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ABSTRACT 

In this article, we investigate the nonlinear steady state boundary layer flow and heat transfer of an incompressible Jeffery non-Newtonian fluid from 

a permeable horizontal isothermal cylinder. The transformed conservation equations are solved numerically subject to physically appropriate 

boundary conditions using a versatile, implicit, finite-difference technique. The numerical code is validated with previous studies. The influence of a 

number of emerging non-dimensional parameters, namely with Deborah number (De), surface suction parameter (S), Prandtl number (Pr), ratio of 

relaxation to retardation times (λ) and dimensionless tangential coordinate (ξ) on velocity and temperature evolution in the boundary layer regime are 

examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. It is found 

that the velocity is reduced with increasing Deborah number whereas temperature is enhanced. Increasing λ enhances the velocity but reduces the 

temperature. The heat transfer rates is found to be depressed with increasing Deborah number, De, and enhanced with increasing λ.  Local skin 

friction is found to be decreased with a rise in Deborah number whereas it is elevated with increasing values of relaxation to retardation time ratio 

(λ). Increasing suction decelerates the flow and cools the boundary layer i.e. reduces temperatures. With increasing tangential coordinate, the flow is 

also decelerated whereas the temperatures are enhanced. The simulation is relevant to polymer coating thermal processing. Polymeric enrobing flows 

are important in industrial manufacturing technology and process systems. Such flows are non-Newtonian.  Motivated by such applications, we did 

the present problem. 

Keywords: Non-Newtonian fluid; polymers; finite difference numerical method; heat transfer; boundary layers; enrobing flows, skin friction;  

Deborah number; suction.
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1. INTRODUCTION 

Polymeric flows are generally non-Newtonian in nature. In coating 

applications, fluid mechanics and heat transfer play a key role in 

determining the constitution of manufactured polymers Middleman 

(1997). In dip coating processes for example the surface to be coated is 

first immersed in a polymer and then steadily withdrawn Roy (1971). 

Since polymers have high viscosity levels, industrial 

chemical/manufacturing flow processes exploiting such fluids are 

generally laminar in nature Baaijens et.al (1997). The rheological nature 

of polymers also necessitates more sophisticated mathematical models 

for describing shear stress-strain relationships Otsuki (1999). Important 

characteristics include relaxation, retardation, viscoelasticity and 

elongational viscosity. A number of theoretical and computational 

studies have been communicated on transport phenomena from 

cylindrical bodies, which frequently arise in polymer processing 

systems. These Newtonian studies were focused more on heat transfer 

aspects and include Eswara and Nath Eswara and Nath (1992), Rotte 

and Beek (1962), and the pioneering analysis of Sakiadis (1961). 

Further more recent studies examining multi-physical and chemical 

transport from cylindrical bodies include Zueco et al. (2009, 2011). An 

early investigation of rheological boundary layer heat transfer from a 

horizontal cylinder was presented by Chen and Leonard (1972), who 

considered the power-law model and demonstrated that the transverse 

curvature has a strong effect on skin friction at moderate and large 

distances from the leading edge of the boundary layer. Lin and Chen 

(1979) also studied axisymmetric laminar boundary-layer convection 

flow of a power-law non-Newtonian fluid over both a circular cylinder 

and a spherical body using the Merk-Chao series solution method. Pop 

et al. (1990) simulated numerically the steady laminar forced 

convection boundary layer of power-law non-Newtonian fluids on a 

continuously moving cylinder with the surface maintained at a uniform 

temperature or uniform heat flux. Further non-Newtonian models 

employed in analyzing convection flows from cylinders include 

micropolar liquids chang (2006), viscoelastic materials Anwar et.al 

(2008) and Kasim et.al (2011), micro polar nanofluids Rehman and 

Nadeem (2011) and Casson fluids Prasad et.al (2012). One subclass of 

non-Newtonian fluids known as the Jeffery fluid Saasen and Hassager 

(1991) is particularly useful owing to its simplicity. This fluid model is 

capable of describing the characteristics of relaxation and retardation 

times, which arise in complex polymeric flows. Furthermore, the 

Jeffrey type model utilizes time derivatives rather than convected 

derivatives, which make it more amenable for numerical simulations. 

Recently the Jeffery model has received considerable attention. 

Interesting studies employing this model include peristaltic 

magnetohydrodynamic non-Newtonian flow by Kothandapani and 

Srinivas (2008), MHD Free Convection Flow over an Exponentially 

Moving Vertical Plate by Srinivasa Raju et al.,(2016), variable-

viscosity peristaltic flow Nadeem and Akbar (2009), convective-

radiative flow in porous media Hayat et.al (2012) and stretching sheet 

flows by Hayat and Alsaedi (2012) and Nadeem et.al (2011). 
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      The objective of the present paper is to investigate the laminar 

boundary layer flow and heat transfer of a Jeffery non-Newtonian fluid 

from a horizontal cylinder. The non-dimensional transport equations 

with associated dimensionless boundary conditions constitute a highly 

nonlinear, coupled two-point boundary value problem. Keller’s implicit 

finite difference “box” scheme is implemented to solve the problem. 

The effects of the emerging thermophysical parameters, namely Prandtl 

number, Deborah number, ratio of relaxation to retardation times and 

transpiration (wall suction or injection) on the momentum and heat 

transfer characteristics are studied. The present problem has to the 

authors’ knowledge not appeared thus far in the scientific literature and 

is relevant to polymeric manufacturing processes. 

 

2.  MATHEMATICAL MODEL 
 

Laminar incompressible boundary layer flow and heat transfer 

under thermal buoyancy force, from a horizontal permeable cylinder to 

a Jeffery rheological fluid is examined, as illustrated in Figure 1. Both 

the cylinder and the Jeffery fluid are maintained initially at the same 

temperature. Instantaneously they are raised to a temperature
wT ,T  

where the latter (ambient) temperature of the fluid is sustained constant. 

The x-coordinate (tangential) is orientated along the circumference of 

the horizontal cylinder from the lowest point and the y-coordinate 

(radial) is directed perpendicular to the surface, with a denoting the 

radius of the horizontal cylinder. Ф=x/a represents the angle of the y-

axis with respect to the vertical (0≤Ф≤π). The gravitational acceleration 

g, acts vertically downwards. The Boussineq approximation holds i.e. 

density variation is only experienced in the buoyancy term in the 

momentum equation. The Cauchy stress tensor, S, of a Jeffrey non-

Newtonian fluid [24] takes the form: 

1, ( )
1

p


  


    


T I S S                                                 (1) 

          where a dot above a quantity denotes the material time derivative, 

p is pressure, I is the identity tensor,  is dynamic viscosity, λ is the 

ratio of relaxation to retardation times, λ1 is the retardation time and   

is the shear rate. The Jeffery model provides an elegant formulation for 

simulating retardation and relaxation effects arising in polymer flows. 

Introducing the boundary layer approximations, and incorporating the 

stress tensor for a Jeffery fluid in the momentum equation (in 

differential form) the conservations equations take the form:  

      
Fig. 1 Physical model and coordinate system 

 

0
u v

x y

 
 

 
                                                                                       (2)

 

2 3 2 2 3

1
2 2 2 3

( )sin

 
1

u u x
u v g T T

x y a

u u u u u u u
u v

x y x yy x y y y



   
     

   

         
                    

          (3) 

2

2
p

T T k T
u v

x y c y

  
 

   
                                                             (4) 

The Jeffery fluid model therefore introduces a number of mixed 

derivatives into the momentum boundary layer equation (3) and in 

particular two third order derivatives, making the system an order 

higher than the classical Navier-Stokes (Newtonian) viscous flow 

model. The non-Newtonian effects feature in the shear terms only of 

eqn. (3) and not the convective (acceleration) terms. The final term on 

the right hand side of eqn. (3) represents the thermal buoyancy effect 

(free convection) and couples eqn. (3) to the energy equation (4). 

Viscous dissipation effects are neglected in the model. In eqns. (2)-(4) 

u  and v designate velocity components in the x  - and y - directions 

respectively, 





is the kinematic viscosity of the Jeffery fluid,   is 

the coefficient of thermal expansion,  is the thermal diffusivity,T  is 

the temperature, k is the thermal conductivity of the Jeffery fluid, ρ is 

the density of the Jeffery fluid, cp is the specific heat at constant 

pressure, and all other parameters have been defined earlier. The 

appropriate boundary conditions are imposed at the cylinder surface and 

in the free stream (edge of the boundary layer) and take the form: 

At 0, 0, ,w wy u v V T T                                 
 

As , 0, 0,y u v T T                                   (5)
 

wV denotes the uniform transpiration (blowing or suction) velocity at 

the surface of the permeable cylinder. To transform the boundary value 

problem to a dimensionless one, we introduce a stream function   

defined by the Cauchy-Riemann equations, u
y





and v
x


 


, and 

therefore, the mass conservation eqn. (2) is automatically satisfied. 

Furthermore, the following dimensionless variables are introduced into 

eqns. (2)-(4) and (5):  
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Where  is the non-dimensional tangential coordinate, is the non-

dimensional radial coordinate, f is dimensionless stream function, Pr is 

the Prandtl number, S is the wall transpiration parameter (S> 0 for 

suction and S< 0 for injection, the case of an impermeable cylinder is 

retrieved for S = 0), Gr is the Grashof number and De is the Deborah 

number characterizing the fluidity of the material (viscoelasticity). The 

resulting momentum and thermal boundary layer equations take the 

form: 
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         The location,  0, corresponds to the vicinity of the lower 

stagnation point on the cylinder, an aspect discussed in more detail 

subsequently. The corresponding non-dimensional boundary conditions 

for the collectively sixth order, multi-degree partial differential equation 

system defined by eqns. (7), (8) assume the form: 
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         Here primes denote the differentiation with respect to .The skin-

friction coefficient (shear stress at the cylinder surface) and Nusselt 

number (heat transfer rate at the cylinder surface) can be defined using 

the transformations described above with the following expressions: 
            

 
 

3/41
( ,0)

2
fGr C f                                                                      (10)                              

1/4 ( ,0)Gr Nu                                                               (11) 

3. COMPUTATIONAL SOLUTION WITH 

KELLER BOX IMPLICT METHOD 

          In Purely analytical solutions for the boundary value problem 

defined by eqns. (7), (8) and conditions (10) are extremely difficult, if 

not intractable. A computational solution is therefore developed using a 

versatile and stable finite difference algorithm based on Keller’s box 

method Keller (1970). This implicit method has been implemented 

extensively in non-Newtonian fluid mechanics simulations for a variety 

of different rheological models. Hossain et al. (1970) used a power-law 

model and Keller’s scheme to study free convection boundary layers 

from a slotted vertical plate. Javed et al. (2013) employed the Eyring-

Powell rheological model and the Keller box method to simulate 

stretching sheet boundary layer flow. Beg et al. (2001) used Keller’s 

box algorithm to study magneto-viscoelastic natural convection from a 

wedge in porous media. Further nonlinear thermal convection studies 

using Keller’s box method include Vajravelu et al. (2012), Bég et al. 

(2011). The present code has received extensive validation in previous 

studies, as described in Subbarao et.al (2016) and therefore confidence 

is high in the accuracy of computations. 

The fundamental steps of the Keller Box Scheme are as follows: 

1) Reduction of the Nth order partial differential equation system to N 

first order equations 

2) Finite Difference Discretization 

3) Quasilinearization of Non-Linear Keller Algebraic Equations 

4) Block-tridiagonal Elimination of Linear Keller Algebraic Equations. 
 

Step 1: Reduction of the Nth order partial differential equation 

system to N first order equations 
 

          New variables are introduced to Eqns. (7) – (8) and (9), to render 

the boundary value problem as a multiple system of first order 

equations. A set of six simultaneous first order differential equations are 

therefore generated by introducing the new variables u, v, q and t: 
 

f u                                                                                             (12a)                                                                          

u v                                                                                             (12b) 

v q                                                                                               (12c) 

t                                                                                               (12d)
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where primes denote differentiation with respect to  .  In terms of the 

dependent variables, the boundary conditions become: 
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Fig.2 Keller Box element and boundary layer mesh 

 

Step 2: Finite Difference Discretization 
        A two dimensional computational grid is imposed on the -η 

plane as sketched in Fig. 2. The stepping process is defined by: 
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Where kn and hj denote the step distances in the ξ and η directions 

respectively. 
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The resulting finite-difference approximation of equations (12a) – (12f) 

for the mid-point  1/2 , n

j  , take the form: 
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The boundary conditions are 
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Step 3: Quasilinearization of Non-Linear Keller Algebraic Equations 

        Assuming 
1 1 1 1 1 1

1 1 1 1 1 1, , , , , ,n n n n n n

j j j j j jf u v q s t     

     
to be known 

for 0 j J  , then Eqns. (16a) – (16f) constitute a system of 6J+6 

equations for the solution of 6J+6 

unknowns , , , , , ,n n n n n n

j j j j j jf u v q s t , j = 0, 1, 2 …, J. This non-

linear system of algebraic equations is linearized by means of 

Newton’s method as explained in Subba Rao et.al. (2015, 2016, 2017). 
 

Step 4: Block-tridiagonal Elimination of Linear Keller Algebraic 

Equations 
 

         The linear system (15a) – (15f) can now be solved by the block-

elimination method owing to its block-tridiagonal structure. The bock-

tridiagonal structure generated consists of block matrices. The complete 

linearized system is formulated as a block matrix system, where each 

element in the coefficient matrix is a matrix itself, and this system is 

solved using the efficient Keller-box method. The numerical results are 

strongly influenced by the number of mesh points in both directions. 

After some trials in the η-direction (radial coordinate), a larger number 

of mesh points are selected whereas in the ξ-direction (tangential 

coordinate) significantly less mesh points are necessary. max has been 

set at 10 and this constitutes an adequately large value at which the 

prescribed boundary conditions are satisfied. max is set at 3.0 for the 

simulations. Mesh independence has been comfortably attained in the 

simulations. The numerical algorithm is executed in MATLAB. 

 

4. RESULTS AND DISCUSSION 
 

         Comprehensive solutions have been obtained and are presented in 

Tables 1 and 2 and Figs. 3-7. Table 1 presents the influence of 

increasing Prandtl number on skin friction and heat transfer rate, along 

with a variation in the parameter (λ), ratio of relaxation and retardation 

times and transverse coordinate (). With increasing Prandtl number, 

the skin friction is generally decreased, whereas heat transfer rate is 

markedly enhanced. Heat transfer rate is maximized at the lower 

stagnation point ( =0), for any value of Prandtl number or rheological 

parameter (). With an increase in , both skin friction and heat transfer 

rates are increased. This implies that as the relaxation time is reduced 

(and the retardation time increased) the polymer flows faster and 

transfers heat more efficiently from the cylinder surface. This appears 

consistent with other studies Hayat et.al. (2012). in table 1, S is positive 

corresponding to wall suction. 

 

Table: 1 Values of ( ,0)f   and ( ,0)   and different values of λ, Pr 

and ξ (De = 0.1,S = 0.5) 

 

^ 
 

Pr 

ξ =0.0          ξ=0.5         ξ =1.0  

( ,0)   ( ,0)f   ( ,0)   ( ,0)f   ( ,0)   

 

 

 

0.0 

0.5 0.7560 0.4233 0.4159 0.8145 0.4960 

0.7 0.9422 0.3931 0.4901 0.7480 0.6116 

1.0 1.2142 0.3564 0.5890 0.6671 0.7843 

2.0 2.1272 0.2749 0.8379 0.4875 1.3844 

5.0 5.0300 0.1601 1.1561 0.2420 3.6022 

7.0 7.0147 0.1236 1.1563 0.1664 5.3749 

 

 

 

0.5 

0.5 0.7774 0.5696 0.4315 1.1081 0.5090 

0.7 0.9672 0.5313 0.5113 1.0228 0.6272 

1.0 1.2422 0.4846 0.6169 0.9186 0.8018 

2.0 2.1541 0.3798 0.8884 0.6851 1.3966 

5.0 5.0405 0.2277 1.2787 0.3564 3.5334 

7.0 7.0205 0.1770 1.3203 0.2505 5.2395 

 

        Table 2 presents the influence of increasing Deborah number 

parameter, Deon skin friction and heat transfer rate, along with a 

variation in the suction parameter, S and transverse coordinate, . With 

increasing Deborah number, the skin friction is generally decreased, 

and heat transfer rate is also decreased. This trend is sustained for all 

values of transverse coordinate. An increase in suction (S> 0) reduces 

skin friction at higher values of the transverse coordinate, for any value 

of Deborah number. Further from the vicinity of the lower stagnation 

point, therefore the polymer flow is decelerated with suction. However, 

at lower values of transverse coordinate, suction slightly accelerates the 

flow for all Deborah numbers. In the vicinity of the lower stagnation 

point, 0 and the boundary layer equations eqns. (7) to (8) contract to 

a system of ordinary differential equations: 

 

Table: 2 Values of ( ,0)f   and ( ,0)   and different values of S, 

De and ξ (λ = 0.2, Pr = 0.71) 

 

S 

 

De 

ξ =0.0             ξ =0.5          1.0   

( ,0)   ( ,0)f   ( ,0)   ( ,0)f   ( ,0)   

 

 

 

0.1 

0.1 0.6323 0.3846 0.3947 0.8681 0.4158 

0.2 0.6269 0.3826 0.3947 0.8632 0.4134 

0.3 0.6217 0.3798 0.3926 0.8585 0.4113 

0.4 0.6166 0.3769 0.3913 0.8541 0.4092 

0.5 0.6118 0.3739 0.3899 0.8496 0.4072 

 

 

 

0.5 

0.1 0.9629 0.4488 0.5035 0.8583 0.6247 

0.2 0.9481 0.4397 0.5028 0.8005 0.6247 

0.3 0.9365 0.4249 0.5000 0.7570 0.6172 

0.4 0.9269 0.4091 0.4967 0.7206 0.6118 

0.5 0.9187 0.3938 0.4933 0.6890 0.6076 

 

 2 21
0

1 1

ivDe
f f ff ff f 

 

 
         

  
                  (20) 

0
Pr

f





 

                                                                                  

(21) 
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since
sin


 0/0  i.e. 1, so that 

sin


. At the upper stagnation 

point, . 

 
(a) 

 

(b) 
Fig. 3 Effect of De on (a) velocity profiles (b) temperature profiles 
 

 In Figures 3(a)–3(b), the evolution of velocity and temperature 

functions with a variation in Deborah number, De, is depicted. 

Dimensionless velocity component (fig. 3a) is considerably reduced 

with increasing De near the cylinder surface and for some distance into 

the boundary layer. De clearly arises in connection with some high 

order derivatives in the momentum boundary layer equation, (7) i.e. 

2[ ]
1

ivDe
f ff


 


and also 

1

ivDe f f f f
f f f f

    

        
       

      
. 

It therefore is intimately associated with the shearing characteristics of 

the polymer flow. For polymers, larger De values imply that the 

polymer becomes highly oriented in one direction and stretched. 

Generally, this arises when the polymer takes longer to relax in 

comparison with the rate at which the flow is deforming it. When such 

fluids are stretched, there is a delay in their return to the unstressed 

state. For very large Deborah numbers, the fluid movement is too fast 

for elastic forces to relax and the material then acts like a purely elastic 

solid. Large Deborah numbers are therefore not relevant to the present 

simulations. For small Deborah numbers, the time scale of fluid 

movement is much greater than the relaxation time of elastic forces in 

the polymer and the polymer then behaves as a simple viscous fluid, as 

elaborated by Bég and Makinde (2011). Vrentas et al. (1975) have also 

indicated that the Deborah number can be utilized in characterizing 

diffusional transport in amorphous polymer-solvent systems. Further 

from the cylinder surface, we observe that there is a slight increase in 

velocity i.e. the flow is accelerated with increasing Deborah number. 

With greater distance from the solid boundary, the polymer is therefore 

assisted in flowing even with higher elastic effects. Clearly, the 

responses in the near-wall region and far-field region are very different. 

In fig. 3b, an increase in Deborah number is seen to considerably 

enhance temperatures throughout the boundary layer regime. This has 

also been observed by Hayat et al. (2012). Although De does not arise 

in the thermal boundary layer equation (8), there is a strong coupling of 

this equation with the momentum field via the convective terms 

f





 
 
 

and
f

 


 
 
 

. Furthermore the thermal buoyancy force 

term,
sin




 , in the momentum equation (7) strongly couples the 

momentum flow field to the temperature field. With greater elastic 

effects, it is anticipated that thermal conduction plays a greater role in 

heat transfer in the polymer. Thermal boundary layer thickness is also 

elevated with increasing Deborah number. 

 

(a) 
 

 
 

(b) 

Fig.4 Effect of   on (a) velocity profiles (b) temperature profiles 
 

        Figures 4(a) - 4(b) illustrates the effect of the ratio of relaxation to 

retardation times i.e.  on the velocity ( f  ) and temperature 

distributions through the boundary layer regime. Velocity is 

significantly decreased with increasing λ, in particular close to the 

cylinder surface. The polymer flow is therefore considerably 

decelerated with an increase in relaxation time (or decrease in 

retardation time). Conversely, temperature is depressed slightly with 
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increasing values of λ. The mathematical model reduces to the 

Newtonian viscous flow model as   0 and De  0, since this negates 

relaxation, retardation and elasticity effects. The momentum boundary 

layer equation in this cases contracts to the familiar equation for 

Newtonian mixed convection from a cylinder:  
 

2 sin f f
f ff f f f


 

  

   
         

  
                       (22) 

 

The thermal boundary layer equation (8) remains unchanged. 

Effectively with greater relaxation time of the polymer, the thermal 

boundary layer thickness is reduced. However, with greater relaxation 

times, the momentum boundary layer thickness is only decreased near 

the cylinder surface whereas further away it is enhanced since the flow 

is strongly accelerated there. 

 

(a) 
 

 

(b) 
 

Fig. 5 Effect of Pr on (a) velocity profiles (b) temperature  
 

  Figures 5(a)-5(b) present typical profiles for velocity ( f  ) and 

temperature for various values of Prandtl number, Pr. It is observed that 

an increase in the Prandtl number Pr massively reduces the velocity i.e. 

decelerates the polymeric boundary layer flow. With increasing Prandtl 

number, the dynamic viscosity of the fluid is strongly elevated and this 

is representative of non-Newtonian polymers. The flow is therefore 

retarded and momentum boundary layer thickness is decreased. At high 

Prandtl number, thermal conduction heat transfer dominates over 

thermal convection heat transfer and thermal boundary layer thickness 

is decreased. Conversely, for lower Prandtl numbers the opposite 

behavior is observed. Effectively a rise in Prandtl number decreases 

fluid temperatures and cools the regime.  

 

(a) 

 

(b) 

Fig. 6 Effect of  on (a) velocity profiles (b) temperature profiles  

 

        Figures 6(a) – 6(b) depict the velocity and temperature 

distributions with radial coordinate, for various transverse (stream wise) 

coordinate values, . Generally, velocity is noticeably lowered with 

increasing migration from the leading edge i.e. larger  values (figure 

6a). The maximum velocity is computed at the lower stagnation point 

(~0) for low values of radial coordinate (). The transverse coordinate 

clearly exerts a significant influence on momentum development. A 

very strong increase in temperature (), as observed in figure 6b, is 

generated throughout the boundary layer with increasing  values. The 

temperature field decays monotonically. Temperature is maximized at 

the cylinder surface (=0) and minimized in the free stream (= 8). 

Although the behavior at the upper stagnation point (~) is not 

computed, the pattern in figure 6b suggests that temperature will 

continue to progressively grow here compared with previous locations 

on the cylinder surface (lower values of ). Similar observations have 

been recorded by a number of researchers including Chen and Leonard 

(1972) for power-law fluids, Chang (2006) for micro polar fluids and 

Anwar et al. (2008) for viscoelastic fluids. 

        Figures 7(a) - 7(b) present typical profiles for velocity ( f  ) and 

temperature for various values of the transpiration parameter, S. As in 

all other graphs, only the case of wall suction is studied (S > 0). It is 

observed that an increase in the suction parameter significantly 

decelerates the flow for all values of radial coordinate. The boundary 

layer thickness is reduced and suction causes the boundary layer to 
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adhere closer to the wall. Similarly increasing wall suction is found to 

lower temperatures in the boundary layer regime and strongly decreases 

thermal boundary layer thickness. Although boundary layer separation 

has not been identified in the present regime, suction has been shown to 

delay this effect in certain viscoelastic cylinder flow problems.  

 

(a) 

 

(b) 
 

Fig. 7 Effect of S on (a) velocity profiles (b) temperature profiles  

5. CONCLUSIONS 

A mathematical model has been developed for boundary layer mixed 

convection flow of a Jeffery non-Newtonian fluid from a horizontal 

cylinder, with wall transpiration. The transformed conservation 

equations have been solved with prescribed boundary conditions using 

the implicit Keller-box finite difference method. The present 

simulations have shown that: 

1. Increasing the viscoelasticity parameter i.e. Deborah number (De), 

reduces the velocity, skin friction and heat transfer rate whereas it 

enhances temperature. 

2. Increasing the parameter ratio of relaxation and retardation times 

(λ), increases velocity, skin friction coefficient and heat transfer 

rate whereas it reduces temperature. 

3. Increasing Prandtl number (Pr) markedly reduces velocity and 

temperature. 

4. Increasing transverse coordinate () generally decelerates the flow 

near the cylinder surface and reduces momentum boundary layer 

thickness whereas it enhances temperature. Heat transfer rate is 

also maximized at the lower stagnation point (= 0). 

5. Increasing suction at the cylinder surface (fw>0) decelerates the 

flow and strongly depresses temperature. 
 

Generally, very stable and accurate solutions are obtained with the 

present finite difference code and it is envisaged that other non-

Newtonian flows will be studied using this methodology in the future 

including Maxwell upper convected fluids (Vajravelu,2012) and couple 

stress fluids (Beg et al., 2012). 
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NOMENCLATURE 
 

Cf skin friction coefficient 

f non-dimensional steam function 

g acceleration due to gravity 

k thermal conductivity of Jeffery fluid 

cp specific heat capacity  

Gr Grashof (free convection) number 

Nu local Nusselt number 

Pr Prandtl number 

De Deborah number 

T temperature of the Jeffery fluid 

S suction (wall transpiration) parameter 

S Cauchy stress tensor 

u, v non-dimensional velocity components along the x- and y-     

directions, respectively 

x stream wise coordinate 

y transverse coordinate 

 

Greek symbols 

 

  thermal diffusivity 

  coefficient of thermal expansion 

  ratio of relaxation to retardation times 

  retardation time 
  azimuthal coordinate

   dimensionless radial coordinate  

  dynamic viscosity 

  kinematic viscosity 

  non-dimensional temperature 

  density of Jeffery fluid 

  dimensionless tangential coordinate 

  dimensionless stream function 

 

Subscripts 
 

W              surface conditions on cylinder (wall) 

  free stream conditions 

T  temperature 

u, v   non-dimensional velocity components along the x- and y-       

directions, respectively 

x    stream wise coordinate 

y               transverse coordinate  
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