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ABSTRACT

Diffusion-thermo and thermal-diffusion effects on unsteady, incompressible Rivlin-Ericksen rotatory convective flow of a magnetic conducting
electrical fluid with time dependent suction between two vertical plates of which one is permeable are investigated. The uniform angular velocity
rotates about an axis normal to the plate. The equations governing the flow model are non-dimensionalised, perturbed for simplification and solved
by Adomian decomposition method. Graphical illustrations of the fluid parameters on velocity, temperature, concentration are presented and
discussed. The effect of skin-friction, Nusselt and Sherwood numbers are presented in tabular forms and it is discovered from the results that a rise in
thermal-diffusion parameter speedup the skin-friction, while increasing diffusion-thermo parameter slowdown the skin-friction.

Keywords: Diffusion-thermo, Rivlin-Ericksen fluid, Rotatory, thermal-diffusion and Unsteady.

1. INTRODUCTION

Forced and free convection mechanisms contribute significantly to heat
transfer. The phenomenon occurs in both industrial and technical prob-
lems such as solar collectors, in cooling of electronic devices and nuclear
reactors resulting in an emergency shutdown etc. The significance of
these applications led some researchers to study natural, forced and mixed
convective flows in the presence of heat and mass transfer. Deepthi and
Prasada (2017) considered heat and mass transfer with mixed convective
flow in the presence of radiation and Soret. In the investigation, rotatory
and Dufour effects were considered insignificant. The result shown that
a rise in Soret parameter decreased the heat and mass transfer rate on
the walls. Soret effect on mixed convection viscoelastic fluid flow in the
presence of heat and mass transfer was studied by Devasena and Ratmat
(2014). The effects of Dufour and thermal radiation were not considered.
Dada and Agunbiade (2016) examined the effects of chemical reaction
and radiation on convective non-rotatory Rivlin-Ericksen fluid flow in a
vertical porous plate. It was discovered that temperature and velocity
decreased as radiation parameter increased. Aruna et al. (2015) inves-
tigated the influence of both thermal-diffusion and diffusion-thermo of
non-rotatory mixed convective hydromagnetic fluid flow through a verti-
cal wavy porous plate. The finite difference method was used to obtain
the solution.

However, the study of rotating medium is of great importance in
fluid dynamics as a result of its relevance in many natural phenomena
and its applications in technology relating to Coriolis force. Some of
the applications of rotating flow, particularly in porous media in the field
of engineering, to mention but a few are rotating machinery, food and
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chemical processing industries. The study of rotating flow has gained the
interest of many researchers due to its importance. Sibanda and Makinde
(2010) examined steady MHD flow with heat transfer as a result of rotat-
ing disk in a porous fluid in the presence of viscous dissipation. Mutua
et al. (2013) considered MHD free convection flow of a Newtonian fluid
with variable suction through porous plate and the result revealed that
skin friction increased both along x and y axes due to a decrease in rota-
tion parameter.

In addition, Singh (2013) studied thermal radiation effects on ro-
tatory viscoelastic MHD flow via a vertical plate. It was reported that
rotation parameter enhanced velocity profiles. Oldroyd-B Rotating MHD
radiative fluid through a vertical porous channel was carried out by Garg
et al. (2014b). Guria and Jana (2013) examined rotatory viscoelastic fluid
past a porous plate under a uniform suction. It was discovered that the
presence of viscoelastic parameter contributed to the increase in the plate
heat transfer. Abdulmaleque (2017) investigated the effects of tempera-
ture dependent suction/injection on non-Newtonian casson radiative fluid
flow with viscous dissipation. Also, Garg et al. (2014a) presented oscil-
latory viscoelastic fluid flow through a porous rotating vertical channel
with an assumption of an optically thin radiation and constant suction.
The result showed that as the rotation parameter increased, the velocity
decreased. Even though, the above investigations had contributed to the
studies of fluid flow but the effects of chemical reaction was neglected in
the studies and chemical reactions have tremendous impacts in changing
the rate of mass diffusion.

In fluid flow that involves both heat and mass transfer, driving po-
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tentials and the fluxes relation are significantly noticed. The energy flux
that is generated due to concentration gradient is referred to as diffusion-
thermo, while mass flux resulting from temperature gradients is thermal-
diffusion. Mostly, the effects of diffusion-thermo and thermal-diffusion
are often neglected in most studies on the bases that they are of low mag-
nitude in relation to the rest chemical species. The effects of Dufour and
Soret become significant phenomena in areas like petrology, hydrology,
geosciences, etc. The effect of thermal-diffusion is relevant, for example,
in the separation of isotope and mixture of gases that has light molecular
weight. Therefore, Sarma and Govardhan (2016) reported on the effects
of thermal-diffusion and diffusion-thermo on natural convection heat and
mass transfer with thermal radiation in the presence of viscous dissipation
in a porous medium. A Newtonian fluid was examined in the study and
finite difference method was used in the computations of the results. It
was reported that velocity profiles was accelerated by increase in viscous
dissipation. The effects of thermal-diffusion and diffusion-thermo on free
convection MHD flow of Rivlin-Ericksen fluid was examined by Reddy
et al. (2016). Rotatory and thermal radiation effects were considered to
be insignificant, the result shown that an increase in diffusion-thermo and
thermal-diffusion speedup the skin-friction. Gbadeyan et al. (2011) ex-
amined the influence of Soret and Dufour with heat and mass transfer on
mixed convective viscoelastic fluid flow past a porous medium. It was
observed from the result that Soret enhanced both concentration and tem-
perature profiles.

Furthermore, Dada and Salawu (2017) presented heat and mass trans-
fer of pressure-driven flow with inclined magnetic field. The result re-
vealed that an increase in chemical reaction reduced both pressure and
concentration profiles. Ibrahim and Suneetha (2015) studied effects of
Soret and chemical reaction on MHD unsteady viscoelastic fluid past an
infinite vertical plate. The study concluded that both concentration and
velocity profiles increased as thermal-diffusion increased. Hayat et al.
(2017) investigated Dufour and Soret effects on MHD Jeffrey fluid of
peristaltic transport in a curved channel. It was observed that Dufour and
Soret have opposite behaviour for concentration and temperature. Babu
et al. (2017) considered diffusion-thermo and thermal-diffusion effects on
heat and mass transfer MHD Jeffery fluid flow in a stretching sheet. The
result revealed that temperature profiles was reduced by an increase in ei-
ther Prandtl number or Soret parameter. Influence of thermal-diffusion on
Kurshinshiki fluid in the presence of heat and mass transfer past a verti-
cal porous plate was investigated by Jimoh et al. (2014). At the boundary
layer, the result shown that increase in the heat sources parameter im-
proved both velocity and temperature profiles. However, as impressive as
the above studies were, rotatory Rivlin-Ericksen fluid flows have received
no significant attention.

A careful examination of all the above studies on heat and mass
transfer showed that combined effects of time dependence suction, pres-
sure gradient and heat absorption in Rivlin-Ericksen convective fluid flow
in a rotating medium with diffusion-thermo and thermal-diffusion have
received little or no attention. Considering various phenomena, com-
bined effects of all these parameters come into consideration in a prac-
tical flows of fluid and are of practical applications in the field of en-
gineering, chemical processing industry, rotating machinery, paper and
food processing industry, petroleum industry and other areas that involve
viscoelastic fluid flow. Hence, this present study analyses the effects of
diffusion-thermo, thermal-diffusion and radiation effects on convective
Rivlin-Ericksen fluid in a rotating system with chemical reaction.

2. MATHEMATICAL ANALYSIS

Consider a non-Newtonian, two-dimensional incompressible free convec-
tive Rivlin-Ericksen flow of an electrically conducting fluid through a
rotating vertical channel with a periodic suction. The following assump-
tions are made in the formulation of this problem:

(i) an unsteady and laminar flow is considered;

(ii) induced magnetic field and Hall effects are ignored due to the fact
that magnetic Reynolds number and transversely applied magnetic
field is considered to be very small;

(iii) a magnetic field (B0) of uniform strength is perpendicularly applied
to the plates;

(iv) there is a rotation of the entire system through the perpendicular
axis to the plates;

(v) thermal-diffusion and diffusion-thermo are assumed to be of sub-
stantial magnitude, hence, they are not negligible;

(vi) the plates are considered to be infinite in x∗-direction, hence all
physical quantities excluding pressure are functions of coordinate
z∗ and time t∗;

(vii) in the flow field, pressure is taken to be constant; and

(viii) the fluid is finitely conducting with constant physical properties.

With the above assumptions, the flow chart and governing equations are
as follows:

Fig. 1 Physical Configuration of the flow
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∂T ∗

∂t∗
+ ν∗

∂T ∗

∂z∗
= α

∂2T ∗

∂z∗2
− φ0
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(T ∗ − T ∗h )−
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= D
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−K∗1 (C∗ − C∗h) +

DKT

Tm

∂2T ∗

∂z∗2
(5)

The boundary conditions for the problem are:

z∗ = 0;u∗ = v∗ = 0, T ∗ = T ∗0 + ε (T ∗0 − T ∗h ) cos$∗t∗,
C∗ = C∗0 + ε (C∗0 − C∗h) cosw∗t∗

z∗ = h; u∗ = Wo (1 + ε cos$∗t∗) , v∗ = 0,
T ∗ = T ∗h , C

∗ = C∗h

 (6)

The time dependent suction velocity is expressed in exponential form
as:
ν∗ = −Wo

(
1 + εAei$

∗t∗
)

(Das et al. (2011)), ε and εA is small val-
ues less than unity. qR is the radiative heat flux and is defined base on
Rosseland approximation (Brewster (1972)) as:

qR = − 4σ

3k1

∂T ∗4

∂z∗
(7)

This present analysis is limited to optically thick fluid, hence Rosse-
land approximation is used. Considering the temperature differences
within the flow to be sufficiently small, T ∗4 (quartic temperature func-
tion) can be expanded using Taylor series expansion and neglecting higher
order terms gives;

T ∗4 ≈ 4T ∗3h T ∗ − 3T ∗4h (8)

This is substituted into radiative heat flux term that was used in Eq. (4).
The pressure gradient for the fluid is considered in the form;

− 1
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where H is a constant and it oscillates only in x-axis direction.
The accompanying non-dimensional variables are utilized to reduce

the governing equations to non-dimensional form.
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(10)

By applying non-dimensional variables (10), Eqs (2)-(5) become
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The boundary conditions are:

ψ = 0, ϑ = 1 + ε
2

(
ei$ t + e−i$ t

)
,

ζ = 1 + ε
2

(
ei$ t + e−i$ t

)
at η = 0

ψ = 1 + ε
2

(
ei$ t + e−i$ t

)
, ϑ = 0 , ζ = 0 at η = 1

 (15)

where ξ, ϑ, ζ, η, Ω, Rv , E, kr , M , Pr, Sc, φ, VR, A, Dp, Sp, Gh , Gm
are velocity, temperature, concentration, plates distance apart, rotation
parameter, resultant velocity, radiation parameter, chemical reaction pa-
rameter, magnetic parameter, Prandtl number, Schmidt number, heat ab-
sorption coefficient, viscoelasticity parameter, suction velocity parame-
ter, Dufour number, Thermal-diffusion parameter, Grashof number for
heat and mass transfer, respectively.
Taking ψ = ξ + iv then, Eqs (11) and (12) combine to

∂ψ

∂t
−
(

1 + εAei$t
) ∂ψ
∂η

= Hεcos$t+
∂2ψ

∂η2
−(2iΩ + F )ψ+Ghϑ+

Gmζ − VR

(
∂3ψ

∂t∂η2
−
(

1 + εAei$t
) ∂3ψ

∂η3

)
(16)

where
F = M +

1

kP

3. METHOD OF SOLUTION

3.1. Perturbation method

The partial differential Eqs. (13), (14) and (16) are reduced to ordi-
nary differential equations by Perturbation technique. Due to the nature
of the boundary conditions, the assumed solutions can be written as fol-
lows.(Garg et al. (2014b))

ψ(η, t) = ψ0(η) + ε
2

(
ψ1(η)ei$t + ψ2(η)e−i$t

)
ϑ(η, t) = ϑ0(η) + ε

2

(
ϑ1(η)ei$t + ϑ2(η)e−i$t

)
ζ(η, t) = ζ0(η) + ε

2

(
ζ1(η)ei$t + ζ2(η)e−i$t

)
 (17)

Substituting equation (17) into Eqs. (13), (14) and (16) gives:

VRψ
′′′
0 + ψ′′0 + ψ′0 − (2iΩ + F )ψ0 = −Ghϑ0 −Gmζ0 (18)

VRψ
′′′
1 + (1 − VRi$)ψ′′1 + ψ′1 − (i$ + 2iΩ + F )ψ1 = −H−

2Aψ′0 −Ghϑ1 −Gmζ1 − 2VRAψ
′′′
0 (19)

VRψ
′′′
2 + (1 + VRi$)ψ′′2 + ψ′2 − (2iΩ + F − i$)ψ2 = −H−

Ghϑ2 −Gmζ2 (20)

Bϑ′′0 + ϑ′0 − φϑ0 = −Dpζ′′o (21)

Bϑ′′1 + ϑ′1 − (φ+ i$)ϑ1 = −2Aϑ′0 −Dpζ
′′
1 (22)

Bϑ′′2 + ϑ′2 − (φ− i$)ϑ2 = −Dpζ′′2 (23)

ζ′′0 + Scζ
′
0 − ScKrζ0 = −ScSpϑ′′0 (24)

ζ′′1 + Scζ
′
1 − Sc (Kr + i$) ζ1 = −2AScζ

′
0 − ScSpϑ

′′
1 (25)

ζ′′2 + Scζ
′
2 − Sc (Kr − i$) ζ2 = −ScSpϑ′′2 (26)

where
B =

1

Pr
+

4

3EPr

The boundary conditions for the problem are:

ψ0 = ψ1 = ψ2 = 0, ϑ0 = ϑ1 = ϑ2 = 1,
ζ0 = ζ1 = ζ2 = 1 at η = 0
ψ0 = ψ1 = ψ2 = 1, ϑ0 = ϑ1 = ϑ2 = 0,
ζ0 = ζ1 = ζ2 = 0 at η = 1

 (27)
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Equations (18)-(20) are third order differential equations with only two
boundary conditions. In order to obtain necessary and sufficient bound-
ary conditions (Beard and Walters (1964)) and (Garg et al. (2014b)), the
solutions are expressed in the forms:

ψ0(η) = ψ01(η) + VRψ02(η) + 0(V 2
R)

ψ1(η) = ψ11(η) + VRψ12(η) + 0(V 2
R)

ψ2(η) = ψ21(η) + VRψ22(η) + 0(V 2
R)

ϑ0(η) = ϑ01(η) + VRϑ02(η) + 0(V 2
R)

ϑ1(η) = ϑ11(η) + VRϑ12(η) + 0(V 2
R)

ϑ2(η) = ϑ21(η) + VRϑ22(η) + 0(V 2
R)

ζ0(η) = ζ01(η) + VRζ02(η) + 0(V 2
R)

ζ1(η) = ζ11(η) + VRζ12(η) + 0(V 2
R)

ζ2(η) = ζ21(η) + VRζ22(η) + 0(V 2
R)


(28)

Applying Eqs. (28) to Eqs. (18)-(26) gives:

ψ′′01 + ψ′01 − (2iΩ + F )ψ01 = −Ghϑ01 −Gmζ01 (29)

ψ′′02 + ψ′02 − (2iΩ + F )ψ02 = −ψ′′′01 −Ghϑ02 −Gmζ02 (30)

ψ′′11 + ψ′11 − (i$ + 2iΩ + F )ψ11 = −H − 2Aψ′01

−Ghϑ11 −Gmζ11 (31)

ψ′′12 + ψ′12 − (i$ + 2iΩ + F )ψ12 = i$ψ′′11 − ψ′′′11 − 2Aψ′02−
2Aψ′′′01 −Ghϑ12 −Gmζ12 (32)

ψ′′21 + ψ′21 − (2iΩ + F − i$)ψ21 = −H −Ghϑ21 −Gmζ21 (33)

ψ′′22 + ψ′22 − (2iΩ + F − i$)ψ22 = −ψ′′′21 − i$ψ′′21−
Ghϑ22 −Gmζ22 (34)

Bϑ′′01 + ϑ′01 − φϑ01 = −Dpζ′′01 (35)

Bϑ′′02 + ϑ′02 − φϑ02 = −Dpζ′′02 (36)

Bϑ′′11 + ϑ′11 − (φ+ i$)ϑ11 = −2Aϑ′01 −Dpζ
′′
11 (37)

Bϑ′′12 + ϑ′12 − (φ+ i$)ϑ12 = −2Aϑ′02 −Dpζ
′′
12 (38)

Bϑ′′21 + ϑ′21 − (φ− i$)ϑ21 = −Dpζ′′21 (39)

Bϑ′′22 + ϑ′22 − (φ− i$)ϑ22 = −Dpζ′′22 (40)

ζ′′01 + Scζ
′
01 − ScKrζ01 = −ScSpϑ′′01 (41)

ζ′′02 + Scζ
′
02 − ScKrζ02 = −ScSpϑ′′02 (42)

ζ′′11 + Scζ
′
11 − Sc(Kr + i$)ζ11 = −2AScζ

′
01 − ScSpϑ

′′
11 (43)

ζ′′12 + Scζ
′
12 − Sc(Kr + i$)ζ12 = −2AScζ

′
02 − ScSpϑ

′′
12 (44)

ζ′′21 + Scζ
′
21 − Sc (Kr − i$) ζ21 = −ScSpϑ′′21 (45)

ζ′′22 + Scζ
′
22 − Sc (Kr − i$) ζ22 = −ScSpϑ′′22 (46)

subject to the following boundary conditions:

ψ01 = ψ02 = ψ11 = ψ12 = ψ21 = ψ22 = 0 at η = 0
ψ01 = ψ11 = ψ21 = 1, ψ02 = ψ12 = ψ22 = 0 at η = 1
ϑ01 = ϑ11 = ϑ21 = 1, ϑ02 = ϑ12 = ϑ22 = 0 at η = 0
ϑ01 = ϑ11 = ϑ21 = 0, ϑ02 = ϑ12 = ϑ22 = 0 at η = 1
ζ01 = ζ11 = ζ21 = 1, ζ02 = ζ12 = ζ22 = 0 at η = 0
ζ01 = ζ11 = ζ21 = 0, ζ02 = ζ12 = ζ22 = 0 at η = 1


(47)

3.2. Adomian Decomposition method

The ordinary differential Eqs. (29)-(46), though linear but are highly
coupled, hence Adomian decomposition methods is applied in solving
the problem. A differential equation can be written in a general form as;

Fψ(η) = b (48)

where F represents an operator of nonlinear ordinary differential equation
containing both linear and nonlinear terms. Lψ represents the linear term,
and the invertible linear operator is L. Taking the highest-ordered deriva-
tive as L, L−1 is n-fold integration operator from 0 to η for L = dn

dηn
. For

the linear operator L, the remainder is R and Nψ is the nonlinear term.
Hence,

Lψ +Rψ +Nψ = b (49)

Lψ = b−Rψ −Nψ (50)

Since L is invertible, thus

L−1Lψ = L−1b− L−1Rψ − L−1Nψ (51)

The highest-order in Equations (29)-(46) is two, therefore,

L−1Lψ =

∫ η

0

∫ s

0

ψ
′′

(η)dηds (52)

L−1Lψ = ψ − ψ(0) − ηψ
′
(0) (53)

substituting for L−1Lψ in Equation (51), the equation becomes;

ψ = ψ(0) + ηψ
′
(0) + L−1b− L−1Rψ − L−1Nψ (54)

Hence,

ψ = ψ(0) + ηψ
′
(0) + b

η2

2
−
∫ η

0

∫ s

0

(Rψ + Nψ) dηds (55)

ψ can be written in series form as:

ψ =

∞∑
n=0

ψn (56)

also, the nonlinear term as:

Nψ =

∞∑
n=0

An (57)

where

An =
1

n!

dn

dλn

(
F

(
n∑
i=0

λiψi

))
λ=0

n = 0, 1, 2, 3, ... (58)

Substituting Equations (56) and (57) into equation (55) gives;

∞∑
n=0

ψn = ψ(0) + ηψ
′
(0) + b

η2

2

−
∫ η

0

∫ s

0

(
R

∞∑
n=0

ψn +

∞∑
n=0

An

)
dηds (59)

The first three terms are identified as ψ0 which is the initial approxima-
tion, that is

ψ0 = ψ(0) + ηψ
′
(0) + b

η2

2
(60)

and

ψn+1 = −
∫ η

0

∫ s

0

(
R

∞∑
n=0

ψn +

∞∑
n=0

An

)
dηds (61)
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is the recurrence relation. All the components can be determined sinceA0

depends on ψ0 only, A1 depends on ψ0 and ψ1 and so on. The solution
then is the n-term approximation or approximant to ψ.

From Eqs. (60) and (61), the approximate solutions for Eqs (29)-
(46), which converges at n = 5, can be written as:

ζ01 =
∑5
a=0 ζ01[a], ϑ01 =

∑5
a=0 ϑ01[a];

ψ01 =
∑5
a=0 ψ01[a], ζ02 =

∑5
a=0 ζ02[a],

ϑ02 =
∑5
a=0 ϑ02[a]; ψ02 =

∑5
a=0 ψ02[a],

ζ11 =
∑5
a=0 ζ11[a], ϑ11 =

∑5
a=0 ϑ11[a];

ψ11 =
∑5
a=0 ψ11[a], ζ12 =

∑5
a=0 ζ12[a],

ϑ12 =
∑5
a=0 ϑ12[a]; ψ12 =

∑5
a=0 ψ12[a],

ζ21 =
∑5
a=0 ζ21[a], ϑ21 =

∑5
a=0 ϑ21[a];

ψ21 =
∑5
a=0 ψ21[a], ζ22 =

∑5
a=0 ζ22[a],

ϑ22 =
∑5
a=0 ϑ22[a]; ψ22 =

∑5
a=0 ψ22[a]


(62)

Series solutions (62) are substituted in Eqs. (17) and (28) to give the
final solution for velocity, temperature and concentration distributions

ψ(η, t) =

5∑
a=0

ψ01[a](η) + VR

5∑
a=0

ψ02[a](η) +

ε

2

(( 5∑
a=0

ψ11[a](η) + VR

5∑
a=0

ψ12[a](η)

)
ei$t +

( 5∑
a=0

ψ21[a](η) + VR

5∑
a=0

ψ22[a](η)

)
e−i$t

)
(63)

ϑ(η, t) =

5∑
a=0

ϑ01[a](η) + VR

5∑
a=0

ϑ02[a](η) +

ε

2

(( 5∑
a=0

ϑ11[a](η) + VR

5∑
a=0

ϑ12[a](η)

)
ei$t +

( 5∑
a=0

ϑ21[a](η) + VR

5∑
a=0

ϑ22[a](η)

)
e−i$t

)
(64)

ζ(η, t) =

5∑
a=0

ζ01[a](η) + VR

5∑
a=0

ζ02[a](η) +

ε

2

(( 5∑
a=0

ζ11[a](η) + VR

5∑
a=0

ζ12[a](η)

)
ei$t +

( 5∑
a=0

ζ21[a](η) + VR

5∑
a=0

ζ22[a](η)

)
e−i$t

)
(65)

3.3. Skin-friction, Nusselt and Sherwood number in term of
Amplitude

With reference to the boundary conditions, the amplitude is defined in
terms of primary and secondary velocities for steady and unsteady flow.
Therefore, total resultant velocity can be written as;

Rv =
√
d2 + f2 (66)

where velocity is defined as

ψ(η, t) = d + if (67)

The Skin-friction is given as;

τ(η) =

(
∂ψ

∂η

)
η=0,1

= τm + iτn (68)

β1 =
√
τ2
m + τ2

n (69)

Nusselt number (Heat transfer coefficient) is defined as;

Nu(η) = −
(

1 +
4

3E

)(
∂ϑ

∂η

)
η=0,1

= βm + iβn (70)

β2 =
√
β2
m + β2

n (71)

Sherwood Number(Mass transfer coefficient) is expressed as:

Sh(η) =

(
∂ζ

∂η

)
η=0,1

= λm + iλn (72)

β3 =
√
λ2
m + λ2

n (73)

4. DISCUSSION OF RESULTS

The solutions for the partial differential equations (13), (14) and (16)
with the corresponding boundary conditions (15) are acquired by Ado-
mian decomposition methods alongside with MATHEMATICA program-
ming. The impacts of different parameters governing the flow field on
velocity, temperature and species in the fliud are depicted in tabular and
graphical forms. The parameters considered in this study include: di-
mensionless viscoelasticity parameter of the Rivlin-Ericksen fluid (VR),
suction velocity parameter (A), rotation parameter (Ω), scalar constant
(ε), chemical reaction parameter (Kr), thermal radiation parameter (E),
Prandtl number (Pr), Schmidt number (Sc), heat absorption coefficient
(φ), Mass transfer Grashof number (Gm), Heat transfer Grashof number
(Gh), permeability of the porous medium (kp), Dufour parameter (Dp),
Soret parameter (Sp) and magnetic parameter (M ). Throughout the com-
putations, the following are taken as default values: t = 1, Gh = Gm =
M = 5, VR = 0.05, φ = 0.005, Pr = 0.71, E = 3, ε = 0.01,
A = kp = 0.5, Kr = 2, Ω = 10, Dp = 0.1, Sp = 2 and Sc = 1.002.

Figures 2 and 3 depict the effects of Suction velocity parameter (A)
on concentration and resultant velocity (Rv). It is obvious that as Suc-
tion velocity parameter increases, resultant velocity and concentration in-
crease.

Fig. 2 Variation of dimensionless concentration ζ with suction velocity
parameter A

Fig. 3 Variation of resultant velocity Rv with suction velocity parameter
A

5



Frontiers in Heat and Mass Transfer (FHMT), 11, 31 (2018)
DOI: 10.5098/hmt.11.31

Global Digital Central
ISSN: 2151-8629

Variation of values of scalar constant (ε) on resultant velocity, tem-
perature and species distribution is shown in Figs. 4 - 6. It is detected
that increasing ε causes a corresponding increment on resultant velocity,
temperature and species profiles.

Fig. 4 Variation of dimensionless concentration ζ with scalar constant ε

Fig. 5 Variation of dimensionless temperature ϑ with scalar constant ε

Fig. 6 Variation of resultant velocity Rv with scalar constant ε

The influence ofGm,Gh and kp on velocity is illustrated in Figs. 7 -
9. From these Figures, resultant velocity is enhanced by an increase in
Gm, Gh and kp.

Fig. 7 Variation of resultant velocityRv with mass transfer Grashof num-
ber Gm

Fig. 8 Variation of resultant velocity Rv with heat transfer Grashof num-
ber Gh

Fig. 9 Variation of resultant velocity Rv with permeability of the porous
medium kp

Figures 10 and 11 display the effect of the different values of Kr on
species and velocity profiles. It is observed that the more the value ofKr ,
the less the species and resultant velocity.
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Fig. 10 Variation of dimensionless concentration ζ with chemical reaction
parameter Kr

Fig. 11 Variation of resultant velocity Rv with chemical reaction param-
eter Kr

Figure 12 reveals the influence of M on the resultant velocity. It is
clear from the figure that a higher value of M decreases the flow velocity
throughout the domain of the fluid. A drag force identified as Lorentz
force is produced in electrically conducting fluid where magnetic field is
applied. There is a decrease in the velocity of the fluid as a result of the
effect of this drag force since fluid transport is resisted in the presence of
the magnetic field.

Fig. 12 Variation of resultant velocity Rv with magnetic parameter M

The contribution of radiation parameter is represented in Figs. 13
and 14. From these figures, it is shown a rise in E slows temperature dis-
tribution down. However, resultant velocity distribution is improved with
a rise in E. This result revealed that higher values of radiation parameter
are equivalent to increasing dominance conduction over E. Hence, there
is reduction in buoyancy force and temperature in the thermal boundary

layer.

Fig. 13 Variation of dimensionless temperature ϑ with thermal radiation
parameter E

Fig. 14 Variation of resultant velocity Rv with thermal radiation parame-
ter E

The effect of Ω on resultant velocity is seen in Fig. 15. The re-
sult revealed that, higher values of rotation parameter enhanced resultant
velocity profiles, which showed an overwhelming effect of rotation. A
diminishing in Rv due to a decrease in Ω is because of the presence of
gravitational and Lorentz force rotating at very low speeds. This indicates
that a friction factor is noticed, hence Rv decreases. The same trend is
apparent in Figs. 16 and 17, which represented velocity and temperature
profiles for different values of Pr . Prandtl number can be defined as the
ratio of momentum diffusivity to thermal diffusivity. It is, therefore, ob-
vious that a lower thermal conductivity material leads to high velocity
and a different trend is seen for higher thermal conductivity. Hence, in
Fig. 17, it is seen that an increase in Prandtl number accelerates the re-
sultant velocity profiles. Likewise, in Figs. 16, an increase in Pr reduces
the thermal boundary layer thickness and average temperature within the
boundary. This implies that, an increase in Pr makes the thermal conduc-
tivity of the fluid to increase. Thus, resulting in rapid diffusivity of the
heated surface.
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Fig. 15 Variation of resultant velocity Rv with rotation parameter Ω

Fig. 16 Variation of dimensionless temperature ϑ with Prandtl number
Pr

Fig. 17 Variation of resultant velocity Rv with Prandtl number Pr

Furthermore, effect of Sc on concentration and resultant velocity
profiles is revealed in Figs. 18 and 19. Here, it is observed that higher Sc
leads to a decline in concentration profiles, while the resultant velocity is
enhanced.

Fig. 18 Variation of dimensionless concentration ζ with Schmidt number
Sc

Fig. 19 Variation of resultant velocity Rv with Schmidt number Sc

Figure 20 depicts the variation of different values of heat absorption
coefficient (φ). It is seen that with a rise in φ, the temperature diminishes.
Thus, when heat is absorbed, the buoyancy force decreases the tempera-
ture profile. Effect of VR on resultant velocity is displayed in Fig. 21. It
is evident in Fig. 21 that resultant velocity is accelerated by an increase
in VR.

Fig. 20 Variation of dimensionless temperature ϑ with heat absorption
coefficient φ
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Fig. 21 Variation of resultant velocity Rv with dimensionless viscoelas-
ticity parameter of the Rivlin-Ericksen fluid VR

Figures 22 - 24 detect the effects of variation of Sp on resultant
velocity, temperature and species profiles. A careful study of these fig-
ures shown that the presence of Sp enhances both resultant velocity and
concentration profiles, while a different trend is noticed in temperature
profiles. Temperature profiles decline with a rise in Sp.

Fig. 22 Variation of resultant velocity Rv with Soret parameter Sp

Fig. 23 Variation of dimensionless temperature ϑ with Soret parameter
Sp

Fig. 24 Variation of dimensionless concentration ζ with Soret parameter
Sp

Effect of Dp on resultant velocity, temperature and concentration
profiles is presented in Figs. 25 - 27. Resultant velocity profiles dimin-
ishes as Dp is increased, while temperature profiles increases. This is as
a result of the generation of energy flux that enhances the temperature. A
rise in Dp makes concentration profiles to fall within 0 ≤ η ≤ 0.7. and
within 0.7 ≤ η ≤ 1, a rise in concentration profile is observed.

Fig. 25 Variation of resultant velocity Rv with Dufour parameterDp

Fig. 26 Variation of dimensionless temperature ϑ with Dufour parameter
Dp
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Fig. 27 Variation of dimensionless concentration ζ with Dufour parame-
ter Dp

Tables 1 and 2 display the variation of fluid parameters (Kr , E, Ω,
Sp, Dp and VR) on Skin-friction, Nusselt number and Sherwood Num-
ber at η = 0 and η = 1. It is seen in Table 1 that the Skin-friction is
diminished with the presence of Kr , Ω, Dp and VR, while it is strength-
ened by E and Sp. Nusselt number is reduced with an increase in Kr ,
N , and Dp. On the other hand, increasing the values of Sp enhances
the Nusselt number. In like manner, Sherwood number increases with an
increase in chemical reaction and Dufour parameter. The mass transfer
coefficient value is reduced with an increase in E and Sp. Consequently,
Table 2 shows that skin friction is quickened by an increase in Kr , E,
Ω, Sp and VR, while higher values of Dufour parameter decreases the
Skin-friction. Nusselt number is risen with an increase in Kr and Dp but
diminishes with increment in the values of E and Sp. Increasing E, Sp
and Dp make Sherwood number to rise and it decelerates by increasing
the values of Kr .

Table 1 Values of Skin-friction, Nusselt number and Sherwood Number
for different parameters at η = 0

Kr E Ω Sp Dp VR τ Nu Sh

1 3 15 2 0.1 0.05 1.26547 2.11822 1.51979
2 3 15 2 0.1 0.05 1.23144 2.05517 1.88701
3 3 15 2 0.1 0.05 1.20171 1.99740 2.21109
2 2 15 2 0.1 0.05 1.22856 2.24886 2.02036
2 3 15 2 0.1 0.05 1.23144 2.05517 1.88701
2 4 15 2 0.1 0.05 1.23326 1.95820 1.80325
2 3 10 2 0.1 0.05 2.30656 2.05517 1.88701
2 3 12 2 0.1 0.05 1.91408 2.05517 1.88701
2 3 14 2 0.1 0.05 1.47608 2.05517 1.88701
2 3 15 0.5 0.1 0.05 1.15877 1.96696 2.39242
2 3 15 1 0.1 0.05 1.18374 1.99150 2.23485
2 3 15 1.5 0.1 0.05 1.20808 2.02105 2.06581
2 3 15 2 0.2 0.05 1.23902 1.91244 2.24897
2 3 15 2 0.3 0.05 1.22160 1.68476 2.84090
2 3 15 2 0.4 0.05 1.17973 1.28395 3.77168
2 3 15 2 0.1 0.03 1.88677 2.05517 1.27000
2 3 15 2 0.1 0.04 1.24755 2.05517 1.88689
2 3 15 2 0.1 0.05 1.23144 2.05517 1.88701

Table 2 Values of Skin-friction, Nusselt number and Sherwood Number
for different parameters at η = 1

Kr E Ω Sp Dp VR τ Nu Sh

1 3 15 2 0.1 0.05 31.07010 1.11707 1.01404
2 3 15 2 0.1 0.05 31.18150 1.15218 1.00215
3 3 15 2 0.1 0.05 31.30150 1.18574 0.99255
2 2 15 2 0.1 0.05 30.93190 1.39006 0.92341
2 3 15 2 0.1 0.05 31.18150 1.15218 1.00215
2 4 15 2 0.1 0.05 31.34460 1.03570 1.05271
2 3 10 2 0.1 0.05 10.07210 1.15218 1.00215
2 3 12 2 0.1 0.05 15.89760 1.15218 1.00215
2 3 14 2 0.1 0.05 31.18150 1.15218 1.00215
2 3 15 0.5 0.1 0.05 30.56020 1.17756 0.51807
2 3 15 1 0.1 0.05 30.73410 1.17484 0.66103
2 3 15 1.5 0.1 0.05 30.94190 1.16610 0.82349
2 3 15 2 0.2 0.05 30.65410 1.20466 1.20452
2 3 15 2 0.3 0.05 30.07210 1.25950 1.47638
2 3 15 2 0.4 0.05 29.37250 1.29107 1.92832
2 3 15 2 0.1 0.03 22.58470 1.15218 0.99932
2 3 15 2 0.1 0.04 26.85330 1.15218 1.00074
2 3 15 2 0.1 0.05 31.18150 1.15218 1.00215

5. CONCLUSION

An investigation of the join influence of the fluid parameters on con-
vective Rivlin-Ericksen flow of an unsteady incompressible and elec-
trically conducting fluid in vertical plates with a time dependence suc-
tion is discussed. The governing equations of the flow field were non-
dimensionalised and the solutions are obtained using Adomian decom-
position method. The effects of various parameters on velocity, tempera-
ture, concentration, skin friction, Nusselt number and Sherwood number
are presented in graphical and tabular forms.
The study reveals that;

1. Resultant velocity is strengthened by the presence of Ω, E, VR,
and Sp and weakened with the presence of Kr and Dp.

2. An increase in Dp tends to accelerate temperature profiles, while
it is slowed down by higher values of E and Sp.

3. Concentration distribution is enhanced with increase in Sp, how-
ever, the profile is reduced with an increase in Kr and Dp. Within
0.7 ≤ η ≤ 1, higher values of Dp improved the profile.

4. Skin friction is enhanced with an increase in the values of Sp and
decelerated by increasing Dp and Ω at η = 0. The same effect is
noticed for Sp andDp at η = 1. But, Ω tends to accelerate the skin
friction.

5. At η = 0, it is observed that increasing in the Soret number strength-
ens the heat transfer coefficient and weakens mass transfer coeffi-
cient. The reverse effect is noticed for Dufour number.

6. Both heat and mass transfer coefficients are improved by high val-
ues of Dp at η = 1.

NOMENCLATURE

x∗ dimensional distance upward the plate (m)
y∗ dimensional distance normal to the plate (m)
z∗ dimensional distance perpendicular to the planes of the plates
(m)
u∗, v∗, w∗ dimensional velocity components in the x∗, y∗, z∗ directions
respectively (ms−1)
t∗ dimensional time (s)
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Cp specific heat at constant pressure (Jkg−1K−1)
B0 magnetic induction (tesla)
T ∗ dimensional temperature (K)
C∗ dimensional concentration (kmol/m3)
P ∗ dimensional pressure (N/m2)
D chemical molecular diffusivity
g gravitational acceleration (m/s2)
T ∗h plate dimensional temperature (K)
C∗h plate dimensional concentration (kmol/m3)
kp non-dimensional permeability of the porous medium
k
′

mean absorption coefficient
Wo scale of suction velocity contain non-zero positive constant
Tm mean fluid temperature
KT thermal diffusion ratio
Cs concentration susceptibility
K thermal conductivity (W/m · K)
T0 temperature at the left plate (K)
C0 concentration at the left plate (kmol/m3)
h distance of the plate (m)
Greek Symbols
ρ∗ fluid density (kgm−3)
ν∗ kinematic viscosity (m2s−1)
σ Stefan-Boltzman constant (W/m2 · K4)
φo dimensional heat absorption coefficient (j/kg)
α thermal diffusivity
βT ,βC thermal, concentration expansion coefficient
β1 kinematic viscoelasticity
ε scalar constant
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