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ABSTRACT 

Present study concerned with the theoretical work with numerical investigation of MHD transient naturally convective and higher order chemically 
reactive viscoelastic fluid with nano-particle flow through a vertical porous stretching sheet with the effects of heat generation and radiation 
absorption. A boundary layer approximation is carried out to develop a flow model representing time dependent momentum, energy, and 
concentration equations. The governing model equations in partial differential equations (PDEs) form were transformed into a set of nonlinear 
ordinary differential equation (ODEs) by using non-similar technique. Explicit Finite Difference Method (EFDM) was employed by implementing an 
algorithm in Compaq Visual Fortran 6.6a to solve the obtained set of nonlinear coupled ODEs. For optimizing the system parameter and accuracy of 
the system, the stability and convergence analysis (SCA) was carried out. It was observed that with initial boundary conditions, for 0.005  , 

0.20X  and 0.25Y  , the system converged at Prandtl number, 0.253rP  and Lewis number, 0.16eL  . The velocity, temperature and 

concentration flow are investigated and shown graphically with the effect of system parameters and numerical comparison. 
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1. INTRODUCTION 

In the last few decades, the magnetohydrodynamic (MHD) heat and 
mass transfer flow leads a broad significant importance in fluid flow 
engineering technology industries. The laminar fluid flow which results 
from the stretching of a flat surface in a nanofluid has been investigated 
numerically by Khan et al. (2010) and Noghrehabadi et al. (2012), 
which was to analyze the development of the steady boundary layer 
flow, heat transfer and nano-particle fraction over a stretching surface 
in a nanofluid. The viscoelastic nanofluid flow and heat transfer over a 
linearly stretching sheet in the presence of externally applied magnetic 
field. The effects of Brownian motion and thermophoretic volume 
fraction of nano-particles have been investigated by Shit et al. (2016). 
The problem is solved numerically by using finite difference scheme 
along with the Newton’s linearization technique. A wide range of 
applications can be found in several fields such as aerodynamic 
extrusion of plastic sheets, energy storage units, biological 
transportation, liquid metal fluids oil reservoirs, high-temperature 
plasmas, geothermal systems, heat insulation and metal and polymer 
extrusion, thermal energy storage devices, electronic cooling, boilers, 
nuclear process, micro MHD pumps, ground water systems etc. 
Investigations of MHD flows are mostly in vertical moving porous 
plate Mohamed et al. (2009), vertical porous plate Nandy et al. (2013) 
and Murthy et al. (2015), vertical insulated porous plate, infinite 
inclined porous plate Ramachandra et al. (2011), semi-infinite vertical 
porous plate Das et al. (2015). In recent days, nanotechnology has 
received a lot of attention where the further development of higher 

performance is still going due to effective applications in the field of 
cooling (transformer cooling, electronics device cooling, silicon mirror 
cooling, vehicles cooling, controlling fusion), biomedical (magnetic cell 
separation, drug delivery, cancer therapeutics, cryopreservation, nano 
cryosurgery) etc. The term “nano fluid” can be refers to a class of fluids 
by suspending nanometre sized (1-100 nm diameters) particles in 
common base fluids of highly enhanced thermal properties (Ferdows et 
al., 2013; Dogonchi et al., 2016). This type of fluids has highly 
industrial importance because of its unique chemical and physical 
properties. It has a higher thermal conductivity which controlled 
significant enhancement due to the rate of heat transfer.  

Viscoelastic fluid model is one of the subclass of rate type fluids 
which has gained wide attractions among the researchers in last 10 
years. The fluid of both viscosity and elasticity properties is so called 
viscoelastic fluid. The main advantage of using this kind of fluids is it 
can predict the stress relaxation whilst other differential-type fluids 
cannot predict such effects. Maxwell fluid widely used in the field of 
viscoelastic fluid in where the relaxation time (dimensionless) is 
insignificant however, it’s beneficial for significant relaxation time in 
concentrated polymeric fluids of low molecular weight Ibáñez et al. 
(2016) and Fetecau et al. (2003). Khan et al. investigated MHD heat 
and mass transfer axisymmetric chemically reactive Maxwell fluid flow 
of driven by exothermal and isothermal stretching disks. In the presence 
of nano particles, Ramesh et al. (2016) studied Maxwell fluid 
stagnation point flow of near a permeable surface. Recently, the 
radiation and viscous dissipation effects on Maxwell fluid flow in a 
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combined MHD heat transfer thermal extrusion system was studied by 
Hsiao (2017).  

Flow and heat transfer of MHD nanofluid between parallel plates 
in the presence of thermal radiation model has been analyzed   
analytically with Duan–Rach Approach (DRA) by Dogonchi et al. 
(2016). Biswas et al. (2017) investigated the effect of presence of 
magnetic field, thermal radiation, heat source, viscous dissipation on 
boundary layer unsteady mixed convective Jeffrey nanofluid flow over 
a vertical stretching sheet has remained unexplored. Therefore, it is 
thought desirable to investigate this problem in the present study. A 
well-known explicit finite difference method (EFDM) (Khan et al., 
2012; Bég et al., 2014) employed as a numerical tool to solve the flow 
governing model. Dogonchi et al. (2017) investigated MHD Go-water 
nanofluid flow and heat transfer in a porous channel in the presence of 
thermal radiation effect with DRA method. This method modifies the 
standard A domian Decomposition Method by evaluating the inverse 
operators at the boundary conditions directly.   

To the best of the author’s knowledge, the study of natural 
convective and chemically reactive viscoelastic fluid flow with nano-
particle through a vertical porous stretching sheet in presence of 
thermal radiation, heat generation and radiation absorption has 
remained unexplored. Therefore, this phenomenon is addressed in this 
study. The specific objectives of this numerical investigation are listed 
below: 

a) To investigate unsteady chemically reactive viscoelastic fluid 
flow with nano particle through a vertical porous stretching 
sheet with the influence of thermal radiation, mass diffusion 
with heat source, mass transfer and radiation absorption.  

b) Mathematical solution of the flow governing model which 
includes transient momentum, energy and diffusion balance 
equations numerically using well-known explicit finite 
difference method (EFDM). 

c) Optimizing the numerical flow parameters and predicting 
high accuracy of EFDM solutions by analysing stability and 
convergence analysis (SCA). 

d) To study velocity, temperature, and concentration distribution 
across the boundary layer. Investigation on skin friction 
coefficient, Nusselt number and Sherwood number with 
different physical parameters. 

e) Evaluation of the thermal and momentum boundary layer 
thickness with isotherms and streamlines analysis. 

2. FLUID FLOW MATHEMATICAL MODEL  

The fluid with the both viscosity and elasticity properties is known as 
viscoelastic fluid. Unsteady heat and mass transfer flow of viscoelastic 
fluid along a semi-infinite vertical porous plate 0y   is considered in 
the presence of a uniform thermal radiation and magnetic field. The 
flow is considered to be in the x -direction which is taken along the 
plate in the upward x-direction and y -axis is normal to it. When, the 

plate velocity )(tU  is given as
0u U . In initial step, it is considered 

that the plate as well as the fluid particle is at rest at the same 
temperature ( )T T and the same concentration level ( )C C at all 

points. 
 Where, C and T are fluid concentration and temperature species 

of uniform flow respectively. It is also assumed that a magnetic field 

0yB B of uniform strength is applied normal to the flow region. The 

physical configuration and co-ordinate system of the problem is 
presented in the following Fig. 1. To the best of the author’s 
knowledge, the study of natural convective and chemically reactive 
viscoelastic fluid flow with nano particle through a vertical porous plate 
in presence of thermal radiation, heat and radiation absorption has 
remained unexplored. Therefore, this phenomenon is addressed in this 
study. Under the above assumptions, the equations that described the 
physical circumstances are given below (Shit et al., 2016): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Physical configuration and coordinate system 
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Where, u and v  are the velocity component, 0B is the magnetic field 

component,  is thermal expansion coefficient *  is concentration 

expansion coefficient, wT denotes the wall temperature, wC is the species 
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viscoelasticity,  is thermal conductivity, pc is specific heat at constant 

pressure, 0Q  denotes the heat source, *
1Q  denotes the radiation 

absorption, rq  unidirectional radiative heat flux, cK  for chemical 

reaction, BD  is Brownian diffusion coefficient, TD thermophoresis 

diffusion coefficient. The radiative heat flux term by using the 

Rosseland approximation is given by 
44

3
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k y
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
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Where, s  is the Stefan-Boltzmann constant and ek  is the mean 

absorption coefficient, respectively. If temperature differences within 
the flow are sufficiently small, then the rq  can be linearized by 

expanding 4T  into the Taylor series about T , which after neglecting 

higher order terms takes the form by 4 3 44 3T T T T   . Then the 

equation (3) becomes, 
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From the governing equations (1) - (5) under the initial conditions and 
the boundary conditions will be based on the finite difference method it 
is required to make the equations dimensionless. For the purpose 
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follows: 
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The parameters of technological interest for the present problem are the 
local skin-friction, the local Nusselt number and the local Sherwood 
number, which are elucidated below (Rana et al., 2017): 
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3. NUMERICAL SOLUTION 

To solve the governing coupled non-dimensional partial differential 
equations with the associated initial and boundary conditions. The 
method of explicit finite difference has been used to solve (6) - (9) 
subject to the initial and boundary conditions. For this reason, the area 
within the boundary layer is divided by some perpendicular lines of Y -
axis, where the normal of the medium is Y - axis as shown in Fig-2. It 
is assumed that the maximum length of boundary layer max 20Y  as 

corresponds to Y  . i.e. Y  vary from 0 to 20 and the number of 
grid spacing in Y  directions are ( 100)m  and ( 200)n  , with the 

smaller time step 0.005  . Using the explicit finite difference 
approximation, we have, 
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Fig. 2 The finite difference space grid 
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 The initial and boundary condition with finite difference scheme as

 

,0 ,0 ,01, 1, 1n n n
i i iU      

, , ,0, 0, 0n n n
i L i L i LU     Where, L   

 
3.1 STABILITY AND CONVERGENCE ANALYSIS OF 

THE PROBLEM 

Since an explicit finite difference approach is being used therefore the 
analysis is remained incomplete unless the stability and convergence of 
the finite difference scheme are discussed. For the constant mesh size 
the stability criteria of the scheme may be established as follows. The 
general terms of the Fourier expansion for ,U   and  at a time 

arbitrarily called 0t  are all i X i Ye e  apart from a constant, 

where 1i   . A time t  , these terms becomes 

: ( )
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                                             (17) 

after a time step these terms convert to  
'

'

'
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                                (18) 

Substituting (17) and (18) to the main (13) -(16) equation we get, 
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1 2 3A A A                                                                     (19) 

Where, 
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2 rA G  and 3 cA G   For temperature equation, 
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For obtaining the stability condition, it should be find out Eigen values 
of the amplification matrix T, but this study is very difficult since all 
the elements of T are different. Hence, the problem requires that the 
Eckert number cE is assumed to be very small, that is, tends to zero. 

Then we get, 
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Equation (19) -(21) can be expressed in the Matrix form, 
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 i.e. ' 'T 

 For obtaining the stability condition, Eigen values of the amplification 
matrix 'T should be finding out. It is a forth order square matrix. For 
this explicit finite difference solution, the dimensionless time difference 
 is very small i.e. tends to zero. Under this condition,  

2 3 50, 0, 0A A A   and 7 0A 
 

1

4

6

0 0

' 0 0

0 0

A

T A

A

 
    
  

 

After simplification of the matrix 'T the Eigen values are follows, The 
Eigen values of the amplification matrix T* are obtained as 

1 1 4 2,A A    and 6 3A  . For stability test, each of the Eigen values 

must not exceeded unity in modulus. Under this consideration, the 
stability conditions are as follows 
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To satisfied allowable values are 1 1A   4 1A   and 6 1A   . Hence 

the stability conditions of the methods are, 
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With initial boundary conditions 0U V T C     and for the values 
of 0.005  , 0.20X  and 0.25Y   then the problem will be 

converged at 0.253rP 
 and 0.16eL  .These converge solutions are 

shown graphically in Figs. 3-25. 

4. RESULTS AND DISCUSSION 

To investigate the physical phenomena of the fluid flow problem from 
numerical solution, a finite difference solution is obtained by the use of 
an explicit procedure. The numerical values of non-dimensional 
velocity, temperature and concentration within the boundary layer for 
different values of non-dimensional parameter have been computed by 
a FORTRAN program. For the steady-state solutions, the computations 
have been carried out up to dimensionless time 30  .    

The interaction of electrically conducting fluids with magnetic 
fields, through electromagnetic forces called Lorentz forces. Strong 
magnetic parameter ( 0.00M  ) creates drag force known as Lorentz 
force and the force impact the fluid velocity to decrease and 
temperature profiles increase. Which are showing in Fig. 3 and Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3 shows velocity profiles for different values of M 
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Fig. 4 represents the temperature profiles for different values of M 

In Fig. 5 describes, the concentration profile decreases with the increase 
of magnetic parameter M. and thermal boundary layer thickness are 
enhanced for the larger magnetic parameter. This stronger Lorentz force 
has an ability to decrease the mass transfer but finally concentration 
boundary layer thickness increases further from the sheet surface. 
 

 

 

 

 

 

 

 

 

 

Fig. 5 Concentration profiles for different values of M 
 

From Fig. 6 – Fig. 7 viscoelastic materials have elements of both of 
these properties and, as such, exhibit time-dependent strain. Whereas 
elasticity is usually the result of bond stretching along crystallographic 
planes in an ordered solid, viscosity is the result of the diffusion of 
atoms or molecules inside an amorphous material. For the increase of 

viscoelastic parameter from 40.00 to 8 10  the velocity profiles  

 
 
 
 

 

 

 

 

 

 

 

 

           Fig. 6 Velocity profiles for different values of   

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Temperature profiles for different values of   
 

 

 

 

 

 

 

 

 

 

Fig. 8 Velocity profiles for different values of Gr 

Table 1. Computations are showing the increase of Nusselt number 

 uN  for the increase of tN  for 0.71, 10.00r eP L  and =1.20 .  

tN  uN  

( bN = 0.10) 

uN  

( bN = 0.20) 

uN  

( bN = 0.30) 

uN  

( bN = 0.40) 

uN  

( bN = 0.50) 

0.10 0.04331    0.01959    0.00129    -0.01117   -0.01778   
0.20 0.05949    0.03146    0.00827    -0.00912   -0.02035   
0.30 0.07783    0.04614    0.01850    -0.00409   -0.02036   
0.40 0.09779    0.06303    0.03189    0.00458   -0.01733   
0.50 0.11874    0.08210    0.04812    0.01696   -0.01019   

  
In Fig. 9 and Fig. 10 illustrate the variations of temperature and 
concentration profiles for various values of Brownian parameter  bN .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 9 Temperature profiles for different values of Nb 
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Fig. 10 Temperature profiles for different values of Nb 

 
It is found that the increase in the value of 0.20bN  , the thermal 

boundary layer increases and the concentration boundary layer reduces. 
The numerical value obtained from the EFDM simulation for Brownian 
parameter ( bN ) varies from 0.20 to 0.80. In Fig.11, Temperature 

profiles decrease for the increase of N. From Fig. 12 it can be observed 
that the concentration profile increases with the increase of 
thermophoresis parameter Nt. It is true because Nt   is directly 
proportional to thermophoresis diffusion coefficient DT which enhances 
the mass transfer. Therefore, growing value of DT increases Nt, which 
accelerates mass transfer. 
 

 

 

 

 

 

 

 

 

 

Fig. 11 Temperature profiles for different values of Nt 

 
 

 

 

 

 

 

 

 

     

 
Fig. 12 Concentration profiles for different values of Nt 

 
The parameter, rP  is the ratio of kinematics viscosity to the thermal 

diffusivity which is physically very with temperature for example, 
water rP =7.0 (At 20 °C), Ammonia gases rP = 1.38 falls more quickly 

compared to air rP  = 0.71. In addition, rP  << 1 explains the thermal 

diffusivity dominates. For the large values of Prandtl number, i.e.,     

rP >> 1, the momentum diffusivity dominates this behavior. In Fig. 13 

represents that thermal boundary layer thickness decrease with the 
increase of Prandtl number. From Fig.14, Sketches the concentration 
distribution for different values of Lewis number Le. In this figure, it 
can be seen that concentration profile decreases with the increase of 
Lewis number Le. This happens because Lewis number is inversely 
proportional to Brownian diffusion coefficient DB, therefore Le 
increases when DB decreases as a result concentration decrease. 

Table 2. Computations are showing the decreased of Sherwood number 
( hS ) for the increase of tN  for 0.71, 10.00r eP L   and =1.20 . 

tN  hS  

( bN = 0.10) 

hS  

( bN = 0.20) 

hS  

( bN = 0.30) 

hS  

( bN = 0.40) 

hS  

( bN = 0.50) 

0.10 0.39338 0.39693 0.39517 0.39657 0.39557 
0.20 0.39140 0.40458 0.40528 0.40726 0.40591 
0.30 0.37809 0.40840 0.41653 0.41867 0.41589 
0.40 0.35045 0.40428 0.42287 0.42918 0.42865 
0.50 0.30661 0.39420 0.42463 0.43705 0.44249 

 
 

 

 

 

 

 

 

 

 

 

Fig. 13 Temperature profiles for different values of Pr 
 

Thermal radiation (electromagnetic radiation) could be attributed due to 
thermal excitation. The temperature could be affected in presence of 
thermal radiation at moderate temperatures which is significant. 
Thermal radiation for a medium which contains it inevitably has 
pressure and density gradients and the treatment requires the use of 
hydrodynamics. 
 

 

 

 

 

 

 

 

 

Fig. 14 Concentration profiles for different values of Le 

The consequence is stable for all distances into the boundary layer and 
validates the advantage of employing thermal radiation in nano-scale-
materials dispensation processes. It can be seen that the temperature is 
in the nano-fluid is significantly intensified for the growing value of 
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radiation.  Here R represents the comparative contribution of thermal 
radiation heat transfer to thermal conduction heat transfer.  In Fig.15, 
describe that the increase of thermal radiation the thermal boundary 
layer thickness increase and Fig. 16, represents the concentration 
profiles decrease with the increase of modifies Grashof number. 
 
 

 

 

 

 

 

 

 

 

 
Fig. 15 Temperature profiles for different values of R 

 

 

 

 

 

 

 

 

 

 

Fig. 16 Concentration profiles for different values of Gc 

The heat generation parameter Q serves to slightly increase the 
temperature distribution, but the reverse behavior is observed further 
from the sheet and the flow is accelerated. Therefore, increasing heat 
generation enhances temperature and increases temperature boundary 
layer thickness further from the wedge represents in Fig.17. The 
dimensionless velocity distribution for different values of heat 
generation parameter Q is illustrated in Fig.18. The nano-particle 
concentration and concentration boundary layer thickness is decreased 
with strong heat generation parameter Q closer to the sheet surface but 
finally concentration boundary layer thickness is increased further from 
the sheet surface. 
 

 

 

 

 

 

 

 

 

 

Fig. 17 Temperature profiles for different values of Q 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18 Velocity profiles for different values of Q 
 
Table. 3. Qualitative comparison of the present results with the 
previous results Shit et al. 
 

Parameter Previous results 
given Shit et al. 
'f                          

Present results 
 
U                                        

bN   Inc Dec  Inc Dec 

tN   Inc   Dec Inc 

eL     Dec   Dec 

  or 1K  Inc Dec  Dec Inc  

rP   Dec   Dec  

rG or t  Inc Dec  Inc   

cG or n    Dec   Dec 

M Dec Inc Inc Dec Inc Inc 
 
The non-dimensional equation after different transformations has been 
solved in the present numerical study. Therefore, for this reason, X and 
Y axis are dimensionless which indicates the mash point different from 
the numerical point of view. In addition, with the stream and isotherms 
(line view) curves, the difference of boundary layer for different 
parameters can be defined. The development of streamlines and 
isotherms are presented in Figs. 19-22. It can be observed that, thermal 
boundary layer and momentum boundary layer increases due to the 
increase of viscoelastic parameter,  .  
 
 
 

 

 

 

 

 

 

 

 

 

Fig. 19 Illustration of Streamlines for different values line of   
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Fig. 20 Illustration of Isotherms line for different values of   
 

Furthermore, streamlines profiles can be used to improved visualization 
of fluid fields. It represents the velocity direction of fluids 
correspondingly. The streamlines can be obtained by drawing lines 
tangent to the flags. They are a rather mathematical object. They can be 
visualized by implanting little flags inside the fluid and observing their 
orientation. The boundary layer system of change can be shown by an 
isotherm, where the temperature remains constant ( 0T  ). An 

isotherm at 00 C  (the freezing point of water) is called the freezing 
level.  
Table. 4. Comparison of uN values with Shit et al. (2016). 

Fixed values Parameters 
that varying 

Shit et al. 
(2016) 

Nu 

Present value 
Nu 

Pr = 7, K1=   = 0.01 M = 0 0.63202 0.64184 
Nb = 0.5, Nt = 0.3 M = 2 0.77514 0.78307 
λt or Gr = λn or Gc = 0.5 M = 4 0.828622 0.84351 
Le = 10 M = 6 0.864581 0.87183 
Pr = 7, M = 2 K1=  = 0.0 0.7515194 0.75057 
Nb = 0.5, Nt = 0.3 K1 =  = 0.01 0.7751438 0.78307 
λt or Gr = λn or Gc = 0.5 K1 =  = 0.05 0.873585 0.87185 
Le = 10 K1 =  = 0.1 1.005409 1.00313 
Pr = 7, K1 = 0.05 Nt = 0.0 0.7050363 0.71630 
Nb = 0.5, M = 2 Nt = 0.2 0.8354410 0.84352 
Le  = 10 Nt = 0.7 0.9433001 0.95174 
M  = 2 Le = 20 0.9302426 0.92574 

 
  
 
 

 

 

 

 

 

 

 

 

Fig. 21 Illustration of Stream lines for different values line of M 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22 Illustration of Isotherms line for different values of M 

In Fig.21 represent the momentum boundary layer thickness increase 
but thermal boundary layer thickness decreases for the increase of M. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 23 Illustration of skin friction for different values of Pr 

In Fig 23 and Fig 24 represent the skin friction and Nusselt number 
profiles for Prandtl number differences. Skin number and Nusselt 
number profile decrease with the increase of Prandtl number. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 24 Illustration of Nusselt number for different values of Pr 

Table 5. Comparison of uN values 

with M  Q  0  and rP  10eL  . 

tN  bN  Khan and 
Pop (2010) 

Noghrehabadi 
et al. (2012) 

Y Present 
results 

0.10 0.10 0.9524 0.9523768 0.04 0.95703 
0.20 0.10 0.6932 0.6931743 0.12 0.68960 
0.30 0.10 0.5201 0.5200790 0.17 0.51592 
0.40 0.10 0.4026 0.4025808 0.20 0.40827 

X   

Y

X   

Y

X

Y

Pr= 0.71 
Pr= 1.00 

Pr= 1.50 

Pr= 2.50 

 
Gr=10.0, Gc= 5.0, R = 0.10, Q1 = 0.06, M = 2.0, 

Le= 10.0, Du= 0.03, Da= 1.0, Ec= 0.002, P =2.0, 

Nb= 0.50, Kr= 0.50,  = 0.0003,  Nt = 0.30 

fC  

Y  

Gr=10.0, Gc= 5.0, R = 0.10, Q1 = 0.06, M = 2.0, 

Le= 10.0, Du= 0.03, Da= 1.0, Ec= 0.002, P =2.0, 

Nb= 0.50, Kr= 0.50,  = 0.0003,  Nt = 0.30 
uN  

Y  

Pr= 0.71 
Pr= 1.00 

Pr= 1.50 

Pr= 2.50 
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Fig. 25 Illustration of Sherwood number for different values of Le 

Fig 25 represents the Sherwood number profiles with the difference of 
Le. Sherwood number profiles increase with the increase of Le. 

5. CONCLUSIONS 

The Numerical solutions for viscoelastic fluid with nano - particle 
towards a moving semi-infinite porous stretching sheet with thermal 
radiation, heat source, chemical reaction, and mass diffusion is 
analysed. The results are presented graphically with various parameters. 
Form the graphical representation, we have the following observations: 
 

 Temperature and concentration profiles increase but velocity 
profiles decrease with the increase of magnetic parameter. 

 For the increase of viscoelastic parameter, the velocity profile 
decreases and temperature profiles increase. 

 Velocity profiles increase with the increase of Grashof 
number and concentration profiles decrease for modified 
Grashof number. 

 Due to increase of Brownian parameter temperature profiles 
increase and concentration profiles decrease. 

 For the increase of thermophoresis parameter temperature 
profiles decrease and concentration profiles increase. 

 Temperature, skin friction and Nusselt number profiles 
decrease for increase of Prandtl number and concentration 
curves decrease for Lewis number. Sherwood number profiles 
increase with the increase of Lewis number. 

 Temperature profiles increase for increase of thermal 
radiation and heat generation, also for velocity. 

 For the increase of viscoelastic parameter, the thermal and 
concentric boundary layer increases. 

 Increase of magnetic parameter the thermal and concentric 
boundary layer decreases. 
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NOMENCLATURE 
B○          magnetic component, (Wb m−2) 
Cf       skin-friction, (-) 

Cp      specific heat at constant pressure, (J kg−1 K−1) 
D

B
      Brownian diffusion coefficient, (-) 

Du      Dufour number, (-) 
Ec      Eckert number, (-) 
Gr      Grashof number, (-) 

G
c
      modified Grashof number, (-) 

ke          mean absorption coefficient 
Le      Lewis number, (-) 

Nb      Brownian parameter, (-) 
Nt      thermophoresis parameter, (-) 

Nu      local Nusselt number, (-) 
      Viscoelastic parameter 
Pr      Prandtl number, (-) 

qr       unidirectional radiative heat flux, (kg m−2) 
Q1

*     radiation absorption, (-) 
Q○      heat absorption quantity, (-) 
Sh       Sherwood number, (-) 
T        Fluid temperature, (K) 
Tw     Temperature at the plate surface, (K) 
T     ambient temperature as y tends to infinity, (K) 

U○     uniform velocity 
u, v   velocity components 
x, y   Cartesian co-ordinates 
 
Greek symbols 

     density of the fluid, (kg m−3) 
m     dynamic viscosities 

ν       kinematic viscosity, (m2 s−1) 
β       thermal expansion co-efficient 
β*     concentration expansion co-efficient 
κ       thermal conductivity, (Wm−1 K−1) 
σs        Stefan-Boltzmann constant, 5.6697 × 10− 8 (W/m2K4) 
 
Abbreviations 
 
DRA Duan–Rach Approach 
EFDM     explicit finite difference method

 ODE        ordinary differential equation 
PDE         partial differential equations 
SCA         stability and convergence analysis 
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