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ABSTRACT 

The time fractional Cattaneo-Christov flux heat model is first introduced to investigate the flow and heat transfer of Maxwell viscoelastic fluid past a 

vertical flat plate. Fractional constitutive relation and Cattaneo-Christov heat flux model are applied to construct the governing boundary layer 

equations of momentum and energy, which are nondimensionalized by new dimensionless variables and solved numerically. The results indicate that 

there exist intersections on velocity and temperature profiles for different values of Prandtl number when the fractional Cattaneo-Christov flux heat 

model is considered.  
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1. INTRODUCTION 

The study on heat transfer has attracted a considerable attention due to 

its widespread existence in many fields. The Fourier heat flux law 

(Grattan-Guinness, 2005) has been applied to investigate the features of 

heat transfer in the last two centuries. However, it leads to the paradox 

of infinite speed of propagation. In order to overcome this drawback,  

Cattaneo (2011) proposed a modified Fourier heat conduction law by 

adding a relaxation time term. So the diffusion equation is turned from 

a parabolic equation to a hyperbolic one, but the relation only involves 

partial time derivative. Recently Christov (2009) proposed an extension 

for the Cattaneo's law by using Oldroyd's upper-convected derivative, 

which successfully preserves the material-invariant formulation. This 

Cattaneo-Christov heat flux law is given by 
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in which ξ, V, k and T represent the relaxation parameter, velocity 

vector, thermal conductivity and temperature respectively. The 

Cattaneo-Christov heat flux model has been employed to predict the 

heat transport behavior under different mechanical and thermal 

boundary conditions (Straughan, 2010; Waqas et al., 2016; Han et al., 

2014; Hayat et al., 2016; Sui et al., 2016). Hayat et al., (2017) have 

investigated the heat and mass transfer of the boundary-layer flow of 

Burgers nanofluid with Cattaneo-Christov double diffusion. Also, they 

have considered the 3D flow of Prandtl liquid by employing Cattaneo-

Christov double diffusion models (Hayat et al., 2018). 

Viscoelastic fluids have gained tremendous attention of 

researchers (Hayat et al., 2016; Hayat et al., 2016; Hayat et al., 2017) 

due to their wide application in different fields of engineering and 

industry, such as composite manufacturing process, polymer melts and 

solutions, tissue engineering and enhanced oil recovery.  Constitutive 

equations with fractional derivatives have long played an important role  

in the description of complex dynamics in viscoelastic fluids (Song et 

al., 2000; Tan and Xu, 2002) as the fractional derivative is flexible. The 

Maxwell fluid is an important class of viscoelastic fluids, and the 

constitutive relation of Maxwell viscoelastic fluid written in terms of 

the fractional calculus has been shown to be consistent with 

thermodynamic principles (Friedrich, 1991), which is introduced as 

 

1
xy

u

t y

α
α

α
λ σ µ

 ∂ ∂
+ = 

∂ ∂ 
,                          (2) 

 

where λ  is the relaxation time of heat conduction, α (0<α≤1) is the 

velocity fractional derivative parameter, σxy is the shear stress 

component, μ is the kinematic viscosity, ∂α/∂tα is the Caputo fractional 

derivative operator and the fractional derivative of order α is defined as 

(Podlubny, 1999): 
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where Γ(·) is the Gamma function. 

The fractional derivative is a global operator reflecting memory 

character (Du et al.,2012), which has been verified effective in different 

areas. The study for the application of fractional derivative operator has 

attracted much interest in recent years (Chen et al., 2013; Jiang and Qi, 

2012; Yu et al., 2015). Ghazizadeh et al. (2010) studied the numerical 

solution of fractional order Cattaneo equation for describing anomalous 

diffusion. Fetecau et al. (2009) determined the velocity field and the 

adequate shear stress corresponding to the unsteady flow of a 

generalized Maxwell fluid by using Fourier sine and Laplace transforms. 

Tripathi et al. (2010) presents the transportation of viscoelastic fluid 

with fractional Maxwell model through a channel. 

In the study of heat conduction processes, fractional calculus 

theory has also been applied to anomalous heat conduction owing to the  
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nonlocal nature of fractional operators. Povstenko (2009) formulated 

the theory of thermal stresses by the generalized Cattaneo-type 

equations with Caputo time fractional derivatives. Liu et al. (2016) 

proposed an improved constitutive model in which the space Riesz 

fractional Cattaneo–Christov model is used to characterize heat 

conduction phenomena, and then they (Liu et al., 2017a) presented a 

new time and space fractional Cattaneo-Christov upper-convective 

derivative flux heat conduction model where the space fractional 

derivative is characterized by the weight coefficient of forward versus 

backward transition probability. In the two papers，the velocity is 

considered as a constant for simplicity so they only dealt with the 

energy equation and presented the impacts of fractional parameters 

evolution on heat transfer characteristics. 

Motivated by above discussions, we investigate the flow and heat 

transfer of Maxwell viscoelastic past a vertical flat plate with the time 

fractional Cattaneo-Christov heat flux, which can be rewritten as (Liu et 

al., 2017b) 
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where τ is introduced to keep the dimension of constitutive equation 

balance and its dimension is "s", β (0<β≤1) is the velocity fractional 

derivative parameter, the symbol ∂β/∂tβ is the Caputo's time fractional 

derivative of order β. By the new dimensionless variables, the nonlinear 

governing equations with mixed time-space derivatives are 

nondimensionalized and solved numerically. The effects of embedded 

parameters on velocity and temperature profiles are presented 

graphically and analyzed in detail. 

2. MATHEMATICAL FORMULATION 

Consider two-dimensional unsteady boundary layer flow and heat 

transfer of Maxwell viscoelastic fluid past a vertical plate. The 

Cartesian coordinate system is considered in a way that the x-axis is 

along the plate and y-axis is perpendicular to the plate. It is also 

presumed that Tw is the temperature of the plate and the ambient 

temperature corresponds to T∞. The diagram of the physical model is 

described in Fig. 1. 

 
Fig. 1 The Schematic diagram of the physical model 

By using the constitutive relation of viscoelastic fluid with 

fractional Maxwell model (2), the boundary layer equations of 

continuity and momentum can be written as follows (Zhao, 2016): 
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where u, v and T are the velocity components and temperature 

respectively, ρ is the density of fluid, βT is the volumetric thermal 

expansion coefficient. It is worth noting that when α=0 the model is 

simplified as the classical Newtonian fluid, while α=1 is corresponding 

to the ordinary Maxwell model. 

Combining time fractional Cattaneo-Christov flux (4) with the 

following energy conservation equation (Povstenko, 2011) 
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,                            (7) 

the fractional boundary layer energy equation can be obtained as 
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where αf=k/cρ is the thermal diffusion coefficient, c is the specific heat 

capacity. By setting ξ=0, Eq. (8) reduces to the classical heat 

conduction model. 

The initial and boundary conditions are given as follows: 
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In order to simplify the study, the dimensionless variables are 

introduced as follows: 
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where L is the length of the vertical plate, Gr and Pr are the Grashof 

number and Prandtl number respectively. By omitting the 

dimensionless mart *  for simplicity, the dimensionless governing 

equations can be obtained as below: 
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The corresponding non-dimensional initial and boundary 

conditions become: 
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3. NUMERICAL TECHNIQUES 

3.1 Discretization Method 

Define xi=iΔx (i=0, 1, 2, …, N), yj=jΔy (j=0, 1, 2, …, M), tk=kΔt (k=0, 

1, 2, …, R), whereΔx=L/N and Δy=Ymax/M are space step, Δt is time 

step. uk
i,j is the numerical solution of equations (10)-(12) at the mesh 

point (xi, yj, tk). According to the definition of Caputo fractional 

derivative, we introduce the L1-algorithm to discretize the time 

fractional derivative (0<β<1) in the following form (Liu et al., 2007): 
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    (13) 

where bq=(q+1)1-β-q1-β, q=0, 1, 2, …, R. The detailed difference 
schemes and iterative equations are shown in the appendix.  

3.2 Iteration algorithm 

According to the initial condition, we can acquire the values of u, v and 

θ in the specific domain at t=0. The variables of (k-1)-level are regarded 

as constants. The iteration equations can be written as tri-diagonal 

system of equations, then their solutions can be obtained by the Tomas 

algorithm (Carnahan et al., 1969). The values of (i-1)-level only 

influence the right side of the linear equations. When the absolute 

values of the difference between velocity u and temperature θ at all 

nodes within two consecutive time steps are less than 10-5, the iteration 

of time level stop and arrives at the steady state. Regarding the 

computational region as a rectangle with boundary of xmax=1 and 

ymax=12, where ymax corresponds to y→∞. After the consideration of the 

accuracy of numerical solutions and the time of computation, the spatial 

mesh sizes and time steps are fixed as Δx=0.05, Δy=0.05, Δt=0.1. 

Based on the computation of the values of u and θ with the following 

mesh sizes in Fig. 2, the stability and convergence of the numerical 

solutions for the selected grid sizes can be proved. 

 
     Fig. 2 Grid independence for different grid sizes 

 

Table 1 Comparison between -∂θ/∂y|y=0 at x=1 for λ=0, ξ=0 and 

similarity solutions -θ'(0) 

Pr  Crepeau and 

Clarksean 

(1997) 

Chamkh and 

Khaled 

(2001) 

Chen 

(2004) 

Present 

Study 

0.1 0.2302 0.2119 0.2301 0.2249 

1 0.5671 0.5646 0.5671 0.5705 

10 1.1690 1.1720 1.1693 1.1758 

 

In order to verify the accuracy of the numerical solutions, a 

comparison between -∂θ/∂y|y=0 at x=1 when λ=0, ξ=0 and the previous 

published similarity solutions -θ'(0) (Crepeau and Clarksean, 1997; 

Chamkha and Khaled, 2001; Chen, 2004) are demonstrated in Table 1. 

The results indicate that the numerical solutions in the paper are 

consistent with the previous published data. 

4. RESULTS AND DISCUSSION 

The present section aims to study the impacts of fractional derivative 

parameters α and β on the dimensionless velocity u and temperature θ. 

Moreover, we show the influence of Pr on velocity and temperature at 

both cases of classical heat flux ξ=0 and fractional Cattaneo-Christov 

heat flux model. 

Figures. 3 and 4 present the effects of fractional parameters α and 

β on the velocity distributions. It is shown from Fig. 3 that the 

maximum value of velocity profile reduces with α while the position of 

maximum value gets closer to the vertical plate. The thickness of the 

momentum boundary layer increases with α slightly, which indicates 

that the velocity fractional derivative parameter weakens the natural 

convection flow and boosts the elastic effect of Maxwell fluid. It is also 

worth noting that the velocity profiles intersect each other for different 

values of α, which implies that the fractional equation with relaxation 

times shows short-term memory for the previous moment and try to go 

back to the previous state. Unlike the influence of α on velocity, the 

maximum values of velocity remain mostly unchanged with different 

values of β as show in Fig. 4. The temperature fractional derivative 

parameter β has almost no influence on the velocity profiles near the 

vertical plate. However, the velocity increases remarkably with the 

increase of β .  

 

 
       Fig. 3 Velocity profiles for different α 

 
       Fig. 4 Velocity profiles for different β 

 

The influences of α and β on the temperature distributions are 

illustrated in Figs. 5 and 6. It is shown in Fig. 5 that the temperature 

profiles rise with the increase of α. It is observed that the classical 

Newtonian fluid has the thinnest boundary layer, while the ordinary 

Maxwell fluid is corresponding to the thickest thermal boundary layer. 

The temperature distribution rises and the thermal boundary layer is 

thicker for larger values of α. On the contrary, the temperature profiles 
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decline with the increase of β as depicted in Fig. 6, which demonstrate a 

loss of the thickness of thermal boundary layer. These results indicate 

that the temperature frictional parameter β enhances the efficiency of 

heat transfer.  

 

 
       Fig. 5 Temperature profiles for different α 

 
       Fig. 6 Temperature profiles for different β 

 

 
Fig. 7 Velocity profiles of two different models for different Pr 

The comparisons of velocity and temperature distributions 

between the classical heat flux model and the frictional Cattaneo-

Christov heat flux model are shown in Figs. 7 and 8, respectively. The 

frictional Cattaneo-Christov heat flux model reduces to the classical 

heat flux model when the relaxation parameter ξ=0. It is observed from 

Fig. 7 that the maximum value of velocity and the thickness of 

momentum boundary layer for the fractional Cattaneo-Christov model 

are larger than them for the classical heat flux model when the Prandtl 

number is fixed. Moreover, with the increasing of Prandtl number, the 

value of maximum velocity declines and goes left position slightly to 

the vertical plate for the two cases. It is indicated from Fig. 8 that for 

every fixed Prandtl number, the thickness of thermal boundary layer for 

the Cattaneo-Christov model is larger compared to the classical heat 

flux model. Furthermore, it is worth noting that the velocity profiles as 

well as the temperature profiles intersect each other for the case of the 

fractional Cattaneo-Christov model. The existence of intersections 

implies that the frictional Cattaneo-Christov heat flux model is able to 

describe the influence of memory on the viscoelastic fluid behavior. 

 

 
Fig. 8 Temperature profiles of two different models for different Pr 

 

5. CONCLUSIONS 

The paper investigates unsteady flow of Maxwell viscoelastic fluid with 

time fractional Cattaneo-Christov heat flux model. The fractional 

Maxwell shear stress and time fractional Cattaneo-Christov heat flux 

models are introduced in the constitutive relations. The new 

dimensionless variables are proposed to nondimensionalize the 

governing equations, which are solved by finite difference method 

together with L1-algorithm. The important observations of the present 

study are summarized as follows: 

• The velocity fractional derivative parameter α weakens the natural 

convection flow and enhances the elastic effect of Maxwell fluid. 

• The temperature declines and the thermal boundary layer 

becomes thinner as β increase, which implies that the temperature 

fractional parameter enhances the efficiency of heat transfer  

• The influence of fractional derivative parameter α on temperature   

distributions is opposite to β. 

• The velocity and temperature profiles intersect each other for 

different values of Prandtl number for the case of time fractional 

Cattaneo-Christov heat flux model. 

• The fractional Cattaneo-Christov heat flux model with Caputo 

time derivatives exhibits a short memory of previous states. 
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NOMENCLATURE 

c  specific heat capacity (J/kg·K) 

Gr        Grashof number  

g acceleration due to gravity (m/ s2) 

k  thermal conductivity (W/m·K)  

L  length of the vertical plate (m)  

Pr        Prandtl number 

q heat flux (W/m2) 

T  temperature (K)  

t  time (s)  

u  interfacial velocity component (m/s)  

v  interfacial velocity component(m/s)  
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x  coordinate component (m)  

y  coordinate component (m)  

 

Greek Symbols  

α velocity fractional derivative parameter 

αf             thermal diffusion coefficient (m2/s) 

β time fractional derivative parameter 

βT  volumetric thermal expansion coefficient 

λ relaxation time of heat conduction 

μ dynamic viscosity (m2/s) 

θ         dimensionless temperature 

ρ density (kg/m3) 

σxy        shear stress component (pa) 

τ the coefficient to keep the dimension of constitutive       

equation balance (s) 

υf           kinematic viscosity (m2/s) 

ξ           relaxation parameter 

Superscripts  

*        dimensionless form 

Subscripts  

t         time derivative 

w        vertical plate 

∞        ambient environment 
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APPENDIX 
By using the backward and central difference, the integer-order terms in 

the governing equations are discretized as 
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Substituting Eqs. (A1)-(A3) into Eq. (13), the fractional derivatives 

become: 
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where the truncation error is Ο(Δt2-β+Δx) . 
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where the truncation error is Ο(Δt2-β+Δy). 

Similarly, the finite difference method is employed in 

dimensionless velocity terms. For simplicity, note 
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where αs=(s+1)1-α- s1-α, s=0,1,2,…,R. 

The iteration equations are achieved in the following forms: 
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