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ABSTRACT 

This paper numerically investigates the magnetohydrodynamic boundary layer convective flow of an electrically conducting fluid in the presence of 

buoyancy ratio, heat source, variable magnetic field and radiation over an inclined nonlinear stretching sheet under convective surface boundary 

conditions. The Rosseland approximation is adopted for thermal radiation effects and the non-uniform magnetic field applied in a transverse direction 

to the flow. The coupled nonlinear momentum, thermal and species concentration governing boundary layer equations are rendered into a system of 

third order momentum and second order energy and mass diffusion ordinary differential equations via similarity transformations with appropriate 

boundary conditions. The nonlinear, non-dimensional, well-posed boundary value problem is then solved with the implicit finite difference scheme 

known as Keller Box Method. A detailed study of the influence of the emerging dimensionless parameters governing the flow on velocity, temperature 

and concentration distributions is conducted. Also the evolution of skin friction coefficient, Nusselt number and Sherwood number values are depicted 

graphically. Numerical results are validated with some limiting cases documented in previously testified results, and good correlation is confirmed. 

This investigation is relevant to the delineation of space, astrophysical plasmas, polymer processing and extrusion of rubber and plastic sheets. 

Keywords: Keller-Box Method; Inclined Stretching sheet; Heat Source; Convective boundary conditions: Variable magnetic field; Buoyancy Ratio. 

 

1. INTRODUCTION 

The convective transport phenomenon in a porous medium received 

considerable attention stems from various engineering applications in 

geothermal reservoirs, thermal insulation engineering, petroleum 

industries, separation process in chemical industries and solar heating 

systems. Currently there is a significant activity in a special sub-category 

of boundary layer flows known as Sakiadis flows (1961) which deals 

with a wide variety of boundary layer problems with fluid flow over a 

stretching sheet in both Newtonian and non-Newtonian fluids. These 

flows are used in polymer synthesis, artificial fibers, hot rolling, paper 

production, chemical process, material processing, electrochemistry and 

many more possible areas. Crane (1970) studied the characteristics of 

boundary layer flow past a stretching plate. Flow arises due to stretching 

flat surface in three dimensional space have been studied by Wang 

(1984). Forced convection flows in stretching sheet with Marangoni 

effects was examined by Chen et al. (2007). Magyari and Chamkha 

(2008) studied MHD thermo solutal Marangoni convection in the 

presence of uniform magnetic field in the boundary layer approximation.  

Further, Chamkha (1997) adopted Finite Difference Method (FDM) to 

study Magnetohydrodynamic (MHD) free convective flow from a 

vertical plate with Hall effects embedded in a thermally stratified porous 

medium. It has been observed from earlier research that in fluid flow 

situations boundary circumstances are considered either at a particular 

specified surface heat flux or at a wall temperature. Hence, convective 

boundary condition effects arising in different boundary layer flow 

situations are important. Ramesh et al. (2015) discussed the effects of 

fluid particle suspension and convective boundary condition past a 

stretching sheet. Aljoufi and Ebaid (2016) elaborated the influence of 

convective boundary conditions on boundary layer slip flow over 

stretching sheet. For three dimensional non-Newtonian flow, Sulochana 

et al. (2016) examined similarity solution with convective boundary 

conditions. Ram Reddy and Pradeepa (2017) adopted spectral quasi 

linearization method (SQLM) to investigated nonlinear thermal 

convective flow of micropolar fluid under convective boundary 

conditions.  Chakraborty et al. (2016) obtained numerical solution with 

convective boundary conditions for bio convection of a nanofluid flow. 

Extensive discussion of other applications recently studied by several 

researchers over stretching sheet which includes Sisko fluid flow 

employing Homotopy Analysis Method (HAM) Khan and Shahzad 

(2012), Second grade MHD fluid flow using Runge-Kutta (RK) sixth 

order integration scheme Das et al. (2016), Chamkha (2002) considered 

semi-infinite inclined and ideally transparent flat plate embedded in a 

porous medium with an  Implicit finite difference scheme (IFDM), mixed 

convective couple stress fluid flow in a vertical channel with HAM by 

Kaladhar and Srinivasacharya (2014) and Prandtl-Eyring fluid flow with 

Keller-Box Method (KBM) Hussain et al. (2017). Further a significant 

amount of research on Newtonian and non-Newtonian fluid flows over 

stretching sheet were found in (Akbar et al., 2016; Kumar et al., 2017; 

Chamkha et al., 2010; Reddy and Gorla, 2017).  

The most fundamental fluid mechanics problems widely found in 

nature are buoyancy driven flow due to release of heavy fluid into light 

fluid and also complexity arising from temperature dependent density 

and viscosity fields which in turn causes buoyancy. This buoyancy 

induced flow received considerable attention due to the potential 

applications such as heat exchanger design, petroleum production, 

chemical catalytic reactors and nuclear waste reactors and many possible 

areas. Soong (2001) analyzed the transport phenomena of developing 

thermal buoyancy effects in rotating non-isothermal flows.  Utilizing 

nanofluids Khanafer et al. (2013) studied buoyancy driven heat transfer 

enhancement in two-dimensional enclosure. Rashidi et al. (2014b) 
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studied buoyancy effects on MHD flow of nanofluid (with Copper and 

Copper Oxide as nanoparticles) over a stretching sheet in the presence of 

thermal radiation by adopting fourth order RK based shooting technique. 

They concluded that Cu-water has more temperature than Cuo-water 

nanofluid while the buoyancy decrease the temperature of the nanofluid.  

Sheikholeslami et al. (2016a) studied the effect of MFD (Magnetic Field 

Dependent) viscosity on free convective nanofluid flow in an enclosure 

with bottom wall has constant heat flux element by using control volume 

based Finite Element Method (CVFEM) with linear triangular elements. 

Makinde et al. (2013) concluded that dual solution exists for shrinking 

case while studying stagnation point flow and heat transfer of a nanofluid 

past a convectively heated stretching/shrinking sheet with buoyancy 

effects. Anwar et al. (2012) studied the effects of buoyancy, solutal 

buoyancy and power law velocity parameters by adopting Keller-Box 

Method (KBM). Chamkha (2000) considered similarity equations 

governing the steady hydromagnetic boundary layer flow over an 

accelerating permeable surface ith buoyancy effects and then these 

equations are solved numerically with IFDM. Patrick and Paul (2010) for 

narrow vertical flat plate with uniform surface heat flux and plate edge 

conditions. Sheikholeslami et al. (2015) adopted CVFEM developed in 

FOTRAN with triangular elements to study the forced convection heat 

transfer in a lid driven semi annulus enclosure filled with Ferro nanofluid 

in the presence of non-uniform magnetic field and this extended to FHD 

(Ferrohydrodynamics) by the Sheikholeslami et al. (2016b), in this work 

they used CVFEM to study convection heat transfer in semi annulus 

under the influence of a variable magnetic field considering both FHD 

and MHD. They concluded that Kelvin force is more pronounced for high 

Reynolds numbers. Magyari and Chamkha (2013) reported an exact 

solution for the effects of buoyancy force and chemical reaction on 

micropolar fluid flow over a permeable stretched surface. Very recently 

Barletta et al. (2017) investigated unstable buoyant flow in a vertical 

porous layer considering convective boundary conditions and few related 

studies can be seen in Chemseddine et al. (2017) for molten PB-SN 

alloys. 

Heat source/sink effects arise in many complex thermal 

technologies featuring high temperature differences. These include 

underground disposal of radioactive waste material, dissociating fluids 

in packed bed reactors, fire and combustion processes, blast furnaces, 

nuclear reactor fuel debris heat removal and in material fabrication of 

powders the working fluid heat generation and absorption effects are 

important. Early studies dealing with heat generation or absorption 

include the works of Chamkha (2003) on vertical permeable surface, Al-

Mudhaf and Chamkha (2005) over a flat plate with IFDM, Chamkha et 

al. (2001) on inclined plate, Damesh et al. (2009) micropolar fluid flows 

over a stretched permeable surface with RK method, Rashidi et al. (2011) 

used HAM to present the analytic solution to heat transfer of micropolar 

fluid through a porous medium with radiation effects and finally 

Chamkha et al. (2000) Hiemenz flow through porous medium. Rashidi 

et al. (2013) applied second law of thermodynamics to analyze an 

electrically conducting MHD nanofluid flow over a porous rotating disk 

in the presence of uniform magnetic field with RK fourth order based 

shooting technique and they proposed the path for optimizing the 

entropy. Thirupathi et al. (2017) adopted KBM to study effective Prandtl 

number and heat source effects on nonlinear stretching/shrinking sheet. 

The contribution made by several researchers for vertical surfaces are 

found in (Takhar et al., 2001;  Kaladhar and Srinivasacharya, 2016;) 

however the study of inclined surfaces also important due to buoyancy 

forces that can be manipulated via inclination. Shit and Haldar (2011) 

investigated the action on thermal radiation Hall current over an inclined 

permeable stretching sheet. Recently Hasan et al. (2017) numerically 

investigated magnetohydrodynamic free convection flow past inclined 

stretching sheet using Nachtsheim-Swigert shooting technique with 

classical sixth order RK iteration. By using IFDM Takhar et al. (1999) 

studied the laminar boundary layer flow of an electrically conducting 

fluid past a semi-infinite flat plate with an aligned magnetic field effects 

as well as Takhar et al. (2002) solved MHD flow over a moving plate in 

a rotating fluid with IFDM. However, studies (Sandeep and Jagadeesh 

(2016), Rawi et al. (2016) and Amit (2017)) which focused on non-

Newtonian flows along inclined surfaces demonstrate significant 

influence of inclination on MHD thermo fluid dynamic characteristics.  

Although significant studies of magnetic, radiative and electrically 

conducting fluid flows from horizontal stretching sheets have been 

reported but in many metallurgical processes involve cooling of 

continuous strips or filaments and these strips are stretched when they 

are drawn through a quiescent fluid and also the final product quality 

improved by drawing such strips in an electrically conducting fluid 

subject to magnetic field. This motivates to consider the MHD boundary 

layer convective flow of an electrically conducting fluid in the presence 

of buoyancy ratio, heat source and radiation over an inclined nonlinear 

stretching sheet under convective surface boundary conditions. 

Therefore, the objective of present study is to extend the work with semi 

analytical method (HAM) reported by Rashidi et al. (2014a) and the 

numerical study (RKF-45 with scaling group transformation) reported by 

Ferdows et al. (2013).  The system of coupled non-linear ordinary 

differential equations are solved by adopting an implicit finite difference 

scheme due to Cebeci and Bradshaw (1984). Extensive details of the 

mathematical formation of the problem, numerical method of solution, 

grid independence study and validation are presented in sections 2-4 

respectively. The effects of various governing physical parameters on 

velocity, temperature and concentration profiles are discussed via figures 

and tables in section 5. Finally, a summary of noteworthy results is 

presented in section 6. The current simulations are relevant to paper 

production, glass fiber, polymer processing, cooling of metallic sheets in 

a metallic bath and many more.  

2. MATHEMATICAL FORMULATION OF THE 

MODEL 

Consider the steady, two-dimensional, incompressible, MHD, laminar 

and free convective flow of an electrically conducting fluid from an 

inclined permeable nonlinear stretching sheet, orientated at an angle α 

)
0

90
0

0( ≤≤ α  to the vertical. The physical model is illustrated in Fig. 

1. The x-axis is directed along the continuous permeable stretching sheet 

and the y-axis is measured normal to the axisx − . The stretching of the 

sheet is induced by applying two equal and opposite forces 

simultaneously along the x-axis. By keeping the origin fixed, the sheet is 

stretched with nonlinear velocity 3/1)( cxxu w = , where c is a constant 

stands for characteristic stretching intensity.  

 

 

 
 

 
 

Fig. 1 Geometry and coordinate system for inclined stretching sheet
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It is assumed that flow takes place for 0≥y  and the permeable 

stretching sheet surface is heated by convention from a hot fluid with the 

temperature fT  while the temperature of the electrically conducting 

ambient fluid takes the constant value ∞T  as ∞→y  and it is also 

assumed that the temperature varies in the axisx −  direction also as 

)( axTTw += ∞ . The inclination angles 0000 90090,0 << αand  

represent the vertical, horizontal and general inclined stretching sheet 

respectively. A non-uniform magnetic field of strength
3/1)( −= xBxB o  

is applied in the transverse direction, where oB is constant related to 

magnetic field.  The external electrical field assumed to be zero and the 

electric field due to polarization of charges is negligible.  The fluid 

properties are assumed to be constant except the density in the buoyancy 

terms in momentum equations and induced magnetic field strength is less 

when compared with applied external magnetic field hence this 

assumption is valid for the small Reynolds number. Finally, pressure 

gradient, Hall current, viscous and Ohmic dissipation are assumed to be 

neglected. Under these aforementioned assumptions with the Boussinesq 

approximations, the boundary layer governing equations following 

Rashidi et al. (2014) for Continuity, Momentum, Energy and species 

Concentration in the presence of thermal radiation, non-uniform 

magnetic field and heat generation can be shown to take the form: 
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Energy equation.   
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Species concentration equation.   
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The following boundary conditions are imposed at the stretching sheet 

and in the freestream are: 
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Here )( 1−msu  and )( 1−msv  are the velocity components along the 

x-axis and y-axis directions respectively, )( 1−Smσ is the electric 

conductivity, )( 3−
Kgmfρ is the density of the fluid, )( 2−

NSmfµ is the 

dynamic viscosity, )( 12 −Smυ is the kinematic viscosity, )(xB is the non-

uniform magnetic parameter, g is the gravitation field, )( 1−K
T

β is the 

volumetric coefficient of thermal expansion, )( 1−K
C

β is the volumetric 

coefficient of concentration expansion, )(KT is the temperature, C is the 

concentration,
p

ck ρα /=  )( 12 −
Sm is the thermal diffusivity,

)( 13 −−
KJmc

p is the specific heat at constant pressure, fh  is the heat 

transfer coefficient, )( 11 −− KWmk  is thermal conductivity of the fluid 

and D is the coefficient of the mass diffusivity.  

With an assumption for the optically thick boundary layer we adopt 

Rosseland’s diffusion approximation for the radiative heat flux rq as 

given by
y

T

k
qr

∂
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∗ 4

3
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∗σ is the Stephan-Boltzmann 

)10*6697.5( 428 −−− KWm  constant, 
∗

k is the Rosseland mean absorption 

coefficient. The term 4T due to radiation can be expressed as a linear 

function of temperature itself.  Therefore, 4T can be approximated by 

Taylor’s series about ∞T after neglecting the higher order terms as
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the energy conservation Eq. (3) the following form of the equation 

emerges: 
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Proceeding with the analysis, it is pertinent to introduce the following 

similarity transformations: 
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Where the stream function ψ is defined as ,
y

u
∂
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=
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identically satisfies the continuity Eq. (1).  

Now by substituting Eq. (7) into the Eqs. (2), (4), (6) and the 

corresponding boundary conditions of the problem considered in Eq. (5), 

the governing boundary layer equations reduce to the following system 

of highly coupled nonlinear ordinary differential equations, in terms of a 

single independent variable )(η which are given by: 
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Subject to the transformed boundary conditions for the stretching flow 

are given by: 
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buoyancy Ratio parameter, 
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differentiation with respect toη .  

Furthermore, the physical quantities of engineering interest are the 

skin friction coefficient fC  or the shear stress, the local Nusselt number 

or heat transfer coefficient xNu and the local Sherwood number or mass 

transfer coefficient xSh which may be defined by: 
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Using Eq. (7) and Eq. (12) the skin friction coefficient, the local Nusselt 

number and local Sherwood number can be expressed as  

)0(Re
2/1

fC fx ′′= , )0(Re 2/1 θ ′−=−
xx Nu  and )0(Re 2/1 φ ′−=−

xx Sh

where υ/)(Re xxuwx = is the local Reynolds number.  

3. NUMERICAL SOLUTION OF NONLINEAR 

BOUNDARY VALUE PROBLEM 

The system of nonlinear coupled and inhomogeneous ordinary 

differential equations Eq. (8) -Eq. (10) subject to the boundary conditions 

in Eq. (11) are solved numerically using an implicit finite difference 

scheme known as the Keller-Box Method. Furthermore, this method is 

found to be suitable in dealing with nonlinear parabolic partial 

differential equations. Further details of this method are available for 

convection flows in the monograph of Cebeci and Bradshaw (1984). This 

method has four fundamental steps.  

The first step involves converting the Eqs. (8) - (10) into a system 

of first order ordinary differential equations. Thus, the coupled 

differential equations of third order in )(ηf and second order in )(ηθ  

and )(ηφ has been reduced to a system of seven simultaneous equations 

of first order for seven unknowns as follows. 
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In the second step derivatives are approximated in the new system 

of first order equations with central difference approximations by 

considering the net rectangle in the planex −η  as shown in Fig. 2 and 

the net points are defined as ,00 =x ,1 nnn kxx += −  ,00 =η

jjj h+= −1ηη  ∞=== ηη jandJjJn ...3,2,1;...3,2,1 . Here nk  is the 

−∆x spacing and jh is the −∆η spacing and jn , are just the sequences 

of numbers that indicate the coordinate location. The centering midpoint 

( ))2/1()2/1( , −− jnx η of the segment are obtained by using the following 

finite difference approximations. 

 
 

Fig. 2 Net rectangle for finite difference approximation 

( ) ( ) ( )[ ];
2

1 12

1

−
−

+= n
j

n
j

n

j  

( ) ( ) ( ) ;
1 1

2

1

2

1

2

1

2

1 












+=









∂

∂ −

−−

−

−

n

j

n

jn

n

j kx
 

( ) ( ) ( )[ ];
2

1
1

2

1

n
j

n
j

n

j
−

−
+=  

( ) ( ) ( ) ;
1 2

1

1
2

1
2

1

2

1 












+=









∂

∂ −

−

−−

−

n

j

n

j
j

n

j
hη

 

In the third step the emerging nonlinear algebraic equations are 

linearized with Newton’s method by using iterates of the form 

i
j

i
j

i
j )()()(

1 δ+=+
and then cast into matrix vector form. Finally, the 

linearized algebraic equations are solved using a block tri-diagonal 

elimination scheme implemented in MATLAB software with the suitable 

initial solution. This method is unconditionally stable (Cebeci and 

Bradshaw (1984)), has a second order accuracy. For this iterative scheme 

to solve the system of equations, a convergence criterion is required. This 

is specified as follows: when the difference between two successive 

approximations is sufficiently small (
7

10
−≤ ) the solutions are taken to 

have converged to the requisite accuracy. Mathematical details are 

omitted for brevity. 

 

4. GRID INDEPENDENCE STUDY AND VALIDATION 

OF RESULTS 
 

In order to ensure the obtained numerical solutions are independent of 

mesh density i.e. grid specification, the effects of grid size on the 
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solutions are studied. The boundary conditions for y ∞at  are replaced 

by a sufficiently large value where the velocity, temperature and 

concentration profiles approach to zero. The MATLAB code is ran with 

three different grid sizes 801x801, 1001x1001 and 1201x1201 when 

2.0=S   as shown in the Table 1 for stretching sheet and a very good 

agreement is observed between the profiles. Finally, in the present study, 

the far field boundary condition ∞η is replaced by a sufficiently large 

value 10max =η  and for all the computations in this numerical study the 

adopted grid size is 1001x1001 with step size of 0.001. 

Furthermore, to ensure the correctness of the numerical results 

acquired through the implicit finite difference scheme, a comparison of 

skin friction coefficient and Nusselt number is made with the results 

obtained through semi analytical method (HAM) reported by Rashidi et 

al. (2014) in some limiting cases. For various values of Suction/Injection 

parameter, values of )0(f ′′− , )0(θ ′− when 0.2Pr = , 
0

0=α and ∞→Bi  

are compared in the absence of heat source parameter as documented in 

Table 2. This allows verification of the Keller box solutions with those 

reported by Rashidi et al. (2014). 

A comparison of skin friction coefficient, Nusselt number and 

Sherwood number is also made in the absence of heat source for 

electrically conducting MHD flow over vertical stretching sheet studied 

by Ferdows et al. (2013) wherein the scaling group transformation is 

employed for similarity and then RKF-45 with a shooting technique was 

employed to solve the resulting ordinary differential equations. These 

comparisons are presented quantitatively in Table 3. It is evident from 

Table 3 that present Keller box finite difference numerical values 

correlate closely with the solutions obtained by Ferdows et al. (2013) 

which confirms the accuracy of the present results and hence confidence 

in the present Keller-Box solutions is therefore justifiably high. 

Additionally in Table 4 and 5 computations are provided for variation of 

skin friction ( )0(f ′′ ), Nusselt number (Wall heat transfer rate) ( )0(θ ′− ) 

and Sherwood number ( )0(φ ′− ) for both 2.0=S  and 2.0−=S

 

Table 1 Grid independence study for different grid sizes when 2.0=S  

 

)(ηf ′ : Velocity Profiles )(ηθ : Temperature Profiles )(ηφ : Concentration Profiles 

801 1001 1201 801 1001 1201 801 1001 1201 

1 1 1 0.115 0.115 0.115 1 1 1 

0.9937 0.9937 0.9937 0.1093 0.1093 0.1093 0.9894 0.9894 0.9894 

0.9874 0.9874 0.9874 0.1059 0.1059 0.1059 0.9789 0.9789 0.9789 

0.981 0.981 0.981 0.1026 0.1026 0.1026 0.9685 0.9685 0.9685 

0.9746 0.9746 0.9746 0.0994 0.0994 0.0994 0.9582 0.9582 0.9582 

0.9682 0.9682 0.9682 0.0963 0.0963 0.0963 0.9481 0.9481 0.9481 

0.9618 0.9618 0.9618 0.0933 0.0933 0.0933 0.938 0.938 0.938 

0.9555 0.9555 0.9555 0.0904 0.0904 0.0904 0.9281 0.9281 0.9281 

0.9491 0.9491 0.9491 0.0876 0.0876 0.0876 0.9182 0.9182 0.9182 

0.9429 0.9429 0.9429 0.0848 0.0848 0.0848 0.9085 0.9085 0.9085 

 

Table 2 Comparison of )0(f ′′− for various values of S  and )0(θ ′− for several values of m   

When ,0.2Pr = ,0=M ,0=Ri ,0=Nr 0=Q 0=φ 4/πα =and  

 

S  
)0(f ′′−   

m  

)0(θ ′−  

Ferdows et al. (2013) Rashidi et al. (2014) Present results Ferdows et al. (2013) Rashidi et al. (2014) Present results 

0.5 0.873643 0.8736447 0.8736784 0.0 0.43323 0.4434039 0.4434947 

0 0.677643 0.6776563 0.6776562 1.0 0.895201 0.8952184 0.8952262 

-0.5 0.518869 0.5188901 0.5188997 3.0 1.505809 1.5058076 0.5058049 

 

Table 3 Comparison of Skin friction, Nusselt number and Sherwood number for various values of Bi  and M  

When 0=Q and 2/πα =  

 

Bi  M  
Ferdows et al. (2013) Present results 

)0(f ′′  )0(θ ′−  )0(φ ′−  )0(f ′′  )0(θ ′−  )0(φ ′−  

0.5 0.1 0.5348991 1.6988191 0.3407097 0.5349024 1.6988246 0.3408128 

1.0 0.1 0.5348991 0.3976381 0.3407097 0.5349069 0.3976472 0.3408426 

0.1 1.0 0.6666667 0.3792362 0.3240809 0.666666 0.3792514 0.3241126 

0.1 2.0 0.7132689 0.3591739 0.3086715 0.7132912 0.3591679 0.3085829 
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Table 4 Values of )0(f ′′ , )0(θ ′− and )0(φ− for various values of ,Q ,N ,Nr Pr and Sc  

When 4/πα = and 2.0=S  

 

Q  N  Nr  Pr  Sc  )0(f ′′  )0(θ ′−  )0(φ ′−  

0.5 1 0.5 0.71 0.78 -0.6339719 3.4526318 1.3346567 

1 1 0.5 0.71 0.78 -0.6450595 4.8635878 1.3333765 

1.5 1 0.5 0.71 0.78 -0.6505565 5.9179405 1.3328534 

1.5 0.5 0.5 0.71 0.78 -0.7854507 5.9413047 1.3068919 

1.5 1.5 0.5 0.71 0.78 -0.5196193 5.9562264 1.3558624 

1.5 1 1 0.71 0.78 -0.6466817 5.1461762 1.3332173 

1.5 1 2 0.71 0.78 -0.6410412 4.2050966 1.3338302 

1.5 1 0.5 2 0.78 -0.6357277 3.6097444 1.3344166 

1.5 1 0.5 3 0.78 -0.6290695 3.0091852 1.3353478 

1.5 1 0.5 0.71 0.22 -0.5541158 5.9562203 0.6475728 

1.5 1 0.5 0.71 0.45 -0.6060464 5.8392137 0.9717656 

 

Table 5 Values of )0(f ′′ )0(θ ′− and )0(φ− for various values of ,Q ,N ,Nr Pr and Sc  

When 4/πα = and 2.0−=S  

 

Q  N  Nr  Pr  Sc  )0(f ′′  )0(θ ′−  )0(φ ′−  

0.5 1 0.5 0.71 0.78 -0.7031401 3.4199256 1.1440741 

1 1 0.5 0.71 0.78 -0.7147581 4.8310761 1.1427233 

1.5 1 0.5 0.71 0.78 -0.7202696 5.9103310 1.1422105 

1.5 0.5 0.5 0.71 0.78 -0.8767591 5.9102918 1.1081774 

1.5 1.5 0.5 0.71 0.78 -0.5705929 5.9103683 1.1710355 

1.5 1 1 0.71 0.278 -0.7164559 5.1255193 1.1425564 

1.5 1 2 0.71 0.78 -0.7102491 4.1972182 1.1432093 

1.5 1 0.5 2 0.78 -0.7043711 3.5196616 1.1439064 

1.5 1 0.5 3 0.78 -0.6965633 2.8739491 1.1449689 

1.5 1 0.5 0.71 0.22 -0.6212424 5.9103581 0.5885470 

1.5 1 0.5 0.71 0.45 -0.6742000 5.9103436 0.8573541 

 

 

Cases respectively with variation in ,Q ,N ,Nr Pr and Sc . For the 

2.0=S case, )0(f ′′ is decreased with increasing values of Q and Sc

while opposite trend is observed for the parameters N and .Nr It is also 

observed that for increasing values of Pr  the skin friction )0(f ′′ values 

decreased and increased for 2.0=S  and 2.0−=S cases respectively. 

For both 2.0=S  and 2.0−=S cases )0(θ ′− is enhanced with the 

increase of both Q and N parameters however the rate of heat transfer is 

decreased for increased ,Nr Pr and Sc parameter values. Finally with the 

increase in ,N ,Nr Pr and Sc values for both 2.0=S  and 2.0−=S cases 

the Sherwood number )0(φ ′−  values are enhanced while )0(φ ′− is 

decreased for Q . The solutions in Table 4 and 5 also provide a useful 

benchmark for other researchers who may wish to extend the present 

model and validate different numerical procedures against the present 

Keller box computations. 

 

5. RESULTS AND DISCUSSION 
 

Comprehensive numerical computations have been carried out to study 

the effects of various parameters on flow characteristics in the convective 

boundary layer regime. Graphical representations of the influence of ,M

,α N  and Sc on velocity distributions, the effect of ,Bi ,M ,Nr Pr, Q

and Sc on temperature distributions and finally the impact of M and Sc  

on concentration distributions depicted in Figures 3 - 14. The local skin 

friction ( )0(f ′′ ), Nusselt number ( )0(θ ′− ) and Sherwood number 

( )0(φ ′− ) profiles are presented in Figs. 15 – 17 for various values of &Q  

Bi .  In this paper all numerical values were computed for the above 

physical parameters by fixing the values ,4/πα = ,0.1=M ,0.1=Tλ

,0.1=Cλ ,0.1=N  ,5.0=Nr  71.0Pr = (for water at C020  temperature 

and 1 atmospheric pressure), ,1.0=Bi 78.0=Sc and 5.0=Q . This 

circumstances is often encountered in engineering applications such as 

the cooling of electronic components and nuclear reactors and in many 

other areas. 

The parameter values to represent with physically realistic flows 

and in accordance with Rashidi et al. (2014) for which the numerical 

computations are carried out are presented in the respective figure 

legends. From all the figures it is also observed that for the case of suction 

( 0>S ) velocity, temperature and concentration profiles are more when 

compared with the profiles for injection ( 0<S ) case. Furthermore, The 

CPU took 6.52 seconds to compute the velocity profiles, 5.37 seconds to 

compute the temperature profiles, 4.96 seconds to compute the 

concentration profiles for 1001 nodal points with the Intel core i3 

processor under windows platform, which are computed by using the 

Matlab command tic; { Statements … … } toc;. 

 

5.1 Velocity distributions 

The physical behavior of the dimensionless velocity distributions with in 

the momentum boundary layer for different parameter values of ,α ,M

N and Sc are described in Figs. 3-6.  It is perceived from Fig. 3 that for 

increasing values of inclination angle )3/4/,6/( πππα and=  the 

velocity distributions ( )(ηf ′ ) are decreased. This is generally due to the 

reduction in the thermal buoyancy force which is scaled with magnitude 

of )cos( α , thus fluid experiences the drag at sheet surface.   



Frontiers in Heat and Mass Transfer (FHMT), 10, 5 (2018)
DOI: 10.5098/hmt.10.5

Global Digital Central
ISSN: 2151-8629

7 

 
Fig. 3 Effects of α  on Velocity profiles 

 
Fig. 4 Effects of M  on Velocity profiles 

 
Fig. 5 Effects of N  on Velocity profiles 

 
Fig. 6 Effects of Sc  on Velocity profiles 

 
Fig. 7 Effects of Bi  on temperature profiles 

 
Fig. 8 Effects of M  on Temperature profile 
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Fig. 9 Effects of Nr  on Temperature profiles 

 

 
Fig. 10 Effects of Pr  on Temperature profiles 

 

 
Fig. 11 Effects of Q  on Temperature profiles 

 
Fig. 12 Effects of Sc  on Temperature profiles 

 

 
Fig. 13 Effects of M  on Concentration profiles 

 

 
Fig. 14 Effects of Sc  on Concentration profiles 
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Fig. 15 Effects of Bi  and Q  on ( )0f ′′  

 

 
Fig. 16 Effects of Bi  and Q  on ( )0θ ′−  

 

 
 

Fig. 17 Effects of Bi  and Q  on ( )0φ ′−  

 

 

Fig. 4 shows that for increased values of non-uniform magnetic field 

parameter ( 25.1,1 andM = ) results in reduction in the fluid velocity, 

this is due to the reason that the increase in M leads to a stronger 

hydrodynamic body force (Lorentz force) which has a tendency to reduce 

)(ηf ′ of the fluid near the momentum boundary layer. The effect of 

buoyancy ratio ( 0.1,0.0,0.1−=N ) on )(ηf ′ is depicted in Fig. 5. It is 

observed that with the increase of N  velocity profiles are increased due 

to the fact that molecular forces dominates the thermal buoyancy forces. 

Therefore the velocity )(ηf ′  in momentum boundary layer depreciates 

in flow region when the buoyancy forces act in the same direction and 

the enhancement in )(ηf ′  is noticed for the forces acting in different 

directions. Fig. 6 illustrate the )(ηf ′  profiles for different realistic 

values of Schmidt number 22.0=Sc (Hydrogen), 78.0=Sc (Ammonia) 

and 62.2=Sc (Propyl benzene) at C
0

25  and one atmospheric 

pressure .The Schmidt number quantifies the relative thickness of linear 

velocity hydrodynamic boundary layer and species boundary layer. 

Whenever an increase in Sc leads to decrease in )(ηf ′ due to increase 

in kinematic viscosity.  

 

5.2 Temperature distributions 

The variation of temperature distribution ( )(ηθ ) within thermal 

boundary layer of the fluid against the ,Bi ,M ,Nr Pr , Q  and Sc  have 

been represented in Figs. 7-12. Fig. 7 exhibits the effect of various Biot 

number values (Bi=0.5, 1.0 and 2.0) on )(ηθ , high Biot number indicates 

higher internal thermal resistance of the sheet surface than the boundary 

layer resistance. As Bi increases, the temperature of the fluid enhances, 

although as per imposition of convective wall temperature boundary 

condition the greatest influence is at the sheet surface itself hence leads 

to increase in thermal boundary layer. The influence of variable magnetic 

field parameter M on hydromagnetic temperature distribution is 

represented in Fig. 8. It is inferred form Fig. 8 that the reduction in the 

momentum boundary layer thickness for larger values of M (=1.0, 1.5 

and 2.0), the temperature distributions are enhanced. Further, it is worth 

mentioning here that the temperature distributions are starts with 

convective surface temperature and decays monotonically to asymptotic 

value and then satisfies the far field boundary condition.  Fig. 9 shows 

the effects of several values of thermal radiation (Nr=0.5, 1.0 and 2.0) on 

temperature profiles. For optically thick fluids increase in Nr serves to 

energize the boundary layer and the input of thermal energy which is 

scaled with a cubic variation free stream temperature for thermal 

radiation compared with linear variation for thermal conduction. 

Therefore, an increase in Nr enhances the temperature magnitudes 

substantially due to increase in the thermal radiative heat transfer.  

The effect of Prandtl number ( 0.50.2,71.0Pr and= ) on )(ηθ  are 

depicted in Fig. 10. From figure it is evident that an increase in Pr , 

induces a significant reduction in the temperature and therefore, cools the 

magnetic fluid regime, thereby decreasing thermal boundary layer 

thickness. Further, greater Pr corresponds to lower thermal conductivity 

of the fluid therefore as Pr increases leads to suppression in the thermal 

conduction heat transfer and hence plummet in temperature. The 

graphical representation of dimensionless )(ηθ for some representative 

values of steady state surface dependent heat source (Q) parameter is 

shown in Fig. 11.  An increase in Q (=0.5, 1.0 and 1.5) enhance the 

temperature due to the fact that the addition of Q introduces thermal 

energy in to the flow, which then energizes the boundary layer and 

elevates the thickness of thermal boundary layer.  The effect of Sc  on 

temperature is shown in the Fig. 12. With increase in Sc  also enhances 

the temperature. Physically Sc  behavior on temperature has opposite 

with the behavior of Pr on temperature since the Schmidt number 

embodies the ratio of momentum to mass diffusivity. Therefore 

whenever Sc is increased, the thickness of thermal boundary layer also 

increases. 
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5.3 Concentration distributions 

 

Distribution of species concentration with in the concentration boundary 

layer have been depicted for different parameter values of M and Sc

with aid of Figs. 13-14. The impact of different non-uniform magnetic 

field parameter values ( ,0.1=M 5.1 0.2and ) on concentration 

distributions are depicted in Fig. 13. Whenever M  increased the 

concentration profiles are also increased due to reduction in the thickness 

of the momentum boundary layer.  

The Schmidt number ( Sc ) represents the relative effectiveness of 

momentum diffusion in velocity boundary layer to species diffusion in 

concentration boundary layer ( DSc /υ= ). It is inferred from the Fig. 14 

that the concentration profiles decelerates at all locations for various 

increasing values of 22.0=Sc (for hydrogen), 78.0=Sc (ammonia) and 

62.2=Sc (for propyl Benzene), this is due to smaller values of Sc  are 

equivalent to increasing the chemical molecular diffusivity. Evidently 

Sc modifies significantly the concentration distribution throughout the 

regime.    

Finally, in Figs. 15-17 illustrate the response in variations of skin 

friction ( )0(f ′′ ), local Nusselt number ( )0(θ ′− ) and local Sherwood 

number ( )0(φ ′− ) for 0.11.0 ≤≤ Bi & 5.1,0.1=Q 0.2and . Evidently 

with rise in Q and Bi , the distributions of )0(f ′′ and )0(θ ′− increased 

while an opposite trend is observed for the distributions of )0(φ ′− . 

 

6. CONCLUSIONS 

 
Magnetohydrodynamic boundary layer convective flow of an electrically 

conducting fluid in the presence of buoyancy ratio, heat source, and 

variable magnetic field and radiation over an inclined stretching sheet 

under convective surface boundary conditions has been studied 

theoretically and numerically in this paper. The governing coupled 

nonlinear momentum, thermal boundary layer and species concentration 

equations are transformed into coupled ordinary differential equations by 

using similarity transformations. The Keller-Box implicit finite 

difference method is adopted to solve the emerging nonlinear boundary 

value problem. The originality of the present study entails an elaboration 

of the influence of governing parameters on velocity, temperature and 

concentration distributions for suction (porous case) and injection (non-

porous) cases with variable magnetic field for inclined stretching sheet 

under convective boundary conditions. Verification of the Keller box 

solutions has been achieved via comparison with previously published 

reports and a very close correlation is observed. The principal findings 

of the current simulation may be summarized thus: 

• The velocity profiles are decreased with increasing values of 

magnetic field parameter, inclination angle parameter and Schmidt 

number and also for increasing values of buoyancy parameter 

velocity distributions are also increased for both suction and injection 

cases.  

• The temperature distribution values are decreased with Prandtl 

number where as an increasing in Biot number, Magnetic field 

parameter, Schmidt number, radiation parameter and heat source the 

temperature values are increased for both suction and injection cases. 

• The concentration distribution values are decreased with Magnetic 

field parameter where as an increasing in Schmidt number the 

concentration values are increased for both suction and injection 

cases. It is also observed that for the case of suction velocity, 

temperature and concentration distributions are more pronounced 

than the injection case. 

•  The skin friction coefficient and Nusselt number are increased by 

increasing the Biot number and heat source parameter. However 

Sherwood number is decreased with increasing values of the Biot 

number and heat source parameter. 
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