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ABSTRACT 

The present work is devoted to study the numerical simulation of steady magnetohydrodynamic flow and heat transfer of an Eyring-Powell fluid over 

a stretching sheet with viscous dissipation. The fluid is taken to be two dimensional electrically conducting and the flow is induced by a stretching 

surface. The basic governing partial differential equations of non-Newtonian fluid are reduced into the coupled nonlinear ordinary differential 

equations by using similarity transformations. The resulting ordinary differential equations are then solved numerically using shooting method with 

fourth order Runge- Kutta scheme. The effects of Hartmann number, Eckert number, Grashoff number and Eyring-Powell fluid parameters on the 

velocity, temperature, skin friction and Nusselt number are analyzed graphically. The result reveals that the effects of non- Newtonian fluid 

parameters γ and β on velocity and temperature profiles are completely dissimilar. A comparison with the earlier available work shows excellent 

agreement. 
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1. INTRODUCTION

The study of dynamics of non-Newtonian fluids has been an interested 

area of current research because of its vast applications in several fields 

of science and technology. Examples of such fluids include coal-oil 

slurries, yoghurt, lubricants, toothpaste, paints, clay coating and 

suspensions, grease, physiological liquids (blood, bile, synovial fluid) 

etc. The broad usages of such fluids have encouraged modern 

researchers to explore extensively the behavior of different non-

Newtonian fluid models such as power- law model, Casson model, 

second order Reiner-Rivlin differential fluid models etc. Among these, 

the Eyring-Powell fluid model, though mathematically more complex, 

can be used in some cases to explain the behavior of polymer solutions 

and viscoelastic suspensions over a wide range of shear rates (Akbar et 

al., 2015; Chen., 1998; Grubka and Bobba., 1985; Hayat et al., 2009). 

(Hayat et al., 2013) examined the numerical analysis of magnetic field 

effects on Eyring-Powell fluid flow towards a stretching sheet. Hayat et 

al., (2013) analyzed the MHD peristaltic transport of Eyring–Powell 

fluid with slip conditions. MHD flow of Powell–Eyring fluid over a 

various flow fields has been observed by (Hina., 2016; Khan et al., 

2014). Recently, Khan et al. (2015) presented the combined effects of 

heat and mass transfer in Jeffrey fluid over a stretching sheet in the 

presence of power law form of temperature and concentration. Some 

remarkable attempts have been made to study the influence of MHD on 

various flow situations Manisha Patel., (2009); Osalusi., 2008; Powell 

and Eyring., (1944). Raju et al., (2014) analysed the influences of 

viscous dissipation and joule heating on MHD forced convective flow 

over a fixed horizontal channel.  

Many investigations were made to examine the flow over various 

flow fields under different heat and mass transfer effects (Satya 

Narayana., (2015); Satya Narayana and Harish Babu., 2016). It is 

known that the majority of  researchers (Satya Narayana et al., 2015; 

Sheikholeslami et al., 2015; Sheikholeslami et al., 2015) have been 

used analytical methods (HAM) to solve non- Newtonian flow type 

problems and these type of problems with numerical techniques are 

appears to be scant. So, a mathematical model has been proposed and 

analyzed numerically, the effect of viscous dissipation on MHD non-

Newtonian flow over a linear stretching surface. The governing system 

of partial differential equations has been transformed using the suitable 

similarity transformations into non-linear ordinary differential 

equations which are then solved by using fourth order Runge- Kutta 

method along with shooting technique.

 

The outline of the work as 

follows. In section 2 we present the mathematical formulation. The 

results and discussion are presented in section 3. Lastly, Section 4 

encloses the main inferences.

2. MATHEMATICAL FORMULATION OF THE

PROBLEM

We consider the steady laminar boundary-layer flow and heat transfer 

of an incompressible, electrically conducting non-Newtonian Eyring-

Powell fluid past a linear stretching sheet with viscous dissipation. The 

flow is generated by the action of two equal and opposite forces along 

the x- axis and the sheet is assumed to be linearly stretching. A 

Cartesian coordinate system is chosen in such a way that x-axis is along 

the stretching surface and the y-axis perpendicular to it [see Fig.1]. An 

applied magnetic field of strength B0 is encountered normal to the flow 

direction. Further it is assumed that the induced magnetic field is 

negligible due to small magnetic Reynolds numbers. The stress tensor 
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in the Eyring-Powell model for non-Newtonian fluids is given by 

(Siddiqui., 2013) 
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In which µ is the dynamic viscosity, β and C are the material fluid 

parameters. We take the second order approximation of function as 
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                     Fig. 1 Geometry of the problem 

 

  The boundary layer equations containing the continuity, linear 

momentum and energy can be written as (see Refs Hayat et al., 2013; 

Hayat et al., 2013) 
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The boundary conditions are defined by 
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      (4)  

  where u and v denote the velocity components in x- and y- directions 

respectively; T is the fluid temperature; ρ is the fluid density; μ is the 

dynamic viscosity; κ is the thermal conductivity; cp is the specific heat 

at constant pressure; g is the acceleration due to gravity; βT is the 

coefficient of thermal expansion; a, b are the constants; uw(x) is the 

velocity of stretching surface.

 
Introducing the following similarity transformations 
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Making use of transformations (5), Eqs. (2) and (3) takes the form
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The Skin friction is given by 
1
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The local Nusselt number is given by 
1
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3. RESULT AND DISCUSSION  
  

The system of coupled non-linear equations (6) and (7) with the 

boundary conditions (8) are solved numerically using the shooting 

method with fourth order Runge-Kutta scheme. In order to illustrate the 

salient features of the model, the numerical results are presented in 

Figs.2-7 and compared with the existing results. The results of this 

comparison are given in Table.1 with those of Refs. (Skelland., 1967; 

Wilkinson., 1960).  It can be seen from this table that excellent 

agreement between the results exists. The effects of Eyring–Powell 

fluid parameters γ and β on the velocity and temperature profiles are 

displayed in Figs. 2(a)–2(d) respectively. It is witnessed that 

( )f  increase with increasing values of γ and have quite reverse 

consequences on ( )  . Physically, high γ values relate to solid-like 

behavior. This is due to the occurrence of yield stress which decreases 

the velocity. These outcomes are identical as distinguished in Ref. 

(Grubka and Bobba., 1985; Hina., 2016). It is also noticed that the 

velocity of Newtonian fluid is far away from the sheet than to the non- 

Newtonian fluid. Further, an opposite behavior can be observed for 

( )f   and ( )  with the increase of β. It is also seen that the impact of β 

on ( )f   and ( )  profiles is very less. 

    Figs. 3(a)-3(b) elucidate the effect of magnetic parameter M on the 

velocity and temperature profiles. It is observed that ( )f   declines with 

rise of M along the surface. Physically, greater the Lorentz force gives 

the lesser velocity as this acts as a retarding force. On the other hand, 

( )   increase with increasing values of M. Figs. 4(a)-4(b), respectively, 

display the velocity and temperature profiles for various values of 

Eckert number Ec. It is noticed that ( )f   and ( )  increase with the 

increase of Ec. This is due to the fact that heat energy is stored in the 

liquid due to the frictional heating. Thus the effect of increasing Ec is to 

improve the temperature at any point in the thermal boundary layer. 

    The velocity and temperature distributions for different values of 

Grashoff number λ are defined in Figs. 5(a)-5(b) respectively. It is clear 

that an increase in λ leads to rise in the value of velocity due to 

enhancement in buoyancy force. Physically, λ > 0 means heating of the 

fluid by cooling the boundary surface. It is also observed that, the 

minimum velocity values are observed in the absence (λ = 0) of 

buoyancy force. On the other hand, ( )   decrease with increasing values 

of λ. Figs. 6(a)-6(b) demonstrate the deviation of skin friction and 

Nusselt number against magnetic field parameter M for different values 

of λ, respectively. It is observed that, the skin friction rises and Nusselt 

number declines with increasing of λ. In addition, it is also noted that 

the heat transfer rate decrease with increasing values of M. These 

outcomes obviously sustained from the physical point of view. 

     Figs. 7(a)-7(b) demonstrate the variation of skin friction coefficient 

and Nusselt number with M for various values of β. It is noticed that 

both skin friction coefficient and Nusselt number declines with increase 

of β. It is also hypothesized that the rise in β will increase the resistance 

of fluid motion. Hence the velocity boundary layer thickness reduces 

which results in lower values of skin friction coefficient.  
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(b) Temperature profile  
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(c) Velocity profile 
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(d) Temperature profile 

 
Fig. 2 Velocity and Temperature profiles for various values of γ and β. 
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(b) Temperature profile 

 

         Fig. 3 Velocity and Temperature profiles for various values of M 
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Fig. 4 Velocity and Temperature Profiles for various values of Ec  
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(b) Temperature profile  

 

       Fig. 5 Velocity and Temperature profile for various values of λ 
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(a) Skin friction coefficient profile 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.41.4
1.05

1.15

1.25

1.35

1.45

1.55

M

- 
 ' (

0)

=0, 0.2, 0.4, 0.6

Ec=0.5;=1.5; =0.5;
Pr=0.67

 
(b) Nusselt number profile 

 

Fig. 6 Skin friction coefficient and Nusselt Number for various values      

of λ 
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(a) Skin friction coefficient profile 
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(b)   Nusselt number profile 

 

Fig. 7 Skin friction coefficient and Nusselt Number for various values 

of β 

 

Table 1 Comparison of local Nusselt number 1
2Rex xNu

  when M=Ec= 

γ = β = λ =0 for various values of Pr. 

Pr 
Chen 

(1998) 

Grubka 

and Bobba 

(1985) 

Present 

1 1.3333 1.33334 1.33333 

3 2.5097 2.50972 2.50971 

10 4.79686 4.79690 4.79689 

 

 

4. CONCLUSIONS 

 The main investigations of present study can be summarized as 

follows. 

1. The effects of γ and β on velocity are opposite. 

2. The fluid velocity in case of Newtonian fluid is predicated 

higher than that for the case of non- Newtonian fluid and it 

decreased as γ increases.      

3. It is interesting to note that the magnitude of fluid velocity 

increases with an increase of Ec and decreases with an    

increase in Hartmann number. 

4. The temperature rises with an increasing values of M and β 

whereas opposite effect is seen by enhancing the value of λ. 

5. The skin friction coefficients as well as Nusselt number 

decrease with increasing values of β.  

6. λ shows opposite effect on skin friction coefficient and rate of 

heat transfer coefficients.  
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