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ABSTRACT

The spectral relaxation method is employed to examine natural convective heat and mass transfer, MHD flow over a permeable moving vertical plate
with convective boundary conditions in the presence of viscous dissipation, thermal radiation and chemical reaction. The governing partial differential
equations were transformed into a system of nonlinear ordinary differential equations by using a similarity approach. The resultant dimensionless
ordinary equations were numerically solved by employing an effective Relaxation spectral algorithm with Chebyshev scheme. The pertinent results
are then displayed in tabular form and graphically.
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1. INTRODUCTION

Nonlinear partial differential equations are used to describe many real
world phenomena. There is still a big challenging problem that is com-
pelling scientists and engineers to seek different methods or to improve
the existing numerical methods though great strides have been made in
trying to obtain exact or approximate solutions of these nonlinear differ-
ential equations. In the current study, we wish to employ the recently
developed method to numerically analyse the problem of heat and mass
transfer for free convection MHD flow over a permeable moving verti-
cal plate with convective boundary condition in the presence of viscous
dissipation. The application of an external magnetic field has over the
years to be a very important control mechanism in many industrial ap-
plications. MHD power generators, plasma studies, petroleum industries,
cooling of nuclear reactors, the boundary layer control in aerodynamics
and crystal growth are few important examples of magnetohydrodynamic
flow of an electrically conducting fluid over a surface [Chen (2004) and
(Damseh et al., 2006)] In areas where high temperatures are encountered,
thermal radiation effect becomes very important . These areas include,
high temperature plasmas, cooling of nuclear reactors, liquid metal flu-
ids and power generation. Shateyi (2008) analysed thermal radiation and
buoyancy effects on heat and mass transfer over a semi-infinite stretching
surface. Machireddy (2014) studied the effects of Joule heating on MHD
mixed convection boundary layer flow over a stretched vertical plate in
the presence of thermal radiation and viscous dissipation. The process of
converting mechanical energy of downward flowing water into thermal
radiation and acoustical energy is referred viscous dissipation. Carefully
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designed devices in stream beds reduce the kinetic energy of flowing wa-
ters. This is meant to reduce their erosive potential on banks and river
bottoms. (Abel et al., 2011) numerically analysed the problem of MHD
flow and heat transfer of an incompressible viscous fluid with the pres-
ence of buoyancy force and viscous dissipation. The above researchers
are restricted to either prescribed temperatures or heat flux at the wall or
slip.

Aziz (2009)) introduced the idea of using convective boundary con-
ditions which are the generalisation of isothermal and thermal slip bound-
ary conditions. Magyari (2011) found an exact solution of the problem
formulated by Aziz (2009). Ibrahim and Reddy (2013) examined steady
laminar natural convection flow over a semi-infinite moving vertical plate
with internal heat generation and convective surface boundary layer con-
dition. Abdel-Rahman (2013) carried out an analysis of the problem of
heat and mass transfer over a moving permeable flat stretching sheet in
the presence of convective boundary layer conditions. (Rashidi et al.,
2014) investigated combined heat and mass transfer by mixed convec-
tive flow along a moving flat plate with hydrodynamic slip and thermal
convective boundary conditions.

The main goal of this paper is to find numerical solutions using a
powerful technique namely, Spectral Relaxation Method (SRM) [(Motsa
et al., 2013); Motsa and Makukula (2013)] for the velocity, temperature
and concentration distributions to investigate the problem of heat and
mass transfer free convection MHD flow over a permeable moving plate
with convective boundary condition. We use a similarity transformation
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approach to transform the governing partial differential equations into a
set of nonlinear ordinary differential equations. The pertinent results are
then displayed in tabular form and graphically. Approximations of Skin
friction, the Nusselt number and Sherwood number which are very cru-
cial from engineering applications point of view are also presented in the
present study. It is hoped that the results obtained in this study will serve
as a complement to previous studies and also provide useful information
for further studies.

2. MATHEMATICAL FORMULATION

We investigate heat and mass transfer in a steady laminar two-dimensional
boundary layer flow over a permeable moving plate. We assume that the
plate is moving with a uniform velocity U0 in contact with a quiescence
cold fluid at temperature T∞ and concentrationC∞. We also assume that
the left side surface of the plate is heated by convection from a hot fluid
at temperature Tf . This in turn provides a heat transfer coefficient repre-
sented by hf . Under the Boussinesq and boundary-layer approximations,
the boundary layer governing equations are as follows:

∂u

∂x
+
∂v

∂y
= 0, (1)
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The associated boundary conditions to the current model are given
by:

u = U0, v = Vw, − κ
∂T

∂y
= hf (Tf − T ), Cf = C∞ + bx at y = 0 (5)

u −→ 0, T −→ T∞, C −→ C∞ as y −→∞. (6)

3. SIMILARITY ANALYSIS

We introduce a similarity variable η, a dimensionless stream function
f(η), a dimensionless temperature θ(η), and a dimensionless concentra-
tion φ(η) in order to transform the governing partial differential equations
into a system on nondimensional ordinary differential equations. The ex-
pressions for the dimensionless variables are as follows:

η =

√
U0

νx
y, u = U0f

′, v =
1

2

√
U0

νx
(ηf ′ − f), θ(η) =

T − T∞
Tf − T∞

,

φ(η) =
C − C∞
Cf − C∞

. (7)

The following system of ordinary equations is obtained upon substituting
the similarity variables into equations (2) - (4).

f ′′′ +
1

2
ff ′′ −Mf ′ +Grθ +Gcφ = 0, (8)(

4 + 3R

3PrR

)
θ′′ +

1

2
fθ′ + Ecf ′′2 = 0, (9)

1

Sc
φ′′ +

1

2
fφ′ − γφ = 0. (10)

The corresponding boundary conditions to the transformed equations are

f(0) = fw, f
′(0) = 1, θ(0) =

Bi
1 +Bi

, φ(0) = 1, (11)

f ′(∞) = 0, θ(∞) = 0, φ(∞) = 0. (12)

Where fw = −2x1/2Vw/U
1/2
0 ν1/2 is the suction/injection parame-

ter (fw > 0 for suction and fw < 0 for injection) andBi = hf
√
νx/κU0

is the Biot number,M is the magnetic parameter,Gr is the Grashof num-
ber and Gc is the modified Grashof number, Pr is the Prandtl number, R
is the thermal radiation parameter, Ec is the Eckert number. The quan-
tities of engineering interest in this study are the skin friction coefficient
Cf and the Nusselt number Nux.

4. METHODS OF SOLUTION

We employ the Chebyshev pseudo-spectral method known as Spectral
Relaxation Method (SRM) to solve the set of ordinary differential equa-
tions (8) - (10) together with the boundary conditions (11) and (12).
This method transforms sets of nonlinear ordinary differential into sets of
linear ordinary differential equations. We use a program written in MAT-
LAB computer language to implemented the entire computational proce-
dure. The fluid velocity, temperature, concentration, local skin friction
coefficient, local Nusselt and Sherwood numbers are determined from
these numerical computations. The SRM algorithm starts with the as-
sumption of having a system of m non-linear ordinary differential equa-
tions in m unknowns functions, zi(η), i = 1, 2, .....,m where η ∈ [a, b]
is the independent variable. To solve the resultant iterative scheme, we
then use the Chebyshev pseudo-spectral method. The details of the spec-
tral methods can be found in [(Canuto et al., 1988), Trefethen (2000)].
Before applying the spectral method, the domain on which the govern-
ing equation is defined is transformed to the interval [-1,1] on which the
spectral method can then be implemented. We use the transformation
η = (b− a)(τ + 1)/2 to map the interval [a,b] to [-1,1].

To apply the SRM on the nonlinear ordinary differential equations,
we first set f ′(η) = g(η) and then write the equations as the following
set of equations:

f ′ = g, (13)

g′′ +
1

2
fg′ −Mg +Grθ +Gcφ = 0, (14)(

3 + 4R

Pr

)
θ′′ +

1

2
fθ′ + Ecg′2 = 0, (15)

φ′′ +
1

2
fφ′ − γφ = 0, (16)

and the boundary conditions become

f(0) = fw, g(0) = 1, θ′(0) = −Bi(1− θ(0)), φ(0) = 1,

g(∞) = 0, θ(∞) = 0, φ(∞) = 0. (17)

In view of the SRM, we obtain the following iterative scheme:

f ′r+1 = gr, fr+1(0) = fw, (18)

g′′r+1 +
1

2
fr+1g

′
r+1 −Mgr+1 = Grθr −Gcφr,

gr+1(0) = 1, gr+1(∞) = 0, (19)(
3 + 4R

Pr

)
θ′′r+1 +

1

2
fr+1θ

′
r+1 = −Ecg′2r+1,

θr+1(0) =
Bi

1 +Bi
, θr+1(∞) = 0, (20)

1

Sc
φ′′r+1 +

1

2
fr+1φ

′
r+1 − γφr+1 = 0,

φr+1(0) = 1, φr+1(∞) = 0. (21)

The above equations form a system of linear decoupled equations which
can be solved iteratively for r = 1, 2, .., starting from initial
guesses/approximations (g0(η), θ0(η), φ0(η)).
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Applying the Chebyshev pseudo-spectral method on (18) - (21)
we obtain

A1fr+1 = B1, fr+1(τN̄ ) = fw, (22)

A2gr+1 = B2, gr+1(τN̄ ) = 1, gr+1(τ0) = 0, (23)

A3θr+1 = B3, θr+1(τN̄ ) =
Bi

1 +Bi
, θr+1(τ0) = 0, (24)

A4φr+1 = B4, φr+1(τN̄ ) = 1, φr+1(τ0) = 0, (25)

where

A1 = D, B1 = gr,

A2 = D2 + diag[
1

2
fi+1]D−MI, B2 = −Grθr −Gcφr,

A3 =

(
3 + 4R

Pr

)
D2 + diag[

1

2
f
i+1

, B3 = −Ecg′2r+1,

A4 = D2 + diag[
1

2
f
i+1

]D, B4 = 0,

where I is the identity matrix of size (N̄ + 1) × (N̄ + 1), f , g, φ and
θ are the values of f , g, φ and θ respectively, when evaluated at the grid
points. Equations (22) - (25) constitute the SRM scheme. The initial
approximation required to start the iterative process is

g0(η) = fw + 1− e−η, θ0(η) =
Bi

1 +Bi
e−η, φ0(η) = e−η. (26)

which are randomly chosen functions that satisfy the boundary condi-
tions. The iteration is repeated until convergence is achieved. The con-
vergence of the SRM scheme is defined in terms of the infinity norm as

Er = Max(||fr+1 − fr||; ||gr+1 − gr||; ||θr+1 − θr||; ||φr+1 − φr||).
(27)

Accuracy of the scheme is established by increasing the number of col-
location points N until the solutions are consistent and further increases
do not change the value of the solutions.

5. RESULTS AND DISCUSSION

We numerically solved the system of ordinary differential equations (8)
to (10) subject to the boundary conditions (11) to (12) by using spectral
relaxation method (SRM). This is a recently developed method and de-
tails of the method are found in Motsa et al (2013). The SRM results
presented in this work were obtained using N = 50 collocation points.
The convergence was achieved after as few as five iterations. We take
30 to be the infinity value η∞. We use the following default values for
the parameters, Pr = 0.71,M = 1, Gr = Gc = 0.5, R = 1, Ec =
0.2, γ = 0.1, fw = 1, Bi = 0.1, Sc = 0.22.

Table 1 displays the results generated by SRM compared to those
generated by the bvp4c method. When varying the suction/injection pa-
rameter (fw) for the skin friction coefficient. We see that the SRM results
are exactly the same to those produced by the bvp4c method. But we re-
mark that the SRM converges much faster than the bvp4c method. We
observe in Table 1 that the skin friction coefficient |f ′′(0)| increases as
fluid is injected into the flow system but decreases with suction. Table 2
displays the influence of the Biot number, magnetic parameter, thermal
Grashof number, Eckert number as well as the chemical reaction param-
eter on the skin friction, Nusselt number and the Sherwood number. In-
creasing the values of the Biot number leads to the reduction of the skin
friction but increases the rate of heat transfer but has little effect on the
Sherwood number. We also observe in this table that the skin friction
is greatly reduced with increasing values of the magnetic parameter as
well as increasing values of the chemical reaction parameter. However,
increasing values of the thermal Grashof number, as well as the Eckert
number lead to reduced values of the skin friction. The Nusselt number is
reduced by respectively, increasing values of the magnetic field parame-
ter, thermal Grashof number, thermal radiation, chemical reaction as well

as Eckert number. The Sherwood number is greatly reduced by increas-
ing values of the magnetic parameter, but increases with increasing values
of the chemical reaction parameter.

Table 1 Comparison of skin friction coefficient, Nusselt number the Sher-
wood number for different values of fw.

bvp4c Present

fw −f ′′(0) −f ′′(0)

-1 1.28286170 1.28286170
-0.5 1.38287145 1.38287145
0 1.49181813 1.49181813
0.5 1.60996131 1.60996131

Table 2 Values of skin friction coefficient and Nusselt Number and the
Sherwood number for different values of selected parameters

Bi M Gr Ec γ −f ′′(0) −θ(0) −φ(0)

0.1 1.17648434 0.02296360 0.3624096
0.2 1.14330592 0.05538486 0.3673157
0.3 1.11538040 0.08302899 0.3683031
0.4 1.09154929 0.10687331 0.3697321

0.5 0.72776021 0.11615534 0.3780081
1 1.09154928 0.10687331 0.3657582
3 1.96846334 0.08393311 0.3428451
5 2.52994777 0.07060280 0.3323940

0.0 1.09348590 0.12042807 0.36566480
0.2 1.08961835 0.09339418 0.36586812
0.4 1.08577332 0.06666081 0.36608719
0.0 1.11487871 0.06027164 0.36350618
0.5 1.09524439 0.04769565 0.36562721
1.0 1.07223341 0.03511602 0.36737067

0 1.05912259 0.04465894 0.31903909
1 1.17757295 0.02196190 0.62551055
3 1.25379170 0.00832897 0.95182726

Figure 1 illustrates the influence of the magnetic field M on the ve-
locity distribution. We observe in this figure that increasing values of M
reduces the velocity profiles. This is because the application of a trans-
verse magnetic field to an electrically conducting fluid physically gives
rise to a resistive-type force called the Lorentz force. This force then
slows down the motion of the fluid thereby delaying the transition of a
laminar flow to a turbulent flow. Therefore an application of a controlled
magnetic field can be used as a stabilising mechanism. We display the
effect on the Biot number on the fluid velocity on Figure 2. Values if
the Biot number greater than 0.1 imply that the heat convection away
from the surface is much faster that the heat inside the body. This in turn
gives rise to high temperature gradients. This physically explains why
the velocity profiles increase with increasing values of the Biot number
as can be clearly observed in Figure 2. Figure 3 shows the influence of
suction/injection on the velocity profiles. Injecting/blowing (fw < 0)
fluid into flow system causes the fluid velocity to increase. This in turn
increases the velocity boundary layer thickness. This then accelerates the
transition of a laminar boundary layer flow to a turbulent flow. However,
opposite effects are experienced when suction is applied to the flow sys-
tem. Figure 4 illustrates the influence of the thermal Grashof number on
the velocity distribution. As expected the fluid velocity also increases as
the values of the Grashof number increase.

Figure 5 displays the effect of the chemical reaction on the fluid
velocity profiles. Velocity profiles are reduced as the values of the chem-
ical reaction parameter increases. The influence of the Biot number on

3



Frontiers in Heat and Mass Transfer (FHMT), 9, 7 (2017)
DOI: 10.5098/hmt.9.7

Global Digital Central
ISSN: 2151-8629

0 5 10 15
0

0.2

0.4

0.6

0.8

1

η

f
′ (
η
)

M=0,1,2,3 

Fig. 1 The influence of the magnetic parameter on the dimensionless ve-
locity profiles
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Fig. 2 The effect Biot number on the dimensionless velocity profiles
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Fig. 3 The influence of the suction/injection parameter on the dimension-
less velocity profiles

the temperature distribution is depicted on Figure 6. Mathematically, in-
creasing the values of the Biot number implies that the convective heat
transfer coefficient increases thereby enhancing more heat transfer from
the surface. This then causes the fluid to heat up thus increasing the fluid
temperature. Figure 7 displays the effect of the Eckert number on the
temperature distribution, As expected we observe in Figure 7 that the
temperature profiles greatly increase as the values of the Biot number in-
crease. Physically, increasing the values of the Eckert number generates
heat in the fluid due to frictional heating. Thus the effect of increasing
Ec is to enhance the temperature at any point as can be clearly observed
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Fig. 4 The varation of the thermal buoyancy number on the dimensionless
velocity profiles

in Figure 7. The influence the Prandtl number on the temperature dis-
tribution is depicted on Figure 8. We observe the effect of the Prandtl
number on the temperature distribution. It can be clearly observed that
the temperature as well as the thermal boundary layer rapidly decrease
with increasing values of the Prandtl number.
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Fig. 5 The influence of the chemical reaction parameter on the dimen-
sionless velocity profiles
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Fig. 6 The influence of the Biot number on the dimensionless temperature
profiles

Figure 9 displays the effect of thermal radiation on the temperature
distribution. It is observed from this figure that as the values of R in-
crease, the temperature profiles increase. Figure 10 shows the influence
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Fig. 7 The influence of the Eckert number on the dimensionless tempera-
ture profiles
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Fig. 8 Variation of the Prandtl number on the dimensionless velocity pro-
files

of suction/injection on the concentration profiles. We observe in Figure
10 that the concentration decreases as the suction parameter increases
but increases as the injection parameter increases. It can be clearly seen
that the concentration of the fluid decreases with increasing values of γ.
The variation of the chemical reaction on the concentration profiles is de-
picted on 11. It can be clearly seen that the concentration of the fluid
decreases with increasing values of γ. Lastly Figure 12 depicts the effect
of the Schmidt number on the concentration profiles. We see from this
Figure 12 that the concentration boundary layer thickness decreases as
the Schmidt number Sc increases. This is because as Sc increases, the
concentration becomes heavier.

6. CONCLUSIONS

We employed the spectral relaxation method to study the problem of heat
and mass transfer for natural convection MHD flow over a permeable
moving vertical plate with convective boundary condition in the presence
of viscous dissipation, thermal radiation and a uniform chemical reac-
tion. We transformed the governing partial differential equations into a
system of nonlinear ordinary differential equations using a suitable sim-
ilarity transformations. The resultant dimensionless ordinary equations
were numerically solved by employing an effective Relaxation spectral
algorithm with Chebyshev scheme. The velocity was found to increase
with increasing values of the Biot number, buoyancy parameters, injec-
tion parameter and thermal radiation but decreases with increasing values
of the magnetic parameter, suction, chemical reaction, Prandtl/Schmidt
numbers. The fluid temperature increases with increasing values of the
Biot number, Eckert number, radiation parameter and magnetic parame-
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Fig. 9 The influence of the thermal radiation parameter on the dimension-
less temperature profiles
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Fig. 10 Variation of suction/injection on the concentration profiles.
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Fig. 11 Variation of chemical reaction parameter on the concentration
profiles.

ter but decreases with increases values of the Prandtl number, buoyancy 
parameter and suction. Chemical reaction was found to greatly reduce 
the fluid concentration.
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NOMENCLATURE

B magnetic field of constant strength
Bi Biot number
C concentration
Cf fluid concentration
cp heat capacity at constant pressure
C∞ free concentration
Ec Eckert number
f(η) dimensionless stream function
g acceleration due to gravity
Gr Grashof number
Gc modified grashof number
hf heat transfer coefficient
kr chemical reaction reaction parameter
Nu local Nusselt number
Pr Prandtl number
(x, y) cartesian coordinates along and normal to the plate
(u, v) velocity components along x− and y− axes
U0 plate velocity
T temperature
Tf the convective fluid temperature below the moving sheet
T∞ free stream temperature
Greek Letters
α thermal diffusivity of the porous medium
βT volumetric thermal expansion coefficient
βC volumetric solutal expansion coefficient
ρ fluid density
σ electrical conductivity
η similarity variable
µ coefficient of viscosity
ν kinematic viscosity
θ dimensionless temperature
φ dimensionless concentration
γ chemical reaction parameter
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