
Frontiers in Heat and Mass Transfer (FHMT), 9, 17 (2017)
DOI: 10.5098/hmt.9.17

Global Digital Central
ISSN: 2151-8629

    1 

            

 

STEADY-STATE TRANSPORT PHENOMENA ON INDUCED MAGNETIC 

FIELD MODELLING FOR NON-NEWTONIAN TANGENT HYPERBOLIC 

FLUID FROM AN ISOTHERMAL SPHERE WITH SORET AND DUFOUR 

EFFECTS 

A. Subba Rao*a, L. Nagarajaa, b, M. Sudhakar Reddya, M. Surya Narayana Reddyb 

a Department of Mathematics, Madanapalle Institute of Technology & Science, Madanapalle, 517325, INDIA. 
b Department of Mathematics, JNTUA College of Engineering, Pulivendula,516390 ,INDIA, 

ABSTRACT 

This article investigates the theoretical steady magneto hydrodynamic heat flow of incompressible non-Newtonian Tangent Hyperbolic fluid flow 

over a sphere with Soret and Dufour effects. The governing coupled non-linear partial differential equations are reduced to non-similarity boundary 

layer equations using appropriate transformation and then solved using the finite difference Keller-Box method. The effect of various flow 

parameters on the velocity, temperature and concentration are analyzed and presented graphically. 
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1. INTRODUCTION 

Coating hydrodynamics has been an area of considerable interest since 

the monumental paper by Landau and Levich (1942) in which an 

elegant formulation was developed for the thickness of the film of a 

fluid which is deposited on a plate withdrawn vertically from a bath at 

constant velocity. This work was however confined to Newtonian 

viscous fluids. In many modern industries non-Newtonian fluids are 

encountered e.g. in polymer coating processes (Lawrence and Zhou, 

1991). Numerous researchers have therefore investigated coating 

dynamics of different stationary or rotating geometrical bodies (plates, 

cones, spheres, cylinders) with non-Newtonian liquids and have 

employed a range of mathematical constitutive equations. Jenekhe and 

Schuldt (1984) studied coating flows of power-law and Carreau fluids 

on spinning disks. Campanella et al. (1986) investigated dip coating of 

a circular cylinder in non-Newtonian power-lawfluids. Zevallos et al. 

(2005) presented a finite element simulation of forward roll coating 

flows of viscoelastic liquids using both Oldroyd-B and FENE-P models. 

These studies however ignored heat transfer which may be critical in 

certain coating systems (Mitsoulis, 1986). The diffusion of heat can 

modify polymer properties significantly (Mark, 1996). Several authors 

have therefore studied thermo fluid transport in non-Newtonian external 

coating flows.  Prasad et al. (2013) and Subba Rao et al. (2016) 

investigated computationally the momentum and heat transfer 

characteristics in external boundary layer slip flow of a viscoplastic 

fluid from a cylinder. The classical Navier–Stokes theory does not 

describe sufficiently the flow properties of polymeric fluids, colloidal 

suspensions, and fluids having certain additives. 

Transport from external surfaces of curved bodies’, e.g. vertical 

cones has also stimulated some interest in recent years. Such flows are 

of relevance to chemical engineering systems and also materials 

synthesis. Cheng (2015) studied the free convection heat transfer from a 

non-isothermal permeable cone with suction and temperature-

dependent viscosity. Sulochana et al. (2016) analyzed the momentum, 

heat and mass transfer behavior of magneto hydrodynamic flow 

towards a vertical rotating cone in porous medium with thermophoresis 

and Brownian motion effects. Cheng (2015) examined the natural 

convection heat transfer about a vertical cone embedded in a porous 

medium with isothermal wall conditions. Yih (1999) studied the effect 

of thermal radiation flux on free convection about a truncated cone. 

Gorla et al. (1986) investigated the micropolar convection boundary 

layer flow from a cone. 

An interesting model in non-Newtonian fluid mechanics is 

viscoelastic Jeffrey fluid model. This model degenerates to a 

Newtonian fluid at a very high wall shear stress. This fluid model also 

approximates reasonably well the rheological behavior of a wide range 

of industrial liquids including biotechnological detergents, 

physiological suspensions, foams, geological material, cosmetics, 

syrups, etc. Many researchers have explored a range of industrial and 

biological flow problems using the Jeffery model. Prasad et al. (2014) 

and Subba Rao et al. (2015) studied external Jeffery viscoelastic 

boundary layer flow from a circular cylinder using an implicit finite 

difference code and showed   that with increasing Deborah numbers 

there is a fall in  Nusselt number (heat transfer rate) and the skin-

friction coefficient. 

The number of researchers worked on non-Newtonian fluids. 

Examples of such fluids include coal-oil slurries, shampoo, paints, 

grease, cosmetic products, custard, and physiological liquids. The 

classical equations employed in simulating Newtonian viscous flows 

i.e. the Navier–Stokes equations fail to simulate a number of 

characteristics of non-Newtonian fluid. Recent investigations have 

implemented, Muhammad Naseer et al. (2014) analyzed the boundary 

layer flow of hyperbolic tangent fluid over a vertical exponentially 

stretching cylinder. Nadeem et al. (2015) are investigated Effects of 

nanoparticles on the peristaltic motion of tangent hyperbolic fluid 
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model in an annulus. MHD on tangent hyperbolic fluids also 

investigated M. Ali Abbas et al. (2016), Salahuddin et al. (2015), Satya 

Narayana et al. (2016). In present communication, we address the 

convective heat transfer conditions in the radiative flow of Tangent 

hyperbolic fluid in isothermal sphere. Soret and Dufour effects are 

taken into account. The effect of heat transfer in dynamics of fluid 

flows is an interesting recent area of research recently. These effects are 

turned over during study of power industry problem like nuclear waste 

disposal, energy transfer in a wet cooling tower, geothermal energy 

process etc. It is well known that the energy fluxes are yielded not only 

by the temperature gradients but also by the concentration gradients. If 

the energy fluxes (heat transfer) are made by concentration gradients, 

this phenomenon is called the diffusion-thermo or Duffer effect. On the 

other hand, mass fluxes are made by temperature gradients is called 

Soret or thermal diffusion effect. Recently the effects of Soret and 

Dufour are considered to investigate the various interesting problems, 

Qasim, et al. (2014), S. Panigrahi, et al. (2014), T. Hayat et al. (2014). 

Hereafter, the objective of this paper is to study an MHD free 

convection flow along an isothermal sphere in the presence of Soret and 

Dufour effects. The governing equations are transformed by using 

steady non-similarity transformation and the resulting dimensionless 

calculations are solved numerically using the finite difference Keller-

Box technique. The effects of various governing parameters on the 

velocity, temperature, concentration are achieved. 

 

2. NON-NEWTONIAN CONSTITUTIVE TANGENT 

HYPERBOLIC FLUID MODEL 

In the present study a subclass of non-Newtonian fluids known as the 

Tangent Hyperbolic fluid model is employed owing to its simplicity. 

The Cauchy stress tensor, in the Tangent Hyperbolic non-Newtonian 

fluid Pop, 2001, takes as follows:  [ ( ) tanh ]0

n
           

Where  is extra stress tensor,  is the infinite shear rate viscosity, 

0 is the zero shear rate viscosity,  is the time dependent material 

constant, n is power law index i.e. flow behavior index and  is define 

as: 
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We consider Eq. (1), for the case when 0  because it is not 

possible to discuss the problem for the infinite shear rate viscosity and 

since we are considering tangent hyperbolic fluid that describes shear 

thinning effects so 1. The Eq. (1) takes the form  
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The introduction of appropriate terms into the flow model is 

considered next. The resulting boundary value problem is found to be 

well-posed and permits an excellent mechanism for the assessment of 

rheological characteristics on the flow behavior. 

3. MATHEMATICAL FORMULATION 

We consider a steady, two dimensional free convective heat transfers 

along the isothermal sphere embedded in non-Newtonian Tangent 

Hyperbolic fluid. The x-coordinate (tangential) is measured along the 

surface of the sphere from the lowest point and the y-coordinate (radial) 

is directed perpendicular to the surface, with a denoting the radius of 

the sphere. ( ) sin( )r x a x a  is the radial distance from the symmetrical 

axis to the surface of the sphere. The equations for mass, momentum, 

energy and concentration can be written as follows: 
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where u and v are the velocity components in the x- and y-

directions respectively, ν=μ/ρ is the kinematic viscosity of the Tangent 

Hyperbolic fluid, β is the coefficient of thermal expansion, α  is the 

thermal diffusivity, β is the temperature, and ρ is the density of the 

fluid. The Tangent Hyperbolic fluid model therefore introduces a mixed 

derivative (second order, first degree) into the momentum boundary 

layer Eq. (2). Boundary conditions are: 

0 : 0, ,

: 0,

As y u v v T Tw w

At y u T T

    

   
               

(5)  

 

Here T
 is the free stream temperature, k is the thermal 

conductivity,
wh is the convective heat transfer coefficient, and

wT  is the 

convective fluid temperature. The stream function is defined by 
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, and therefore, the continuity equation is 

automatically satisfied.  

 

 
Fig. 1 Physical model and coordinate system 

 

 In order to render the governing equations and the boundary 

conditions in dimensionless form, the following non-dimensional 

quantities are introduced: 
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The terms are defined on nomenclature. In view of the 

transformations defined in (6). The boundary layer equations (2)-(4) are 

reduced to the following nonlinear, dimensionless partial differential 

equations for momentum, energy and concentration for the regime:
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The transformed dimensionless boundary conditions are as 

follows: 

 

0 : 0, 0, 1
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Here, primes denote the differentiation with respect to η; 
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are the non-

dimensional Soret and Dufour effects, respectively. The skin friction 

coefficient (shear stress at the sphere surface) and Nusselt number (heat 

transfer rate) can be defined using the transformations described above 

with the following expressions. 
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4. NUMERICAL SOLUTION WITH KELLER-BOX 

IMPLICIT METHOD  

 The Keller-Box implicit difference method is implemented to solve the 

nonlinear boundary value problem defined by eqns. (7)–(9) with 

boundary conditions (10).This technique despite recent developments in 

other numerical methods as elaborated by Keller, 1978. The Keller Box 

Scheme comprises four stages. 

1. Decomposition of the Nth order partial differential equation 

system to N first order equations. 

2. Finite Difference Discretization. 

3. Quasilinearization of Non-Linear Keller Algebraic Equations 

and finally. 

4. Block-tridiagonal Elimination solution of the Linearized 

Keller Algebraic Equations.  

Stage1: Decomposition of Nth order partial differential 

equation system to N first order equations 
 

Equations (6)-(7) subject to the boundary conditions (8) are first cast as 

a multiple system of first order differential equations. New dependent 

variables are introduced 

( , ) , ( , ) ,u x y f v x y f    ( , ) , ( , ) , ( , )s x y t x y p x y      (13). 

These denote the variables for velocity, temperature respectively. Now 

equations (6)-(7) are solved as a set of fifth order simultaneous 

differential equations:
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where primes denote differentiation with respect to a variable η. In 

terms of the dependent variables, the boundary conditions assume the 

form:
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Fig. 2 Keller box computational domain 

 

Stage 2: Finite Difference Discretization 

A two dimensional computational grid is imposed on the - η 

plane as sketched in Fig. 2. The stepping process is defined by: 
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The boundary conditions are: 

 

0, 1, 0, 00 0 0
n n n n n

f u s v sj j              (39)  

 

Stage 3: Quasilinearization of Non-linear Keller Algebraic 

Equations 

Assuming 
1 1 1 1 1 1 1

, , , , , ,
n n n n n n n

f u v s t p qj j j j j j j
      

to be known for 

0 ,j J  then equations (12)-(16) constitute a system of 7J+7 

equations for the solutions of 7J+7 unknowns 

, , , , , , 0,1, 2, ..., .,
n n n n n n n

f u v s t p q j Jj j j j j j j  This non-linear system of 

algebraic equations is linearized by means of Newtonian’s method as 

explained by Keller, (1978) and recently this method is frequently used 

by Subba Rao et al.(2015), (2016), (2017).  

Stage 4: Block-tridiagonal Elimination solution of linear 

Keller Algebraic Equations 
The linearized system is solved by the block-elimination method, since 

it possesses a block-tridiagonal structure. The bock-tridiagonal structure 

generated consists of block matrices. The complete linearized system is 

formulated as a block matrix system, where each element in the 

coefficient matrix is a matrix itself, and this system is solved using the 

efficient Keller-box method. The numerical results are strongly 

influenced by the number of mesh points in both directions. After some 

trials in the η-direction (radial coordinate) a larger number of mesh 

points are selected whereas in the ξ direction (tangential coordinate) 

significantly less mesh points are utilized. ηmax has been set at 15 and 

this defines an adequately large value at which the prescribed boundary 

conditions are satisfied. ξ maxis set at 3.0 for this flow domain. Mesh 

independence is achieved in the present computations. The numerical 

algorithm is executed in MATLAB on a PC. The method demonstrates 

excellent stability, convergence and consistency, as elaborated by 

Keller, 1978. 

5. RESULTS AND DISCUSSIONS 

Comprehensive solutions have been obtained and are presented in 

Tables and Figures. The numerical problem comprises independent 

variables ( , )  , dependent fluid dynamic variables ( , , )f    and 

thermo-physical and body force control parameters, 

namely , ,Pr, , , ,We m Sc M Sr Du . The following default parameter 

values, i.e., 0.3, 0.3,Pr 0.71, 0.25,We m Sc     1.0, 1.0M N   

0.08, 0.1Sr Du   ( . . 0.08)i eSr Du  are prescribed (unless otherwise 

stated). Furthermore, the influence of stream wise (transverse) 

coordinate on heat transfer characteristics is also investigated. 

Figures 3(a)-3(c) the dimensionless velocity ( )f  , 

temperature ( )  and concentration ( )  for various values of magnetic 

parameter M are shown. Fig. 3(a) represents the velocity profile for the 

different values of magnetic field parameter M . It is observed that 

velocity of the flow decreases significantly throughout the fluid domain 

with increasing values of magnetic parameter M . Application of a 

magnetic field to an electrically conducting fluid produces a kind of 
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drag-like force called Lorentz force. This force cause’s reduction in the 

fluid velocity within the boundary layer as the magnetic field opposes 

the transport phenomena. In Fig. 3(b), the temperature distribution 

increases with increasing magnetic values. The effect of Lorentz force 

on velocity profiles generated a kind of friction on the flow this friction 

in turn generated more heat energy which eventually increases the 

temperature distribution in the flow (see Fig. 3(b)). The concentration 

profile for the fluid has significant increase with increase in the 

magnetic parameter due to the temperature gradient inherent in the 

viscosity of the fluid as shown in Fig. 3(c). 

Figures 4(a)-4(c) depicts the profiles for velocity ( )f  and 

temperature ( )  and concentration ( )  for various values of the 

power law index m , It is observed that an increase in m decelerates the 

flow i.e., velocity, temperature increases. However, increasing m is 

found to decrease the concentration. 

Figures 5(a)-5(c) depict the velocity ( )f  , temperature ( )  and 

concentration ( )  distributions, rise in N clearly induces an increase in 

velocity as seen in Figure 5(a), the flow is significantly accelerated for 

N = 2.5, where once again a velocity overshoot is computed at 

intermediate distance from the cylinder ( ~ 3). For N = 0.5, 1.0, 1.5, 

2.0, 2.5, no velocity overshoot is apparent although velocities are 

increased in the regime continuously. In Figure 5(b)for positive N 

(thermal and concentration buoyancy forces assisting each other), this 

trend is reversed with a decrease in temperature i.e. cooling of the 

boundary layer regime. In Figure 5(c), a similar response for the 

concentration distribution is observed as in the case of the temperature 

distribution, with values increasing fractionally with positive N 

values. Opposing buoyancy forces (N < 0) therefore enhance species 

diffusion in the regime whereas aiding buoyancy forces (N > 0) inhibit 

species diffusion in the boundary layer. 

Figures 6(a)–6(c) depict the velocity ( )f  , temperature ( )  and 

concentration ( )  distributions for various values of Prandtl 

number Pr . It is observed that an increase in the Prandtl number 

significantly decelerates the flow i.e., velocity and temperature 

decreases. Also increasing Prandtl number is found to upturns the 

concentration. 

Figures 7(a)-7(c) depict the velocity ( )f  , temperature ( )  and 

concentration ( )  distributions for different values of Schmidt 

number Sc . It is observed that increases in Schmidt number 

significantly decelerates the flow i.e., velocity and concentration 

decreases. Also increases the Schmidt number is found that upturns the 

temperature. 

Figure 8(a)-8(c) shows the velocity ( )f  , temperature ( )  and 

concentration ( )  distributions, the influence of Weissenberg 

numberWe , on the dimensionless skin friction co-efficient 
2

(1 ) ( , 0) ( 2) ( ( , 0))m f m We f      , heat transfer rate ( , 0)   

and concentration ( , 0)   at the sphere surface. It is observed that the 

dimensionless skin friction is decreased with the increase 

inWe .Absorbed that velocity increases, temperature and concentration 

are decreases. 

Figure 9(a)-9(c) Decreasing Soret number Sr  (increasing Dufour 

number Du ) on the temperature and concentration distributions 

respectively are shown. We study the simultaneous increase (and de-

crease) of these parameters so that their product remains constant at 

0.08. Increasing Dufour number increases in temperature whereas an 

increase in Soret number cools the fluid i.e. reduces temperature, as 

observed in Figure 5a. Conversely in Figure 5b, we observe that a rise 

in Du decreases the concentration values in the boundary layer, 

whereas a rise in Soret number increases values. 

Table 1, 2&3. Document results for the influence of the Prandtl 

number (Pr)  and the Magnetic parameter ( )M and Schmidt 

number ( )Sc  on skin friction ( (0))f  heat transfer rate ( (0))  and 

Share hood number ( (0)) . It has been observed that increasing Pr 

reduces skin friction and Share hood number but increases heat transfer 

rate (Nusselt numbers). As increasing Sc is found to decrease both the 

skin friction and heat transfer rate (Nusselt number) increases Share 

hood number. Also increase the Weissenberg number We  found that 

reduces skin friction but increases heat transfer rate (Nusselt numbers) 

and Share hood number. 

Table4 shows that the comparisons of the various values of  . In 

order to verify the accuracy of our present method, we have compared 

our results with those of Merkin (1977) and Nazar (2002). 

 

Table 1 Skin-friction, Nusselt numbers Sherwood for different values of 

Pr.  

 

Pr (0)f   ( , 0) 

 

( , 0)   

1 1.1634 0.6586 0.1283 

5 1.0667 1.2563 0.0063 

7 1.0466 1.3410 -0.0309 

10 1.0253 1.6773 -0.0784 

20 0.9816 2.3586 -0.2150 

 

Table 2 Skin-friction, Nusselt numbers and Sherwood number for 

different values of Sc.  

 

Sc (0)f   ( , 0) 

 

( , 0)   

0.1 1.2036 0.5832 0.1146 

0.2 1.1893 0.5738 0.1378 

0.25 1.1838 0.5700 0.1470 

0.3 1.1790 0.5667 0.1552 

0.5 1.1646 0.5563 0.1800 

 

Table 3 Skin-friction, Nusselt numbers and Sherwood number for 

different values of We  
 

We (0)f   ( , 0) 

 

( , 0)   

0.3 1.1838 0.5700 0.1470 

1.0 1.1687 0.5729 0.1471 

2.0 1.1301 0.5777 0.1472 

3.0 1.0385 0.5838 0.1473 

 

Table 4 Values of the local heat transfer coefficient ( , 0)  for various 

values of ξ with 0.0, 0.0, 0.0We m M  
 

 

  
( , 0)   

Nazar (2002) Merkin (1977) Present results 

0
0  0.4214 0.4214 0.4215 

0
30  0.4161 0.4161 0.4159 

0
60  0.4005 0.4007 0.4008 

0
90  0.3741 0.3745 0.3749 

0
120  0.3355 0.3364 0.3363 

0
150  0.2811 0.2825 0.2834 

0
180  0.1916 0.1945 0.1950 
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(a)

(b) 

 

(c) 
 Fig. 3 Effect of M on (a) Velocity profiles (b) temperature profiles (c) 

concentration profiles 

 (a)  

 

(b) 

(c)  
Fig. 4 Effect of m on (a) Velocity profiles (b) Temperature profiles (c) 

Concentration profiles 
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(a)  

(b) 

(c) 
Fig. 5 Effect of N on (a) Velocity profiles (b) Temperature profiles (c) 

Concentration profiles 

(a) 

(b)  

(c)  
Fig. 6 Effect of Pr on (a) Velocity profiles (b) Temperature profiles (c) 

Concentration profiles 
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(a) 

 

(b)  

(c)  
Fig. 7 Effect of Sc on (a) Velocity profiles (b) Temperature profiles (c) 

Concentration profiles 

 

(a)  

(b)  

(c)  

Fig. 8 Effect of We on (a) Velocity profiles (b) Temperature profiles 

(c) Concentration profiles 
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(a) 

 

(b)  

(c) 
Fig. 9 Effect of Sr & Du on (a) Velocity profiles (b) Temperature 

profiles (c) Concentration profiles 

6. CONCLUSIONS 

Numerical solutions have been obtained for the free convection heat 

transfer boundary layer flow along isothermal sphere in the presence of 

Soret and Dufour effects, using the local non-similarity method and 

finite difference Keller-Box method. 

 

1. Increasing Weissenberg numberWe , decreases velocity, skin 

friction (surface shear stress) and heat transfer rate (Nusselt 

number), whereas increases temperature. 

2. Increasing power law index, n, increases velocity and heat 

transfer rate, for all values of radial coordinate i.e., throughout 

the boundary layer regime whereas, decreases temperature and 

skin friction. 
3. Qualitatively opposite behavior is observed for temperature and 

concentration profiles for Soret and Dufour numbers. 
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NOMENCLATURE 

C
f

 skin friction coefficient  

a  radius of the sphere 
m  power law index 

f  non-dimensional steam function 

Gr  Grashof number 

g  acceleration due to gravity 

k  thermal conductivity of fluid 

Nu  local Nusselt number 

Sr  Soret number 

Du  Dufour number 

Pr  Prandtl number  

We  Weissenberg number 

T temperature of the fluid 

( )r x  Radial distance from symmetrical axis to surface ofthe sphere 

surface of the sphere 

u, v non-dimensional velocity components along the x- and y- 

directions, respectively 

V  velocity vector x stream wise coordinate y transverse 

coordinate 
x  Stream wise coordinate 
y

 Transverse coordinate thermal diffusivity 

Greek symbols 
  thermal diffusivity  
  fluid parameter 

  local non-Newtonian parameter  

  dimensionless radial coordinate 


 dynamic viscosity 

  kinematic viscosity 

  dimensionless temperature 

  density of non-Newtonian fluid 

  dimensionless tangential coordinate 
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  dimensionless stream function 

  fluid parameter 

Subscripts  

 

W  condition at the wall 
  free stream condition 
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