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ABSTRACT 

In this paper, a mathematical model has been developed to analyze the double diffusive convective flow of Casson fluid over an inclined stretching 

sheet with Cattaneo-Christov Heat Flux model. The velocity slip is considered over the surface of the stretching sheet as well. The governing equations 

for the pertinent model are transformed into non-dimensional highly coupled nonlinear differential equations using similarity transformations. The 

implicit finite difference method is used to carry out the numerical results and presented the graphs for different values of the physical parameter, 

Casson fluid parameter, and thermal relation time parameter, chemical reaction parameter for the cases of assisting flow, opposing flow and blowing. 

The present results are compared with earlier existing results and found to be very good agreement. Increasing Casson fluid parameter retards the flow 

velocity and temperature fields and skin friction coefficient while enhance the concentration field, rate of heat and mass transfer. The fluid velocity 

and temperature fields, skin friction coefficients, heat and mass transfer rates are decreased with increase in thermal relation time while concentration 

profile enhanced. This type of study finds applications in industry and engineering fields like condensation processes, artificial fibers and heart valves 

and heat conduction in tissues etc. Increasing Casson fluid parameter causes to decelerates fluid velocity while accelerates temperature and 

concentration, skin friction coefficient, Nusselt number and Sherwood number as well. Increasing velocity slip parameter leads to reduce the fluid 

velocity and Nusselt & Sherwood number while increases temperature and concentration distribution and skin friction coefficient values. 

Keywords: Stretching Sheet; Casson Fluid; Cattaneo-Christov Heat Flux; Velocity Slip; Keller Box Method. 

 

1. INTRODUCTION 

In recent years the study of non-Newtonian fluid flow over a stretching 

surface has gained significant interest from scientists and researchers due 

to its wide range of applications in technology and industry. Such 

applications include the boundary layer over liquid film in condensation 

processes, artificial fibers, cooling of metallic sheets or electronic chips, 

food stuffs, biological solutions, glues, glass blowing, hot rolling, 

polymer extrusion from a dye, paper production, slurries, paints, wire 

drawing and many others. Many scientists and researchers Prasad et.al 

(2009), Mahantesh et al. (2010), Hayat et al. (2011), Nadeem et al. 

(2011), Sanjay anand et al. (2006) are explored the boundary layer flow 

over a stretching surface on various non-Newtonian models. The 

numerous non-Newtonian fluids are Casson fluids, Jeffrey fluid, 

micropolar fluids, power-law fluids, Rivlin- Ericksen fluids, viscoelastic 

fluids, Walter’s liquid B fluids etc. Although various types of non-

Newtonian fluid models are proposed to explain the behavior, one of the 

most significant types of non-Newtonian fluids is the Casson fluid. The 

Casson fluid is a plastic fluid and which yields shear stress in Constitutive 

equations. Some of the examples of Casson fluid model are coal in water, 

concentrated fruit juices, drilling operations, food processing, honey, 

jelly, metallurgy, manufacturing of pharmaceutical products, paints, 

synthetic lubricants, synovial fluids, sewage sludge, soup, tomato sauce 

and many others. Majority of researchers Fung (1984), Dash et al. (1996),  
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Nadeem et al. (2012), Hayat et al. (2011), Hayat et al. (2012), analyzed 

the Casson fluid flow over a stretching sheet.  Recently, Bala Anki Reddy 

(2016) considered two- dimensional MHD convective boundary layer 

flow of a Casson fluid over an exponentially inclined permeable 

stretching surface in the presence of thermal radiation and chemical 

reaction. Very recently, investigate the steady two-dimensional 

magnetohydrodynamic boundary layer flow of a Casson fluid over an 

exponentially stretching surface in the presence of thermal radiation and 

chemical reaction was discussed by Bala Anki Reddy (2016). 

Nagendramma et al. (2018) studied 3D convective flow of a Casson 

nanofluid from slandering surface in a suspension of gyrotactic 

microorganisms with Cattaneo Christov heat flux. 

Heat transfer dynamics is a significant fact in the nature which occurs 

due to temperature difference between two bodies or within the same 

body. The dynamics of heat transfer has enormous applications in 

engineering and industrial processes. For example, nuclear reactor 

cooling , wire drawing, cooper materials, cooling of electronic devices, 

heat conduction in tissues, refrigeration, heat pumps, energy production, 

etc. Heat conduction law explored by Fourier (1822) has been the origin 

to forecast the heat transfer behaviour in different practical situations. 

But it has a disadvantage that it produces a parabolic energy equation for 

the temperature field, by which the initial disturbance is instantly 

experienced by the medium under observation. In literature it is named 

as “Paradox of heat conduction”. To get better of this, Cattaneo (2011) 

modified the Fourier’s law of heat conduction by including the relaxation 

time for heat flux, which allows the transport of heat via propagation of 

thermal waves with finite speed. Later, Christov (2009) further modified 
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the Cattaneo model by including thermal relaxation time along with 

Oldroyd’s upper-convected derivatives in order to achieve the material-

invariant formulation. This alteration in literature is recognized as 

Cattaneo- Christov heat flux model. Han et al. (2014) suggested a 

comparison of Fourier’s Law and the Cattaneo– Christov heat flux model 

on a stretched boundary layer flow with Maxwell fluid. Mustafa (2015) 

suggested the uniqueness of Cattaneo-Christov heat flux in the rotating 

flow of Maxwell fluid over a linear stretching sheet. Cattaneo-Christov 

heat flux model is imposed to disclose the heat transfer characteristics of 

variable thermal conductivity viscoelastic fluid over a stretching sheet 

with variable thickness was investigated by Hayat et al. (2015). Very 

recently, Hayat et al. (2016) discussed the convective flow of two 

viscoelastic fluid past a linear stretching sheet with Cattaneo-Christov 

heat flux.   

To the best of author’s knowledge, no one has discussed so far the 

Cattaneo-Christov heat flux model on the Casson fluid flow over an 

exponentially stretching surface. Hence, our motivation is to discuss the 

Cattaneo-Christov heat flux model for the magnetohydrodynamic flow 

of a Casson fluid over an exponentially stretching surface with chemical 

reaction. The slip velocity condition is also considered in this model. The 

numerical solutions are obtained by using implicit finite difference 

method. The numerical solutions obtained are then compared with those 

reported by Bala Anki Reddy (2016), Mukhopadhyay et.al (2013), Ishak 

(2011) for the skin friction coefficient and Nusselt number in the limiting 

case. Excellent agreement is achieved. 

2. MATHEMATICAL FORMULATION 

Consider two-dimensional flow of an incompressible viscous electrically 

conducting Casson fluid over an exponentially permeable stretching 

sheet which is inclined with an acute angle   to the vertical. The x-axis 

is taken along the stretching surface in the direction of the motion while 

the y-axis is perpendicular to the surface which is shown in Fig.1.  

 
 

Fig. 1 Physical Configuration and Coordinate System 

Stretching surface has the exponential velocity, 0

x

LU U e  the 

temperature distribution 2
0

mx

L
wT T T e   and the concentration 

distribution 2
0

nx

L
wC C C e   where 0U

 
is the reference velocity, 0T is 

the reference temperature, 0C  is the reference concentration, m is the 

temperature exponent, n is the concentration exponent and L is the 

reference length. A variable magnetic field 2
0

x

LB B e is applied normal 

to the sheet, where 0B is a constant.  

We assume that the rheological equation of state for an isotropic and 

incompressible flow of a Casson fluid is as  
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where B is the plastic dynamic viscosity of the non-Newtonian fluid, 

yP is the yield stress of the fluid, ,ij ije e 
ije is the ( , )thi j component 

of the deformation rate and c is the critical value of this product based 

on the non-Newtonian model.  

The continuity, momentum, energy and concentration equations 

governing such type of flow can be written as 
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Subject to the boundary conditions: 
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where u and v are the velocity components in the x and y directions 

respectively, 
 
is the kinematic viscosity,

 
ρ is the density of the fluid, 

2B c

yp

 
   is the Casson parameter, σ is the electrical conductivity, g

acceleration due to gravity, T coefficient of thermal expansion, 
*

coefficient of solutal expansion, T is the temperature, T is the 

temperature of the ambient fluid, C is the concentration, C  is the 

concentration of the ambient fluid,   is the angle of inclination,
 pc  is 

the specific heat at constant pressure, D is the mass diffusion coefficient, 

2
1

x
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

  is the velocity slip factor and the reaction rate is in the form 

of L

x

ek0 and q is the heat flux which satisfies the following 

relationship: 
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Here  is the relaxation time of heat flux, k is the thermal conductivity 

of the fluid and V is the velocity vector.  Eliminating q from Eqs. (4) and 

(7) gives: 
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Now, introducing the following transformation  
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The pressure outside the boundary layer in quiescent part of flow is 

constant and the flow occurs only due to the stretching of the sheet and 

hence the pressure gradient can be neglected. Considering the usual 

boundary layer approximations, , , , ,
u u v v
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momentum equation in y- direction reduces to 0.
p
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
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(9) into the Equations (2), (5) and (8), we get the following set of ordinary 

differential equations 
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 is the velocity slip. Also, + sign and – 

sign in Eq. (10) correspond to assisting and opposing buoyant flows 

respectively. It may be noted that when 0  in Eq. (8), the problem will 

be reduced to Fourier’s heat conduction law.                                           

The quantities of physical interest in this problem are the skin-friction 

coefficient, heat transfer rate and mass transfer, which are defined as 
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The surface shear stress w , surface heat flux wq and mass flux wJ are 

given by 
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Substituting (10) and (17) into Equation (16), we get 
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where 0Re

x

L

x

xU e


 is the local Reynolds number. The above Skin-

friction coefficient, local Nusselt number and Sherwood number shows 

that its variation depends on the variation of the factors    0 , 0f  

and  0 respectively. 

3. METHOD OF SOLUTION 

The set of equations (10) - (12) with conditions (13) are solved using 

implicit finite difference method with Keller box scheme, which gives 

second order accuracy. For the detail information of this method one can 

refer to Cebeci and Bradshaw (1984) and Bhuvanavijaya et.al (2016). 

The results are strongly dependent on the number of gird points in  -

directions. 
 
value is to be chosen as 0.01 after some trails for

0.1,0.01,0.001  . ηmax is to be chosen as an adequately large value 

such that the conditions are satisfied. Grid independence has been 

obtained in the programming. The developed code is run in MATLAB®. 

In order to validate the results comparison has been done with available 

existing results by Mukhopadhyay et.al (2013), Ishak (2011), and Bala 

Anki Reddy (2016) in the absence of concentration equations, Hartmann 

number, Casson fluid parameter, thermal and solutal buoyancy 

parameters, Schmidt number, suction parameter and velocity slip, as 

shown in table-1. The obtained results are correlated. 

Table-1: Nusselt number values for various values of Pr for Newtonian 

fluid with S=0. 

Pr Mukhopadhyay 

et.al (2013) 

Ishak 

(2011) 

Bala Anki 

Reddy (2016) 

Present 

values 

1 0.9547 0.9548 0.95477 0.954723 

3 1.8691 1.8691 1.86916 1.868775 

10 3.6603 3.6604 3.66038 3.660501 

4. RESULTS AND DISCUSSIONS 

The solutions for the equations are carried out for the fluid velocity  f  , 

temperature   and concentration   profiles as presented in the 

figures (1)-(22) for various values of the physical parameters. 

Throughout the calculations we fixed the parameter H=0.5, Pr=0.7, 

Sc=0.3, a=0.5, b=0.5, 1 2, 1, 0.5, 1, 0.5,
4


         Sv=0.5 and 

S=1 unless otherwise specified. 

Figs. 2-4 represent profiles of flow velocity, temperature and 

concentration for different values of Casson fluid parameter   . The 

Casson fluid parameter 
2B c

yp

 
  is boasted in shear stress term in 

momentum equations (10) and in the velocity slip boundary condition 

(13). If yp tends to zero that is   reaches to infinity, the term 
1

1


 
 

 
 

becomes unity in the eqns. (10) and (13), therefore the problem becomes 

Newtonian fluid case. Increasing  implies decreasing in yield stress in 



Frontiers in Heat and Mass Transfer (FHMT), 11, 5 (2018)
DOI: 10.5098/hmt.11.5

Global Digital Central
ISSN: 2151-8629

   4 

 
Fig. 2 Velocity Profile for different values of Casson parameter    

 

 
Fig. 3: Temperature distribution for different values of Casson 

parameter    

 

 
Fig. 4 Concentration distribution for different values of Casson 

parameter    

 
Fig. 5 Velocity profile for different values of Magnetic parameter (H) 

 

 
Fig. 6: Temperature distribution for different values of Magnetic 

parameter (H) 

 

 

 
Fig. 7 Concentration distribution for different values of Magnetic 

parameter (H) 
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momentum equation due to which the fluid flow velocity facilitates 

effectively. Therefore the flow velocity increases near the wall and 

reduces at far from surface for the cases of assisting, opposing and 

blowing (fig.2). Temperature distribution decreases as increase in   for 

the case of assisting and blowing flows but increases for the case of 

opposing flows as shown in fig.3. Casson parameter does not influence 

effectively in thermal boundary layer equations due to not arise in energy 

equation and thermal boundary condition. Indirectly it is influenced via 

coupling momentum and energy equations. With this reason 

concentration distribution also therefore increases sufficiently with 

increase in   for the case of opposing flows but reduces for the cases of 

assisting and blowing flows (fig. 4). Overall, velocity and temperature 

boundary layer thickness reduced for larger values of  whereas 

concentration boundary layer thickness increased. The present results 

concur with those presented by Ramachandraprasad et.al (2013) and Bala 

Anki Reddy (2016). 

Figs. 5-7 represent flow velocity, temperature and concentration 

profiles for various values of Hartmann number (H). As increase in 

Hartmann number, accelerated the Lorentz force which produce the 

resistance to the fluid flow causes to reduce velocity profile for all the 

cases of assisting, opposing and blowing. Thus the hydrodynamic 

boundary layer thickness is reduced (fig. 5). A very strong enhancement 

in temperature field as shown in fig. 6 is generated within the boundary 

layer regime for all cases of assisting, opposing and blowing. Maximized 

temperature is noticed at surface  0   of stretching sheet and 

minimized in the ambient stream  8  . The thickness of thermal 

boundary layer therefore increased with increase in H. The thickness of 

the solutal boundary layer enhanced as well, i.e., accelerates the 

concentration profile as increase in H for all cases of assisting, opposing 

and blowing. 

Figs. 8-10 depict flow characteristics velocity, temperature and 

concentration profiles for different values of solutal buoyancy parameter

  . The parameter 2/ RexGc  is the ratio of solutal Grashof number 

and Reynolds number. Increasing δ implies Reynolds number dominates 

the Grashof number inversely which cause to enhance velocity field 

indicating inertia forces influenced over viscous forces. These found to 

enhance velocity, and hence to accelerate thickness of momentum 

boundary layer for all cases of assisting, opposing and blowing with 

increase in   . It is observed from figs. 9 and 10 that thermal and 

concentration boundary layer thickness is lesser with the reason of 

depreciation of temperature and concentration distributions for all cases 

of assisting, opposing and blowing. 

 

 
Fig. 8 Velocity profile for different values of solutal buoyancy 

parameter    

 
Fig. 9 Temperature distribution for different values of solutal buoyancy 

parameter    

 

 
Fig. 10 Concentration distribution for different values of solutal 

buoyancy parameter    

 
Fig. 11 Velocity profile for different values of angle of inclination 

   
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Fig. 12: Temperature distribution for different values of angle of 

inclination    

 
Fig. 13 Concentration distribution for different values of angle of 

inclination      

  

 
Fig. 14 Velocity profile for different values of thermal relaxation time 

 2  

Figs. 11-13 exhibit the velocity, temperature and concentration 

profiles respectively for various values of angle of inclination   . As 

increase in   from 0  to / 2  through / 4 , the flow velocity decreases 

for all cases of assisting, opposing and blowing. It means that horizontal, 

inclines and vertical flows are decreased with increase in  (fig. 11). The 

depreciation flow velocity causes to enhance temperature and 

concentration distributions. Therefore, thermal and concentration 

boundary layer thickness are enhances for larger values of   as shown 

in figs. 12 and 13.  

 Figs. 14-16 represent the flow velocity, temperature and 

concentration profiles for different values of thermal relaxation time

 2 . The problem reduces to Fourier’s heat conduction model for

0
2 0

x

LU e

L


   . It is seen from fig. 14 that the flow velocity along the 

plate depreciates with increase in 2  from 0 to 0.5 through 0.3. It is 

worth to mention from these results that fluid velocity results are more  

 

 

 
Fig. 15 Temperature distribution for different values of thermal 

relaxation time  2  

 

 
Fig. 16: Concentration distribution for different values of thermal 

relaxation time  2  
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Fig. 17 Velocity profile for different values of the chemical reaction 

parameter    

 
Fig. 18 Temperature distribution for different values of the chemical 

reaction parameter    

 
Fig. 19. Concentration distribution for different values of the chemical 

reaction parameter    

dominated for Fourier heat flux model than Cattaneo-Christov heat flux 

model. Thus thickness of the momentum boundary layer reduces for all 

cases of assisting, opposing and blowing. The similar results have been 

observed for temperature field that is increase in 2  decelerates the 

thickness of thermal boundary layer. The opposite results are observed 

for concentration distribution as shown in fig. 16. The similar behavior 

for viscous fluid has been documented by Mustafa (2015). 

Figs. 17-19 show the profiles of velocity, temperature and 

concentration respectively for various values of the chemical reaction 

parameter   . As shown in fig 17, the fluid velocity decreased clearly 

with stiffer chemical reaction, that is Increase in   retards the flow 

velocity and therefore the thickness of momentum boundary layer is 

enhanced for all cases of assisting, opposing and blowing. As chemical 

reaction parameter presents in concentration equations, the results shows 

drastic change in concentration distribution compared to temperature 

distribution. Therefore, the result of temperature and concentration 

distributions shows opposite results. That is the thickness of thermal and 

concentration boundary layer increase and decrease respectively for 

larger values of  for all the cases of assisting, opposing and blowing. 

Similar behavior has been noticed by Mallikarjuna et.al (2016) for 

limiting cases. 

Figs. 20 – 22 represent the effects of velocity slip parameter (Sv) on 

flow velocity, temperature and concentration profiles respectively. The 

fluid velocity strongly decelerates near the surface as increase in Sv and 

transition is reported far from surface that is smooth increment has been 

observed in the boundary layer regime demonstrating the convergence of 

the numerical solution. The same behavior is reported by Bala Anki 

Reddy (2016). Fig. 21 shows that increase in Sv tends to enhance 

temperature field significantly, i.e. accelerates thermal boundary layer 

thickness for all cases of assisting, opposing and blowing. Concentration 

field increased as well smoothly with increase in Sv for all the cases of 

assisting, opposing and blowing. These trends were also analyzed by 

Ramachandra Prasad et.al (2013) for limiting cases. 

Table 2 shows the values of skin friction coefficients, rate of heat 

and mass transfer for different values of 1 2, , , , , , andH S Sv     . It 

is noticed from this table that skin friction coefficient found to increase 

for increasing values of , , ,H Sv  and decreasing values of  2 , .   

Nusselt number (rate of heat transfer) values accelerated for larger values 

of ,  and smaller values of 2, ,H   . Sherwood number values are 

enhanced with increase in ,  and decrease in 2, ,H   . The rate of 

heat transfer increases for Sv<1 while decreases for Sv >1. The opposite 

behaviour has been reported for rate of mass transfer for different values 

of Sv. 

 
Fig. 20: Velocity profile for different values of the velocity slips 

parameter (Sv)
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Table 2 The values of skin friction coefficient, Nusselt number and Sherwood number for various values of 1 2, , , , , , andH S Sv      

  H 
1    2    S Sv (0)f   (0)  (0)  

1 1 1 0.5 0.5 1 0.5 0.5 -0.951597 1.407154 0.761082 

1.5 1 1 0.5 0.5 1 0.5 0.5 -0.948582 1.428728 0.762418 

2 1 1 0.5 0.5 1 0.5 0.5 -0.936328 1.436834 0.762751 

1 1.5 1 0.5 0.5 1 0.5 0.5 -1.142080 1.364190 0.755402 

1 2 1 0.5 0.5 1 0.5 0.5 -1.317132 1.325798 0.750545 

1 1 0.5 0.5 0.5 1 0.5 0.5 -1.196490 1.369069 0.756493 

1 1 0.5 0.5 0.5 2 0.5 0.5 -1.236027 1.352026 0.954526 

1 1 0.5 0.5 0.5 3 0.5 0.5 -1.261932 1.341603 1.113977 

1 1 0.5 1 0.5 1 0.5 0.5 -0.834423 1.450297 0.767635 

1 1 0.5 0.5 0.4 1 0.5 0.5 -1.176362 1.223509 0.757418 

1 1 0.5 0.5 0.2 1 0.5 0.5 -1.131815 0.952533 0.759691 

1 1 0.5 0.5 0.5 1 0.4 0.5 -1.139495 1.206712 0.740844 

1 1 0.5 0.5 0.5 1 0.2 0.5 -1.032603 0.947289 0.710515 

1 1 0.5 0.5 0.5 1 0.5 1 -0.500008 1.136294 0.731843 

1 1 0.5 0.5 0.5 1 0.5 2 0.7145630 0.741356 0.679769 

 
Fig. 21 Temperature distribution for different values of the velocity 

slips (Sv) 

 
Fig. 22 Concentration distribution for different values of the velocity 

slips (Sv) 

5. CONCLUSIONS 

In this paper, velocity slip and chemical reaction effects are investigated 

on convective heat and mass transfer flow of a Casson fluid with 

Cattaneo-Christov Model from an inclined stretching sheet. The 

governing boundary equations are non-dimensionalized using similarity 

transformations. The numerical method has been employed to obtain the 

solutions of the resultant nonlinear ordinary differential equations. The 

values are presented graphically for different values of physical 

parameter on flow velocity, temperature and concentration fields and rate 

of heat and mass transfer. The conclusions of the results are: 

 Increasing Casson fluid parameter tends to depreciates flow velocity 

while enhances temperature and concentration distributions, skin 

friction coefficient, rate of heat and mass transfer as well. 

 Increase in Hartmann number retards the flow velocity, rate of heat 

and mass transfer and increase the values of temperature and 

concentration profiles. 

 As increase in angle of inclination parameter, velocity decelerates 

while temperature and concentration profiles are accelerated. 

 The effect of thermal relation of time is to decrease all the flow 

characteristics except the concentration profile.  

 The momentum and solutal boundary layer thickness and skin 

friction coefficients and rate of heat transfer values are reduced with 

increase in chemical reaction parameter while it enhances 

temperature profile and rate of mass transfer results. 

 Increase in velocity slip parameter leads to reduce the fluid velocity 

and rate of heat and mass transfer while enhances temperature and 

concentrations distributions and skin friction coefficient values. 
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NOMENCLATURE: 

U stretching velocity 

0U   reference velocity 
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0T  reference temperature 

0C
 

 reference concentration  

L   reference length 

0B
 

constant 

yP
 

yield stress of the fluid 

u  velocity component in the x direction ( 1ms ) 

v  velocity component in the y direction ( 1ms )  

x, y    coordinates along and normal to the stretching surface (m)  

p  fluid pressure 

g  acceleration due to gravity 

pc    specific heat at constant pressure ( 1 1J kg k  ) 

T  temperature of the fluid (K) 

wT  surface temperature 

wC  surface concentration 

T   temperature far away from the stretching sheet 

C  concentration of the fluid ( 3kmol m ) 

C   concentration of the ambient fluid 

D  mass diffusion coefficient ( 2 1m s ) 

H   magnetic parameter 

Gr

  

local Grashof number 

Gc  local solutal Grashof number 

Pr

 

Prandtl number 

Sc

 

Schmidt number 

S   suction parameter (or blowing) 

N  velocity slip factor 

V  velocity at the wall 

Sv  non-dimensional velocity slip  

wq
 

surface heat flux  

wJ
 

mass flux  

fC  skin friction coefficient 

xNu  local Nusselt number 

xSh  local Sherwood number 

Rex  local Reynolds number 

Greek symbols 

B   
plastic dynamic viscosity of the non-Newtonian fluid 

  ( , )thi j component of the deformation rate 

c  
critical value of this product based on the non-Newtonian 

model 


   

kinematic viscosity 

    dynamic viscosity 


  

density of the fluid ( 3kg m ) 

    Casson Parameter 

   electrical conductivity 

T   coefficient of thermal expansion (
3 /m kmol ) 

*   coefficient of solutal expansion (
1K  )   

  inclination angle from the vertical direction   

  buoyancy parameter 

   similarity variable 

  solutal buoyancy parameter 

  dimensionless temperature 

  dimensionless concentration 

  chemical reaction rate ( 3kmol m ) 



  

chemical reaction parameter 

w  
surface shear stress ( 2N m ) 

Subscripts 

w  conditions at the wall 

  ambient condition 

Super script 

'   differentiation with respect to   
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