
the governing equations for the conservation of mass, momentum, 
microrotation and energy can be written in two-dimensional Cartesian 
coordinates (x, y) which are relevant to the problem are as follows.  
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      Here u and v are the velocity components in the x- and y- directions 
respectively, ν-the kinematic viscosity of the electrically conducting 
fluid. 
       The physically appropriate boundary conditions are as follows 
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     We introduce a stream function  is defined by the Cauchy-

Riemann equations 
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We introduce the non-dimensional variables 
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Substituting Eqn. (10) into the Eqns. (5)–(7), we obtain the following 
equations as 
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Then the corresponding dimensionless boundary conditions becomes 
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      The skin-friction coefficient and the local Nusselt number (heat 
transfer rate) can be defined using the transformations described above 
with the following expressions:   
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3. NUMERICAL SOLUTION WITH KELLER 
BOX IMPLICT METHOD  

 

        The efficient Keller-box implicit difference method is 
implemented to solve the non-linear boundary layer eqns. (11) – (13) 
subject to the boundary conditions (14). This method originally 
developed for low speed aerodynamic boundary layers by Keller has 
been employed in a diverse range of nonlinear MHD and coupled heat 
transfer problems. It includes pressure work effect on natural 
convection flow from a vertical circular cone with suction and non-
uniform surface temperature. Very few of these papers, It has been used 
recently in 
polymeric flow dynamics by Amanulla et al. (2017) for viscoelastic 
models. However, have provided guidance for researchers as to 
customization of the Keller-Box scheme to heat transfer problems. 
 

The fundamental phases intrinsic to the Keller–Box scheme are 
a. Reduction of the Nth order partial differential equation system of N 
first order equations 
b. Finite Difference Discretization 
c. Quasilinearization of Non-Linear Keller algebraic Equations 
d. Block-tridiagonal elimination of Linear Keller algebraic Equations  

Phase a: Reduction of the nth order partial differential equation 
system to N first order equations 
 

New variables are introduced to Eqns. (11)-(13) subject to the boundary 
conditions (14) are first written as a system of first order equations. For 
this purpose, we reset Eqns. (11) - (13) as a set of simultaneous 
equations by introducing the new variables 
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Where primes denote differentiation . In terms of the dependent 
variables, the boundary conditions become: 
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Phase b: Finite difference discretization of reduced boundary layer 
equations 
 

A two-dimensional computational grid (mesh) is imposed on the -η 
plane as sketched in Fig.2. The stepping process is defined by: 
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Where kn and hj denote the step distances in the ξ (stream wise) and η 
(span wise) directions respectively 
 

   

 
 

Fig. 2 Keller Box element and boundary layer mesh 
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We now state the finite-difference approximation of Eqns. (17)–(20) for 

the mid-point  1/2 , n
j  , below 
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 Where, we have used the abbreviation

1
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n
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
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
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The boundary conditions are 

0 0 0 00, 1, 1, 0, 0, 0, 0n n n n n n n n
j j j jf u s m u v s m         

 
 
 

Phase c: Quasi linearization of non-Linear Keller Algebraic 
Equations 
 

       If we assume 1 1 1 1 1 1 1 1, , , , , , ,n n n n n n n n
j j j j j j j jf u v s t q m p        to be known 

for the solution of 8J+8 equations for the solution of 8J+8 
unknowns , , , , , , ,n n n n n n n n

j j j j j j j jf u v s t q m p , 0,1,2,...,j J . This non-linear 

system of algebraic equations is linearized by means of Newton’s 
method as explained in (Keller 1970, Subba Rao et al. 2016)  

 

Phase d: Block-Tridiagonal Elimination of Linear Keller 
Algebraic Equations 
 

        Linear system is solved using the block-elimination method, since 
it possess a block-tridiagonal The structure consists of variables or 
constants, but here an interesting feature can be observed, namely that it 
consists of block matrices the complete linearized system is formulated 
as a block matrix system, where each element in the co-efficient matrix 
is a matrix itself. Then, this system is solved using the efficient Keller–
box method. The numerical results are strongly influenced by the 
number of mesh points in both directions. After some trials in the  -
directions (radial coordinate) a larger number of mesh points are 
selected, whereas in the  -directions (tangential coordinate) 
significantly less mesh points are necessary. The numerical algorithm is 
executed in MATLAB on a PC. The method demonstrates excellent 
stability, convergence and consistency, as elaborated by Keller (1970). 
coupled boundary layer equations in a ( ,  ) coordinate system remain 

strongly nonlinear. A numerical method, the Keller-Box implicit 
difference method, is therefore deployed to solve the boundary value 
problem defined by Ens. (14) - (15) with boundary conditions (16). This 
technique has been described succinctly in Cebeci and Bradshaw (1984) 
and Keller (1970). It has been used recently in polymeric flow 
dynamics by Subba Rao et al. (2017) and Amanulla et al. (2017) for 
viscoelastic models. The key stages involved are as follows: 
a. Reduction of the Nth order partial differential equation system to N 
first order equations 
b. Finite difference discretization 
c. Quasilinearization of non-linear Keller algebraic equations 
d. Block-tridiagonal elimination of linear Keller algebraic equations 

4. NUMERICAL RESULTS AND DISCUSSION 

        Comprehensive solutions have been obtained and are presented in 
Table 1–7 and Figs.3–10. The numerical problem comprises of two 
independent variables ( , )  , three dependent fluid dynamic variables 

( , , )f    and six thermo-physical and body force control parameter 
values are prescribed. 
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(a) 

 
(b) 

 
(c) 

Fig. 3 Influence of De on (a) velocity profiles, (b) temperature profiles, 
and (c) angular velocity profiles. 

 

 
(a) 

 
(b) 

 

(c) 
Fig. 4 Influence of λ on the (a) velocity profiles, (b) temperature 

profiles, and (c) angular velocity profiles. 
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Figs. 3(a) to 3(c), illustrate the influence of De on velocity ( )f  , 

temperature ( ) and angular velocity   . Dimensionless velocity 

component (fig.3) is considerably reduced with increasing De values. 
De arises in connection with some higher order derivatives in the 
momentum boundary layer equation (11),  

i.e.,  22 ( ) 7 4
1

iv ivDe
f f f ff f


     


   and also 

( )
1

ivDe f f f f
f f f f

    
                 

.This parameter therefore 

exerts a strong influence on shearing characteristics of the polymer 
flow. The polymer behaves as a simple viscous fluid, as elaborated by 
Beg and Makinde (2011).  For polymers, i.e., for non-Newtonian fluids, 
higher De values correspond to the polymer becoming highly oriented 
in one direction and stretched. For very high De value, the fluid 
movement is too fast for elastic forced to relax and the material acts as 
a purely elastic fluid. In fig. 3(c) with increasing De values, there is a 
substantial decrease in angular velocity. 
        Figs. 4(a) to 4(c) presents the effect of the ratio of relaxation to 
retardation times i.e.,   on velocity  f  , temperature    and angular 

velocity     distributions throughout the boundary layer regime. A 

significant increase in velocity is observed with increasing   values. 
Conversely, temperature is markedly reduced with increasing values of 

 . Also increasing   is seen to increase the angular velocity 
significantly. The mathematical model reduces to the Newtonian 
viscous flow model as 0  and 0De  .The momentum boundary 
layer equation in this cases contracts in the familiar Newtonian 

form  24(2 ) 7 4 2 4 4
f f

R f ff Rg f f f f  
 

 
 
 

              
 

 

 

       Figs. 5(a) to 5(c) depicts the effect of the vortex viscosity 
parameter R on velocity  f  , temperature     and angular 

velocity   . For R =1, the micro-polar and Newtonian dynamic 

viscosity are equivalent 
the micro-polar and Newtonian dynamic viscosity are equivalent. For 
R  = 0, micro-polarity is neglected and the equations reduce to 
Newtonian (Navier-Stokes) case. Although relatively simple in 
definition, R , has a prominent influence on all the flow variables. We 
observe in fig. 5(a) that an increase in R  strongly decelerates the flow, 
i.e., depresses linear velocity. Fig. 5(b) demonstrates that with stronger 
micro-polarity, i.e. greater R  value, the temperatures are elevated in 
the boundary layer. The regime is significantly heated and thermal 
boundary layer thickness is increased. The increased vortex viscosity 
encourages thermal diffusion and acts like as agitator. This increases 
the efficiency of thermal convection within the body of the fluid from 
the microscopic to the macroscopic scale and effectively transports heat 
with greater intensity of the cone surface into the fluid regime. Fig. 5(c) 
depicts that strong reversal of micro-element rotation is induced very 
close to the wall (cone surface) with increasing R values. 
      Figs. 6(a) to 6(c) depicts the influence of velocity  f  , 

temperature    and angular velocity    for different values of 

material parameter B. It is observed that an increase of B significantly 
decelerates the flow, i.e., velocity throughout the boundary layer 
regime. The temperature also decreased with increasing B values. 
Whereas, an increasing the material parameter B, the angular velocity is 
increased.   
    Figs. 7(a) to 7(c) represent typical profiles for velocity, temperature 

and angular velocity for various values of P r . It is observed that an 
increase the P r  leads to decrease in velocity. The most prominent 
variation in profiles arises at intermediate distances from the cone 
surface. Furthermore, increasing Pr generates a substantial reduction in 
the fluid temperature and the thermal boundary layer thickness. At large 

Pr, the thermal boundary layer is thinner than at a smaller Pr. This is 
because for small values of Pr, the fluid is highly conductive. 
Physically, if Pr increases, the thermal diffusivity decreases and these 
phenomena leads to the decreasing of energy, ability that reduces the 
thermal boundary layer. In addition, increasing Pr reduces angular 
velocity. 
 

 

 
(a) 

        
(b) 

          
(c) 

Fig. 5 Influence of R on the (a) velocity profiles, (b) temperature 
profiles, and (c) angular velocity profiles. 
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(a) 

 
(b) 

 
(c) 

Fig. 6 Influence of B on the (a) velocity profiles, (b) temperature 
profiles, and (c) angular velocity profiles. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 7 Influence of Pr on the (a) velocity profiles, (b) temperature 
profiles, and (c) angular velocity profiles. 
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(a) 

 
(b) 

 
(c) 

Fig. 8 Influence of fw on the (a) velocity profiles, (b) temperature 
profiles, and (c) angular velocity profiles. 

 

 

 
(a)

 
(b) 

Fig.9 Influence of De on the (a) Skin friction coefficient 
and (b) Nusselt number coefficient. 

 

Figs. 8(a) to 8(c) depicts the influence of velocity  f  , temperature    

and angular velocity    for different values of suction parameter fw. It 

is observed that an increase of fw significantly decelerates the flow, i.e., 
velocity throughout the boundary layer regime. The temperature also 
decreased with increasing fw values. Whereas, an increasing the suction 
parameter fw, the angular velocity is increased.   
       Figs. 9 (a) to 9(b) presents the skin friction coefficient and Nusselt 
Number comparisons for different values of De , Increasing Deborah 
number, De  values first there was no increment after that skin friction 
increase and the decrease the Nusselt number throughout the cone 
surface..  
       Figs. 10 (a) to10 (b) presents the skin friction coefficient and 
Nusselt Number comparisons for different values of R , Increasing 
Vortex viscosity parameter, R  there was slow increment in the skin 
friction and also very slow decrement in the Nusselt number throughout 
the cone surface.  
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(a) 

 
(b) 

Fig. 10 Influence of R on the (a) Skin friction coefficient 
and (b) Nusselt number coefficient. 

 
Table 1 Values of skin friction ( ( ,0)f  ) for different ,De   and   

 

 

Table 2 Values of Nusselt number ( ( ,0)  ) for different               

,De  and   
 

De 
 

( ,0)   

1.0   2.0   3.0   

0.1 

 
 
 

0.2 

0.7684 0.8875 0.9229 
0.3 0.7353 0.8507 0.9089 
0.5 0.7303 0.8393 0.8979 
0.8 0.7242 0.8255 0.8854 
1.0 0.7205 0.8176 0.8789 
1.5 0.7112 0.8006 0.8675 
2.0 0.7009 0.7848 0.8616 

 
 

0.1 

0 0.7683 0.882 0.9161 
0.5 0.7686 0.8936 0.9304 
1.0 0.7688 0.9006 0.9388 
2.0 0.7691 0.9086 0.9484 
3.0 0.7692 0.9132 0.9538 
5.0 0.7694 0.9182 0.9597 

 
 

Table 3: Values of skin friction ( ( ,0)f  ) for different R and B  
 

R  
( ,0)f   

0.001B   0.01B   0.1B   
0.001 0.3516 0.2023 0.1723 
0.01 0.351 0.2018 0.172 
0.05 0.3488 0.2001 0.1706 
0.08 0.3462 0.198 0.1689 
0.1 0.3299 0.1847 0.1582 
0.2 0.316 0.1732 0.1489 
0.3 0.3058 0.1648 0.142 
0.4 0.2978 0.1582 0.1366 
0.5 0.2856 0.1482 0.1284 
1.0 0.1695 0.1349 0.1175 

 
Tables 3-4 presents the impact of vortex viscosity parameter (R) on skin 
friction and Nusselt number coefficients along with a variation in 
material parameter ( B ).With increasing R , it is detected that the heat 
transfer rate decreases significantly and skin friction is reduced which 
corresponds to a retardation of the boundary layer flow.  
      Tables 5-6 signifies the impression of Prandtl number (Pr) on skin 
friction and Nusselt number coefficients, along with a variation in ratio 
of relaxation to retardation times (  ). With increasing Pr, it is observed 
that the both skin friction and heat transfer rate increase significantly 
through the cone surface. 
      Table 7 illustrate  the comparison of steady state Local Nusselt 
number for various values of   with those of the work Hossain and 
Paul (2001), Ching-Yang Cheng (2008) and found to be in good 
agreement. 
 

Table 4: Values of Nusselt number ( ( ,0)  ) for different 

R and B  
 

R  ( ,0)   

0.001B   0.01B   0.1B   
0.001 0.6685 0.6303 0.5205 
0.01 0.6683 0.6301 0.5204 
0.05 0.6675 0.6294 0.5198 
0.08 0.6667 0.6286 0.519 
0.1 0.6622 0.6239 0.5148 
0.2 0.6589 0.6205 0.5117 
0.3 0.6565 0.6186 0.5093 
0.4 0.6545 0.6174 0.5078 
0.5 0.6509 0.6162 0.5056 
1.0 0.645 0.6161 0.5036 

De  
 

( ,0)f   

1.0   2.0   3.0   

0.1 

 
 
 

0.2 

0.2515 0.4828 0.5419 
0.3 0.2219 0.4353 0.4889 
0.5 0.2022 0.4284 0.4487 
0.8 0.1821 0.3573 0.401 
1.0 0.1723 0.3357 0.376 
1.5 0.1554 0.2954 0.3289 
2.0 0.1456 0.268 0.2964 

  
 

 0.1 

0 0.2364 0.4488 0.503 
0.5 0.2695 0.5235 0.5885 
1.0 0.2915 0.5733 0.6454 
2.0 0.3193 0.6359 0.717 
3.0 0.3363 0.6741 0.7605 
5.0 0.3562 0.7182 0.8107 
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Table 5: Values of skin friction ( ( ,0)f  ) for different 

Pr and   
 

Pr  ( ,0)f   

0.0   0.5   1.0   
0.5 0.2364 0.2696 0.2916 
0.71 0.2359 0.269 0.2909 

5 0.2339 0.2665 0.2881 
7 0.2315 0.2636 0.2848 
10 0.2167 0.2456 0.2647 
15 0.2039 0.2304 0.2479 
25 0.1945 0.2193 0.2357 
50 0.1871 0.2106 0.2262 
75 0.1757 0.1974 0.2117 

100 0.1606 0.18 0.1928 
 

Table 6: Values of Nusselt number ( ( ,0)  ) for different 

Pr and   
 

Pr  ( ,0)   

0.0   0.5   1.0   
0.5 0.5483 0.6343 0.6398 
0.71 0.5981 0.6998 0.7018 

5 0.6675 0.7865 0.7865 
7 0.8667 0.8017 0.8450 
10 0.9123 0.9973 1.1597 
15 0.9893 1.1293 1.6701 
25 1.2371 1.5371 1.6743 
50 2.1152 2.4862 2.5670 
75 3.0019 3.5315 3.6219 

100 3.4466 3.7704 3.9863 
 

Table 7: Comparison table values of Nu  for various values of   
 

  

 ( ,0)   

Hossain 
and Paul 
(2001) 

Ching-Yang 
Cheng 
(2008) 

Present 

0 0.24584 0.2460 0.24642 

0.1 0.25089 0.2509 0.25091 

0.2 0.25601 0.2559 0.25563 

0.4 0.2663 0.2660 0.26591 

0.6 0.27662 0.2760 0.27661 

0.8 0.28694 0.2862 0.28696 

1 0.29731 0.2965 0.29734 

2 0.35131 0.3503 0.35137 
 
 

5. CONCLUSIONS 
 

 A mathematical model has been developed for the buoyancy-driven, 
non -similar, free convection boundary layer flow of Jeffery’s non-
Newtonian fluid from a vertical isothermal cone in a micro polar fluid 
regime. The transformed conservation equations have been solved with 
prescribed boundary conditions using the finite differences implicit 
Keller–box method. The present simulations have shown that 
 

(i)    Increase the Deborah number ( )De  decreases the velocity, 
angular velocity and Nusselt Number while in enhances the 
temperature and skin friction profiles.  
 

(ii)  Increase the vortex viscosity parameter ( )R in retards the 
velocity; temperature and the Nusselt number while enhance the 
skin friction and angular velocity profiles. 

 

(iii) Increase the Prandtl number (Pr)  the velocity, temperature and 
angular velocity profiles are in decreases, while the Nusselt 
number increased. 

 
(iv) Increase the suction parameter ( )wf the velocity and temperature 

profiles are decreases throughout the cone surface and enhance 
the angular velocity profiles. 

 
(v)   Increase the material parameter ( )B the velocity and temperature 

profiles are decreases throughout the cone surface and enhance 
the angular velocity profiles. 

 
NOMENCLATURE 
 

A  Half angle of the cone 
B  Micro polar inertia density (material) parameter 
De Deborah number 
f  Dimensionless stream function 

g  Dimensionless stream function 
*g  Gravitational acceleration  

Gr  Local Grashof number 

h  Heat transfer coefficient 
j  Micro inertia density 

k  Thermal conductivity 
N  Angular velocity 
Nu  Nusselt number 
Pr  Prandtl number 
r  Local radius of the truncated cone 
R  Vortex viscosity parameter 
T  Temperature 

,u v  Dimensionless velocity components along   x and y  
                        directions respectively 
x stream wise coordinate 
y Transverse coordinate                         
 
Greek Symbols 
 
     Thermal diffusivity 
    Coefficient concentration expansion 

  *  Spin gradient viscosity 

  ,   Dimensionless coordinates 

    Dimensionless temperature 
    Ratio of retardation time to relaxation time 
   1 retardation time 

  k  Vortex viscosity 
    Viscosity 

    Density 

    Dimensionless stream function 
 

   Subscripts  
 

   w conditions on the wall 
    free stream conditions 
 
ACKNOWLEDGEMENTS 
 
Authors thanks to DST [Ref: N0. SR/WOS-A/MS-09/2014(G)] New 
Delhi, for financial support and management of Madanapalle Institute 
of Technology & science, Madanapalle for providing research facilities 
in the campus. 
 
 



Frontiers in Heat and Mass Transfer (FHMT), 9, 29 (2017)
DOI: 10.5098/hmt.9.29

Global Digital Central
ISSN: 2151-8629

  11

REFERENCES 
 

Abbasi, F.M., Shehzad, A., Hayat, T., and Alhumali, M.S., 2016, 
“Mixed Convection Flow of Jeffrey Nano Fluid with Thermal Radiation 
and Double Stratification,” Journal of Hydrodynamics, 28(5) 840-849. 
https://doi.org/10.1016/S1001-6058(16)60686-8  
 
 Abid, H., Mohd, Z.S., Ilyas, K., and Shafie, S., 2017, “Convection 
Heat Transfer in Micropolar Nano Fluids with Oxide Nano Particles in   
Water, Kerosene and Engine Oil,” J. Mol. Liq., 229, 482-488. 
 https://doi.org/10.1016/j.molliq.2016.12.040  
 
Amanulla, C.H., Nagendra, N., Surya Narayana Reddy, M., Subba Rao, 
A., and Anwar Bég, O., 2017, “Mathematical Study of Non-Newtonian 
Nanofluid Transport Phenomena from an Isothermal Sphere,” Frontiers 
in Heat and Mass Transfer, 8, 29. 
http://dx.doi.org/10.5098/hmt.8.29  
 
Amanulla, C.H., Nagendra, N., Subba Rao A., Anwar Bég O., and 
Kadir A., 2017, “Numerical Exploration of Thermal Radiation and Biot 
Number Effects on the Flow of a Non-Newtonian MHD Williamson 
Fluid over a Vertical Convective Surface,” Heat Trans Asian Res. 00, 
1–19.  
https://doi.org/10.1002/htj.21303  
 
Amanulla, C.H., Nagendra, N., and Suryanarayana Reddy, M., 2017, 
“MHD Flow and Heat Transfer in a Williamson Fluid from a Vertical 
Permeable Cone with Thermal and Momentum Slip Effects: A 
Mathematical Study,” Frontiers in Heat and Mass Transfer, 8, 40. 
http://dx.doi.org/10.5098/hmt.8.40  
 
Amanulla, C.H., Nagendra, N., and Suryanarayana Reddy, M., 2017, 
“Multiple Slip Effects on MHD and Heat Transfer in a Jeffery Fluid 
over an Inclined Vertical Plate,” International Journal of Pure and 
Applied Mathematics, 113(7), 137-145. 
 
Amanulla, C.H., Nagendra, N., and Surya Narayana Reddy, M., 2017, 
“Numerical Study of Thermal and Momentum Slip Effects on MHD 
Williamson Nanofluid from an Isothermal Sphere,” Journal of 
Nanofluids, 6(6), 1111–1126. 
https://doi.org/10.1166/jon.2017.1405  
 
Amanulla, CH., Nagendra, N., Surya Narayana Reddy, M., Subba Rao, 
A., and Anwar Bég, O., 2017, “Thermal and Momentum Slip Effects on 
Hydromagnetic Convection Flow of a Williamson Fluid Past a Vertical 
Truncated Cone,” Frontiers in Heat and Mass Transfer, 9, 22. 
https://doi.org/10.5809/hmt.9.22  
 
Amanulla, C.H., Nagendra, N., and Suryanarayana Reddy, M., 2017, 
“Computational Analysis of Non-Newtonian Boundary Layer Flow of 
Nanofluid Past a Semi-infinite Vertical Plate with Partial Slip,” 
Nonlinear Engineering, 1-15. 
https://doi.org/10.1515/nleng-2017-0055   
 
Aparna, P., Pothanna, N., Murthy, J.V.R., and. Sreelatha, K., 2017, 
“Flow Generated by Slow Steady Rotation of a Permeable Sphere in a 
Micropolar Fluid”, Original Research Article, Alexandria Eng. J. 
https://doi.org/10.1016/j.aej.2017.01.018  
 
Ashmawy, E.A., 2015, “Fully Developed Natural Convective 
Micropolar Fluid Flow in a Vertical Channel with Slip”, J. Egyptian 
Mathematical Society, 23, 563– 567.  
https://doi.org/10.1016/j.joems.2014.06.019  
 
Bég, O.A., Prasad, V.R., Vasu, B., and Bhaskar Reddy, N., 2011, “Free 
Convection Heat and Mass Transfer from an Isothermal Sphere to a 
Micropolar Regime with Soret/Dufour Effects,” Int. J. Heat and 
MassTransfer.,54, 9-18. 

https://doi.org/10.1016/j.ijheatmasstransfer.2010.10.005  
 
Bég, O.A, and Makinde. O.D., 2011, “Viscoelastic Flow and Species 
Transfer in a Darcian High-Permeability Channel,” J. Petroleum Sci. 
and Eng., 76, 93-99.  
https://doi.org/10.1016/j.petrol.2011.01.008  
 
Asia, Y., Kashif, A., and Muhammad, A., 2016, “MHD Unsteady Flow 
and Heat Transfer of Micropolar Fluid through Porous Channel with 
Expanding or Contracting Walls,” J. Applied Fluid Mechanics, 9, 1807-
1817.  
http://doi.org/10.18869/acadpub.jafm.68.235.22857  
 
Aurangzaib, Uddin, Md.S. Bhattacharyya, K., and Shafie, S., 2016, 
“Micropolar Fluid Flow and Heat Transfer over an Exponentially 
Permeable Shrinking Sheet,” Propulsion and Power Research, 5(4), 
310-317. 
https://doi.org/10.1016/j.jppr.2016.11.005  
 
Aurangzaib, Bhattacharyya, K., and Shafie, S., 2016, “Effect of Partial 
Slip on an Unsteady MHD Mixed Convection Stagnation-Point Flow of 
a Micropolar Fluid towards a Permeable Shrinking Sheet,” Alexandria 
Engineering Journal, 55(2), 1285–1293. 
https://doi.org/10.1016/j.aej.2016.04.018  
 
Baag, S., Mishra, S.R., Dash, G.C., and Acharya, M., 2017, “Numerical 
Investigation on MHD Micropolar Fluid Flow toward a Stagnation 
Point on a Vertical Surface with Heat Source and Chemical Reaction,” 
J. King Saud University Eng. Sci., 29, 75–83.  
https://doi.org/10.1016/j.jksues.2014.06.002  
 
Bourantas, G.C., and Loukopoulos, V.C., 2014 “MHD Natural-
Convection Flow in an Inclined Square Enclosure Filled with a 
Micropolar-Nano Fluid,” Int. J. Heat and Mass Transfer, 79, 930–944. 
https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.0755  
 
Cheng-Long Chang., 2008, “Numerical Simulation for Natural 
Convection of Micropolar Fluids Flow along Slender Hollow Circular 
Cylinder with Wall Conduction Effect,” Comm. in Nonlinear Sci. and 
Numerical Simulation., 13,624–636.  
https://doi.org/10.1016/j.cnsns.2006.05.012  
 
Ching-Yang Cheng, 2006, “Free Convection Heat and Mass Transfer 
from a Horizontal Cylinder of Elliptic Cross Section in Micropolar 
Fluids”, Int. Commu. in Heat and MassTransfer, 33, 313-318.  
https://doi.org/10.1016/j.icheatmasstransfer.2005.10.012  
 
 Ching– Yang Cheng. ,2008, “Natural Convection Heat and Mass 
Transfer from a Sphere in Micropolar Fluids with Constant Wall 
Temperature and Concentration,” Int. Comm. Heat and Mass Trans., 
35, 750–755. 
 https://doi.org/10.1016/j.icheatmasstransfer.2008.02.004  
 
 Ching-Yang Cheng., 2008, “Natural Convection of a Micropolar Fluid 
from a Vertical Truncated Cone with Power-law Variation in Surface 
Temperature,” Int. Comm. Heat and Mass Trans., 35, 39– 46. 
 https://doi.org/10.1016/j.icheatmasstransfer.2007.05.018  
 
Dulal Pala, Gopinath Mandalb., 2017, “Thermal Radiation and MHD 
Effects on Boundary Layer Flow of Micropolar Nanofluid Past a 
Stretching Sheet with Non-Uniform Heat Source/Sink,” Int. J. Mech. 
Sci., 126, 308–318. 
https://doi.org/10.1016/j.ijmecsci.2016.12.023  
 
Hari, R., Kataria., Harshad.R., Patel, Rajiv Singh, 2017, “Effect of 
Magnetic Field on Unsteady Natural Convective Flow of a Micropolar 



Frontiers in Heat and Mass Transfer (FHMT), 9, 29 (2017)
DOI: 10.5098/hmt.9.29

Global Digital Central
ISSN: 2151-8629

  12

Fluid Between Two Vertical Walls,” Ain Shams Eng.  J., 8, 87-102. 
https://doi.org/10.1016/j.asej.2015.08.013  
 
Hayat, T., Sadia A., Mustafac, M., and Alsaedib, A., 2014. “MHD 
Stagnation-Point Flow of Jeffrey Fluid over a Convectively Heated 
Stretching Sheet,” Computers & Fluids, 108, 179–185.  
https://doi.org/10.1016/j.compfluid.2014.11.016  
 
Hossain, M.A., and Paul, S.C., 2001, “Free Convection from a Vertical 
Permeable Circular Cone with Non-Uniform Surface Temperature,” 
Acta Mechanica, 151,103- 114. 
 
Isaac Lare Animasaun., 2017, “ Melting Heat and Mass Transfer in 
Stagnation Point Micropolar Fluid Flow of Temperature Dependent 
Fluid Viscosity and Thermal Conductivity at Constant Vortex 
Viscosity,” J. Egyptian Mathematical Soc., 25, 79–85. 
 http://dx.doi.org/10.1016/j.joems.2016.06.007  
 
Keller, H.B., 1970. “A New Difference Method for Parabolic 
Problems,” J. Bramble (Editor), Numerical Methods for Partial 
Differential Equations, Academic Press, New York, USA 
 
 Mishra, S.R., Pattnaikand, P.K., and Dash, G.C., 2015, “Effect of Heat 
Source and Double Stratification on MHD Free Convection in a 
Micropolar Fluid,” Alexandria Eng. J., 4, 681–689. 
 http://dx.doi.org/10.1016/j.aej.2015.04.010  
 
 Molla, M.M., Paul, S.C., and Hossain, M.A.,2009, “Natural 
Convection Flow from a Horizontal Circular with Uniform Heat flux in 
Presence of Heat Generation”, Appl. Math. Model. 33, 3226–3236. 
http://dx.doi.org/10.1016/j.apm.2008.10.039  
Nagendra, N., Subba Reddy, M.V., and Jayaraj, B., 2008, “Peristaltic 
Motion of a Power-law Fluid in an Asymmetric Vertical Channel,” 
Journal of Interdisciplinary Mathematics, 11, 4, 505-519. 
http://dx.doi.org/10.1080/09720502.2008.10700577  
 
 Nasir Ali, Sami Ullah Khan, Muhammad Sajid and Zaheer Abbas, 
2016, “MHD Flow and Heat Transfer of Couple Stress Fluid Over an 
Oscillatory Stretching Sheet with Heat Source/Sink in Porous 
Medium,” Alexandria Eng. J., 55, 915–924. 
 https://doi.org/10.1016/j.aej.2016.02.018  
 
Naveed, M., Abbas, Z., and Sajid, M., 2016, “MHD Flow of Micropolar 
Fluid due to a Curved Stretching Sheet with Thermal Radiation,” J. 
Applied. Fluid Mechanics, 9, 131-138. 
https://doi.org/10.1016/j.molliq.2016.01.012  
.  
Rashad, A.M., Abbasbandy, S., and Chamkha, A.J., 2014, “Mixed 
Convection Flow of a Micropolar Fluid over a Continuously Moving 

Vertical Surface Immersed in a Thermally and Solutally Stratifyed 
Medium with Chemical Reaction,” J. Taiwan Institute of Chemical 
Engineers, 45, 2163-2169.  
http://dx.doi.org/10.1016/j.jtice.2014.07.002  
 
Rawat. S., Kapoor, S., and Bhargava, R., 2016, “ MHD Flow Heat and 
Mass Transfer of Micropolar Fluid over a Nonlinear Stretching Sheet 
with Variable Micro Inertia Density Heat Flux and Chemical Reaction 
in a Non-Darcy Porous Medium,”  J. Applied Fluid Mechanic, 9, 321-
331.  
 
Siddiqa,S., Faryad, A., Naheed Begum, A.,.Hossain, M.A.,  Hossain 
and Rama Subba Gorla., 2017, “Periodic Magneto Hydrodynamic 
Natural Convection Flow of a Micropolar Fluid with Radiation,” Int. J. 
Thermal Sciences, 111, 215-222. 
https://doi.org/10.1016/j.ijthermalsci.2016.09.002  
 
Satya Narayana, P.V., and Venkateswarlu, B., 2015, “Effects of 
Thermal Radiation on Unsteady MHD Micropolar Fluid Past a Vertical 
Porous Plate in the Presence of Radiation Absorption,” International 
Journal of Engineering Science and Computing, 6, 9, 2259-2270. 
 
Siddiqa, M.K..,  Raufb, A., Shehzadb, S.A.,  Abbasic, F.M., and 
Merajb, M.A., 2017, “ Thermally and Solutally Convective Radiation in 
MHD Stagnation Point Flow of Micropolar Nanofluid over a Shrinking 
Sheet,” Alexandria Eng. J., 4. (In Press)  
https://doi.org/10.1016/j.aej.2017.01.019  
 
Srinivas Acharya, D., and Upendar, M., 2013, “Effect of Double 
Stratification on MHD Free Convection in a Micropolar Fluid,” J. 
Egyptian Mathematical Soc., 21, 370–378. 
 http://dx.doi.org/10.1016/j.joems.2013.02.006  
 
Subba Rao, A., Nagendra, N., and Prasad, V.R., 2015, “Heat Transfer 
in a Non-Newtonian Jeffrey’s Fluid over a Non-Isothermal Wedge,” 
Procedia Engineering, 127, 775-782. 
https://doi.org/10.1016/j.proeng.2015.11.412  
 
Subba Rao, A., Prasad, V.R., Nagendra, N., Bhaskar Reddy, N., and 
Anwar Beg, O., 2016, “Non-Similar Computational Solution for 
Boundarylayer Flows of Non-Newtonian Fluid from an Inclined plate 
with Thermal Slip,” Journal of Applied Fluid Mechanics, 9(2), 795-
807. 
 
Vanita and Anand Kumar., 2016, “Numerical Study of Effect of 
Induced Magnetic Field on Transient Natural Convection over a 
Vertical Cone”, Alexandria Engineering Journal, 55, 1211-1223. 
https://doi.org/10.1016/j.aej.2016.04.007 

 


