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ABSTRACT 
The present analysis is focused on free convective heat and mass transfer characteristics of magneto flow through a moving inclined plate under the 
influence of Aligned magnetic, viscous dissipation and thermal radiation. A uniform magnetic field is applied perpendicular to the plate. The 
governing non-dimensional linear partial differential equations are solved by using perturbation technique. Graphical results for the velocity, 
temperature and concentration distributions within the boundary layer for several physical parameters and tabulated results for the Skin-friction, the 
Nusselt number and the Sherwood number are displayed and discussed. The effect of increasing values of the viscous dissipation parameter or the 
Eckert number is to enhance the velocity and temperature fields. The current study is well supported by the verification of a previous result. 
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1. INTRODUCTION 
A magnetohydrodynamic flow refers to the flow of electrically 
conducting fluids, such as plasmas or ionized gases under a magnetic 
field. The effect of the magnetic field on the flow of the fluid can be 
derived using Reynolds’s transport theorem and Maxwell’s equations. 
Magnetohydrodynamics is currently undergoing a period of great 
enlargement and differentiation of subject matter. The interest in these 
new problems generates from their importance in liquid metals, 
electrolytes and ionized gases. This concept has been surveyed and 
reported in the research paper by Chandran et al. (1998). Convection in 
porous media can be applied to underground coal gasification, ground 
water hydrology, iron blast furnaces, wall cooled catalytic reactors, 
cooling of nuclear reactors, solar power collectors, energy efficient 
drying processes, cooling of electronic equipments and natural 
convection in earth’s crust. Heat and mass transfer from different 
geometries embedded in porous media has many engineering and 
geophysical applications such as drying of porous solids, thermal 
insulations, cooling of nuclear reactors, crude oil extraction, 
underground energy transport, etc. The hydromagnetic convection with 
heat and mass transfer in porous medium has been studied due to its 
importance in the design of MHD generators and accelerators in 
geophysics, in design of underground water energy storage system, soil-
sciences, astrophysics, nuclear power reactors and so on. The concept 

of porous medium with heat and mass transfer has been studied and 
presented in the research paper by Reddy (2014).  
    Thermal radiation impacts might play a major role in controlling heat 
transfer processes in polymer processing industry. High temperature 
plasma, cooling of nuclear reactors and power generation systems. The 
radiative flows of an electrically conducting fluid with high temperature 
in the presence of magnetic field are  experienced in electrical power 
era, space vehicle reentry, atomic designing applications and other 
modern zones. Owing to these applications, the present work deals with 
a problem of such kind. MHD boundary layer flow over an 
exponentially stretching permeable surface with thermal radiation is 
studied by Mukhopadhyaya et al. (2014). 
    The flow and heat transfer analysis in boundary layer flow over an 
exponentially stretching sheet with combined effects of suction/blowing 
and thermal radiation are investigated by Pramanik (2014). Pushpalatha 
et al. (2016) investigated the effects of thermal diffusion and radiation 
with convective boundary conditions. Effects of thermal radiation and 
porosity on MHD mixed convection flow in a vertical channel using 
homotopy analysis method were also carried out by Srinivas and 
Muthuraj (2010). Raptis et al. (2003) studied the effects of radiation in 
an optically thin gray gas flowing past a vertical infinite plate in the 
presence of a magnetic field.  Raju et al. (2014) presented an analytical 
study of MHD free convictive, dissipative boundary layer flow past a 
porous vertical surface in the presence of thermal radiation, chemical 
reaction and constant suction.  
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    The effect of viscous dissipation plays an important role in natural 
convection in different devices which are subjected to large variations 
of gravitational force or which operate at high speeds. The energy 
dissipated due to motion of the fluid are retardation due to the 
application of magnetic field into the system, has a heating/cooling 
effect on the surface which result in significant heat transfer to the fluid 
in the boundary layer region. Viscous dissipation characterizes the 
degeneration of mechanical energy into the thermal energy. Such 
phenomenon transpires in all the flow systems. However, for different 
flow configurations, the characteristics of viscous dissipation are often 
neglected. It is meaningful just for the systems having larger velocity 
and velocity gradients respectively. It is for this reason that the viscous 
dissipation is introduced in the present study. Viscous dissipation is of 
interest for many applications: significant temperature rises were 
observed in polymer processing flows such as injection modeling or 
extrusion at high rates. Medikar et al. (2016) analyzed MHD stagnation 
point flow of a  over a non linear stretching sheet with viscous 
dissipation. The Influence of viscous dissipation on the MHD natural 
convective flow  over an oscillating vertical plate is analyzed by Reddy 
et al. (2017). Steady, incompressible, laminar flow of an electrically 
conducting Casson fluid over a melting surface on the upper horizontal 
paraboloid of revolution in the presence of viscous dissipation is 
studied by Ajayi et al. (2017) . Recently, steady magnetohydrodynamic 
(MHD) flow in the stretching surface with viscous dissipation effect 
examined by Tamoor et al. (2017). The study of chemical reaction with 
heat transfer in porous medium has important engineering applications 
e.g., tabular reactors, oxidation of solid materials and synthesis of 
ceramic materials reported by Shehzad et al. (2013). However, studies 
(Sandeep and Jagadeesh (2016), Rawi et al. (2016) and Amit (2017)) 
which focused on non-Newtonian flows along inclined surfaces 
demonstrate significant influence of inclination on MHD thermo fluid 
dynamic characteristics. 
    Motivated by the above studies, in this manuscript an attempt is 
made to investigate the effect of viscous dissipation on a radiative, 
mixed convection aligned MHD flow of a viscous, incompressible, 
electrically conducting and Newtonian fluid on a moving inclined 
porous plate in the presence of aligned magnetic field. The objective of 
this article is the effects of mixed convection with thermal radiation, 
viscous dissipation and chemical reaction on MHD flow of viscous, 
incompressible and electrically conducting fluid on a moving inclined 
heated porous plate is analyzed. The nonlinear coupled partial 
differential equations are solved analytically by employing perturbation 
technique. Graphical results for the velocity, temperature and 
concentration distributions within the boundary layer for several 
physical parameters and tabulated results for the skin-friction, the 
Nusselt number and the Sherwood number are presented and discussed. 

 
2. ANALYSIS OF THE FLOW OF THE PROBLEM 

 
Consider unsteady two-dimensional flow of an incompressible, viscous, 
electrically conducting and heat-absorbing fluid past a semi-infinite 
inclined permeable plate embedded in a uniform porous medium which 
is subject to a uniform transverse magnetic field in the presence of 
thermal and buoyancy effects in the direction of *y - axis.     The 
transversely applied magnetic field and magnetic Reynolds number are 
assumed to be very small so that Hall Effect is negligible. It is assumed 
that there is no applied voltage which implies the absence of electric 
field. The wall is maintained at constant temperature Tw and 
concentration Cw, higher than the ambient temperature T and the 
concentration C , respectively. It is assumed that the porous medium is 
homogeneous and present everywhere in local thermodynamic 

equilibrium. Rest of properties of fluid and the porous medium are 
assumed to be constant. The concentration of the diffusing species in 
the binary mixture is assumed to be very small in comparison with the 
other chemical species which are present, and hence the Soret and 
Dufour effects are negligible. Further due to the semi-infinite plane 
surface assumption, the flow variables are functions of normal distance 
y* and t* only.    

 
 

Fig. 1 Geometry of the problem 
 
In the above assumptions and the usual Boussinesq’s approximation, 
the governing boundary layer equations as follows: 
 
Continuity Equation: 
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Energy Equation: 
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Mass Diffusion Equation: 
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Where * *x and y are, the dimensional distances along to the plate, 
* *u and v are the components of dimensional velocities along 
* *x and y directions. G is the gravitational acceleration, *T is the 

dimensional temperature of the fluid near the plate, T is the stream 

dimensional temperature, *C is the dimensional concentration, C is 
the stream dimensional concentration, β and β* are the thermal and 
concentration expansion coefficients, respectively. *p is the pressure, 

pC is the specific heat of constant pressure, 0B is the magnetic field 

coefficient,  is the viscosity of the fluid, *
rq  is the  radiative heat flux, 

 is the density, K is the thermal conductivity,  is the density 
magnetic permeability of the fluid, D is the molecular diffusivity, 




 is the kinematic viscosity. 
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    The local radiant absorption for the case of an optically thin gray gas 

is expressed as  
* 4 * 3 2

* * * * 2

4 16;
3 3

r
r

T q T Tq
k y y k y
    

   
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(a) 

Where * and *k are the Stefan-Boltzmann constant and the Mean 
absorption coefficient, respectively. We assume that the temperature 
differences within the flow are sufficiently small so that 4T can be 
expressed as a linear function of T after using Taylor’s series to 

expand 4T  about the free stream temperature T and neglecting 
higher-order terms. This results in the following approximation: 

4 3 44 3T T T T                       (b) 
The fourth and fifth terms of RHS of the Eq.(2) denote the thermal and 
concentration buoyancy effects on inclined plate, respectively. The 
second and third term on the RHS of the Eq.(3) denote the inclusion of 
the effect of thermal radiation and viscous dissipation respectively. 
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Where ,p w wU C and T are the wall dimensional velocity, concentration 

and temperature, respectively. * *,U C and T
   are the free stream 

dimensional velocity, concentration and temperature, respectively. 

0U and n  are constants. It is clear from Eq. (1) that the suction 
velocity at the plate surface is a function of time only. Assuming that it 
takes the following exponential form: 
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0 (1 )n tV Ae                       (7) 

 
Where A is a real positive constant, and A   are small less than 
unity, and 0V  is a scale of suction velocity which has non-zero positive 
constant. Outside the boundary layer, Eq.(2) gives  
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Introducing the non-dimensional quantities 
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In the view of the above non-dimensional variables, the basic field of 

Eqs. (2) - (4) can be expressed in non-dimensional form as 
2
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K
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 and Gr, Gm, Pr, R, Ec, Sc, Kr, α and ξ are the 

thermal Grashof number, Solutal Grashof  number, Prandtl number, 
radiation parameter, viscous dissipation parameter, Schmidt number, 
Chemical reaction parameter, inclined angle and Aligned magnetic 
parameter respectively. 
The corresponding boundary conditions (5) and (6) in dimensionless 
form are  
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3. METHOD OF SOLUTION 
 
When the amplitude of oscillations (ε<<1) is very small. We can 
assume the solutions of flow velocity u, temperature θ and 
concentration C in the neighborhood of the plate is: 
 
u = f0 (y) + εent f1(y) + O(ε2) + ∙∙∙∙∙∙∙∙                         (15) 
 
θ = g0 (y) + εent g1(y) + O(ε2) + ∙∙∙∙∙∙∙∙                         (16) 
 
C = h0 (y) + εent h1(y) + O(ε2)  + ∙∙∙∙∙∙∙∙                         (17) 
 
    Substituting (15)-(17) into Eqs.(10)-(12) and equating the harmonic 
and nonharmonic terms, neglecting the higher order O(ε2), and 
simplifying to get the following pairs of equations for f0, g0, h0 and f1, g1, 
h1. 
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Where the prime denotes ordinary differentiation with respect to y. 
The corresponding boundary conditions can be written as 
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    The Equations (18) - (23) are still coupled and non-linear, whose 
exact solutions are not possible. So we expand f0, f1, g0, g1, h0 and h1 in 
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terms of Ec in the following form, as the Eckert number is very small 
for incompressible flows: 
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Substituting Eqs. (26) in equations (18) – (23), equating the coefficients 
of  harmonic and non-harmonic terms 
 
The zeroth order equations are 
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The skin-friction coefficient, the Nusselt number and Sherwood number 
are important physical parameters for this type of boundary-layer flow. 
These parameters can be defined and determined as follows: 
 

 

 

0

21 7 14 6 15 5

6 5 4 3 5 1 16 3 17 1 18 5 3

19 1 3 20 5 1

27 1 22 4 23 3 24 2 25 1 26 5

63 10 45 9 46 6 47 5 48 3

49 1

2
2 2 ( )

( ) ( )

2 2
2

f
y

nt

fC
y

F r F r F r
F r F r F r Ec F r F r F r r

F r r F r r

F r F r F r F r F r F r Ec

F r F r F r F r F r
F r F

e







    
             

      
      

     
 50 5 3 51 1 3 52 5 1

53 5 8 54 5 4 55 5 2 56 8 3

57 4 3 58 2 3 59 1 8 60 1 8

61 1 2 62 7

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

r r F r r F r r
F r r F r r F r r F r r
F r r F r r F r r F r r
F r r F r

 
 
  
         
         
  

         
     

    (46) 

 

 

0

13 6 7 5 8 3 9 1
3

10 5 3 11 1 3 12 5 1

44 9 28 6 29 5 30 3

31 1 32 5 3 33 1 3

34 5 1 35 5 8 36 5 4
4 4 3 3

37

2 2 2
( ) ( ) ( )

2 2
2 ( ) ( )

( ) ( ) ( )
(

y

nt

gNu
y

F r F r F r F r
r Ec

F r r F r r F r r

F r F r F r F r
F r F r r F r r

F r r F r r F r r
e F r F r Ec

F





 



      
            

    
    
     

  
5 2 38 8 3 39 4 3

40 2 3 401 1 8 42 1 8

43 1 2

) ( ) ( )
( ) ( ) ( )
( )

r r F r r F r r
F r r F r r F r r
F r r

  
  
  
  
  

       
         

    

                      

 
                                                                                                             (47) 

   1 2 2 1 1
0

nt

y

hSh r e r F r F
y





    


                                                 (48) 

 
4. RESULTS AND DISCUSSIONS 

 
Numerical evaluation of the analytical results reported in the previous 
section was performed and a representative set of results is reported 
graphically in Figs. 2–21 with Sc = 0.60, Kr = 0.5, n = 0.1, t = 1.0, ε = 
0.01, Ec = 0.01, A = 0.1, Pr = 0.71, R = 0.5, Gr = 2, Gm = 2, Up = 0.5, 
M = 1.0, α = π/6, ξ = π/3 and K = 0.5. These results are obtained to 
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illustrate the influence of the thermal Grashof number Gr, the solutal 
Grashof number Gm, Prandtl number Pr, Schmidt number Sc, the plate 
velocity Up, the radiation parameter R, inclined angle α, Aligned angle 
ξ, Permeable parameter K, Magnetic parameter M, Chemical reaction 
parameter Kr and the viscous dissipation parameter Ec on the velocity, 
temperature and the concentration profiles. In order to assess the 
accuracy of this method, we have compared our results with accepted 
data for the velocity and temperature profiles for the moving vertical 
porous plate as computed by Kim (2000). The results of these 
comparisons are found to be in very good agreement. 

 
Fig. 2 Effects of ξ on velocity profiles 

 

 
Fig. 3 Effects of α on velocity profiles 

 
     Figures 2and 3 demonstrate the effect of different Aligned magnetic 
and inclined angle values. As aligned magnetic and inclined angle 
increases, the velocity decreases. Fig.8 presents the typical velocity 
profiles in the boundary layer for various values of the thermal Grashof 
number. It is observed that an increase in Gr, leads to a rise in the 
values of velocity due to enhancement in buoyancy force. Here, the 
positive values of Gr correspond to cooling of the plate. In addition, it is 
observed that the velocity increases rapidly near the wall of the porous 
plate as Grashof number increases and then decays to the free stream 
velocity. For the case of different values of the solutal Grashof number, 
the velocity profiles in the boundary layer are shown in Fig.9.The 
velocity distribution attains a distinctive maximum value in the vicinity 
of the plate and then decreases properly to approach a free stream value. 
As expected, the fluid velocity increases and the peak value becomes 

more distinctive due to increase in the buoyancy force represented by 
Gm. For different values of the radiation parameter R, the velocity and 
temperature profiles are plotted in Figs.10 and 13. It is noticed that an 
increase in the radiation parameter results a decrease in the velocity and 
temperature within the boundary layer, as well as decreased the 
thickness of the velocity and temperature boundary layers. Figs. 12, 15 
and 19 display the effects of Schmidt number on the velocity, 
temperature and concentration respectively. As the Schmidt number 
increases, the temperature and concentration decreases. This causes the  
 

 
Fig. 4 Effects of Up on velocity profiles 

 

 
Fig. 5 Effects of K on velocity profiles 

 
thermal and concentration buoyancy effects to decrease yielding a 
reduction in the fluid velocity. Reductions in the velocity, temperature 
and concentration distributions are accompanied by simultaneous 
reductions in the velocity, temperature and concentration boundary 
layers. The effects of the viscous dissipation parameter i.e., the Eckert 
number on the velocity and temperature are shown in Figs. 21 and 16. 
Greater viscous dissipative heat causes a rise in the temperature as well 
as the velocity. Figs.11 and 14 illustrate the behavior velocity and 
temperature for different values of Prandtl number. The numerical 
results show that the effect of increasing values of Prandtl number 
results in a decreasing velocity. From Fig.14, it is observed that an 
increase in the Prandtl number results a decrease of the thermal 
boundary layer thickness and in general lower average temperature 
within the boundary layer. The reason is that smaller values of Pr are  
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Fig. 6 Effects of Kr on velocity profiles 

 
 

 
 

Fig. 7 Effects of M on velocity profiles 
 

 
Fig. 8 Effects of Gr on velocity profiles 

Fig. 9 Effects of Gm on velocity profiles 
 
 

 
 

Fig. 10 Effects of R on velocity profiles 
 

 
Fig. 11 Effects of Pr on velocity profiles 
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Fig. 12 Effects of Sc on velocity profiles 

 

 
Fig. 13 Effects of R on temperature profiles 

 

 
Fig. 14 Effects of Pr on temperature profiles 

 
 

 
Fig. 15 Effects of Sc on temperature profiles 

 

 
Fig. 16 Effects of Ec on temperature profiles 

 

 
Fig. 17 Effects of Kr on temperature profiles 
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Fig. 18 Effects of A on temperature profiles 

 
 

 
Fig. 19 Effects of Sc on concentration profiles 

 
 

 
Fig. 20 Effects of Kr on concentration profiles 

 

 
Fig. 21 Effects of Ec on velocity profiles 

 
equivalent to increase in the thermal conductivity of the fluid and 
therefore heat is able to diffuse away from the heated surface more 
rapidly for higher values of Pr. Hence in the case of smaller Prandtl 
numbers as the thermal boundary layer is thicker and the rate of heat 
reductions in the velocity, temperature and concentration boundary 
layers. The effects of the viscous dissipation parameter i.e., the Eckert 
number on the velocity and temperature are shown in Figs. 21 and 16. 
Greater viscous dissipative heat causes a rise in the temperature as well 
as the velocity. Figs.11 and 14 illustrate the behavior velocity and 
temperature for different values of Prandtl number. The numerical 
results show that the effect of increasing values of Prandtl number 
results in a decreasing velocity. From Fig.14, it is observed that an 
increase in the Prandtl number results a decrease of the thermal 
boundary layer thickness and in general lower average temperature 
within the boundary layer. The reason is that smaller values of Pr are 
equivalent to increase in the thermal conductivity of the fluid and 
therefore heat is able to diffuse away from the heated surface more 
rapidly for higher values of Pr. Hence in the case of smaller Prandtl 
numbers as the thermal boundary layer is thicker and the rate of heat 
transfer is reduced. The effects of the chemical reaction parameter on 
the velocity, temperature and concentration are shown in Figs. 6, 17 and 
20. It is noticed that an increase in the chemical reaction parameter 
results a decrease in the velocity, temperature and concentration within 
the boundary layer. For various values of the magnetic parameter M, the 
velocity profiles are plotted in Fig.7. It is obvious that existence of the 
magnetic field decreases the velocity. Fig.5 shows the velocity profiles 
for different values of the permeability parameter. Clearly, as K 
increases the peak values of the velocity tends to increase. Fig.4 
presents the variation of the velocity distribution across the boundary 
layer for different values of the plate velocity Up in the direction of the 
fluid flow. Although we have different initial plate velocities, the 
velocity decreases to the constant value for given material parameters. 
Figure 18 depicts that temperature depreciates with the unsteady 
parameter A. Each and every fluid has the similar effect on temperature 
for the unsteady parameter A. 
    Tables 1–3 depict the effects of the thermal Grashof number Gr, the 
solutal Grashof number Gm, Prandtl number Pr, Schmidt number Sc, 
the plate velocity Up, the Radiation parameter R, inclined angle α, 
Aligned angle ξ, Permeable parameter K, Magnetic parameter M and 
Chemical reaction parameter Kr on the skin-friction coefficient Cf, 
Nusselt number Nu and the Sherwood number Sh, respectively. It is 
observed from these tables that as Gr increases, the skin-friction 
coefficient increases. However, as the radiation effects increase, the 
skin-friction coefficient increases and the Nusselt number decreases. 
Also, increases in the Schmidt number cause reductions in the skin-
friction coefficient and enchance the Sherwood number. From Table 1, 
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it can be seen that as the Sc, Kr, Pr, R, M, K and Ec increases, the skin-
friction decreases while increases with enchancing Gr and Gm. 
However, from Table 2, it is noticed that, an increase Kr, the Nusselt 
number decreases while the Pr, R and Sc increases, Nusselt value is 
increases Finally, from Table 3, it is observed that as Sc, Kr and A 
increases the skin-friction the Sherwood number increases.  
 
Table 1 The Skin-friction for various values of Sc, Kr, Pr, R, Gr, Gm, 
M, K and Ec. 

Sc Kr Pr R Gr Gm M K Ec Cf 
0.30 
0.60 
0.78 
0.94 

        3.1112 
2.9319 
2.8426 
2.2046 

 0.1 
0.2 
0.3 
0.4 

       3.0442 
2.0087 
2.9794 
2.9543 

  1 
3 
5 
7 

      2.7827 
2.5953 
2.4610 
2.3671 

   0.1 
0.2 
0.3 
0.4 

     3.0473 
3.0278 
2.9999 
2.9672 

    1 
3 
4 
5 

    2.5061 
3.3479 
3.7544 
4.1514 

     1 
3 
4 
5 

   2.4939 
3.3674 
3.8006 
4.2313 

      2 
3 
4 
5 

  2.8923 
2.8773 
2.8795 
2.8929 

       0.1 
0.2 
0.3 
0.4 

 3.0014 
2.8795 
2.8849 
2.9088 

        0.01 
0.02 
0.03 
0.04 

2.9319 
2.9035 
2.8751 
2.8466 

 
 
Table 2 The Nusselt number for various values of Pr, R, Kr and Sc. 

Pr R Kr Sc Nu 
1 
3 
5 
7 

   1.0917 
2.8282 
4.6767 
6.5414 

 0.1 
0.2 
0.3 
0.4 

  0.6192 
0.6609 
0.7226 
0.7975 

  0.1 
0.2 
0.3 
0.4 

 0.9086 
0.9012 
0.8934 
0.8867 

   0.30 
0.60 
0.78 
0.94 

0.8656 
0.8809 
0.8867 
0.8906 

 

Table 3 The Sherwood number for various values of Sc, Kr and A. 
Sc Kr A Sh 

0.30 
0.45 
0.60 
0.78 

  0.5722 
0.7591 
0.9357 
1.1399 

 0.1 
0.2 
0.3 
0.4 

 0.3842 
0.4428 
0.4915 
0.5340 

  1 
2 
3 
4 

0.5741 
0.5763 
0.5785 
0.5806 

 

CONCLUSIONS 
The governing equations for unsteady MHD convective heat and mass 
transfer past a semi infinite inclined permeable moving plate embedded 
in a porous medium with thermal radiation and viscous dissipation was 
formulated. The plate velocity was maintained at a constant value and 
the flow was subjected to a transverse magnetic field. The resulting 
partial differential equations were transformed into a set of ordinary 
differential equations using two-term series and solved in closed-form. 
Numerical evaluations of the closed-form results were performed and 
some graphical results were obtained to illustrate the details of the flow 
and heat and mass transfer characteristics and their dependence on 
some of the physical parameters. It was found that when the solutal 
Grashof number increased, the concentration buoyancy effects were 
enhanced and thus, the fluid velocity increased. However, the presence 
of heat radiation effects caused reductions in the fluid temperature 
which resulted in decreases in the fluid velocity. Also, when the 
Schmidt number was increased, the concentration level was decreased 
resulting in a decreased fluid velocity. In addition, it was found that the 
skin-friction coefficient increased due to decreases in the concentration 
buoyancy effects while it decreased due to increases in either of the 
heat radiation coefficient or the Schmidt number. However, the Nusselt 
number decreased as the heat radiation coefficient was increased and 
the Sherwood number decreased as the Schmidt number was increased. 
The temperature of the fluid decreases for increasing values of Prandtl 
number and viscous dissipation parameter. The existence of chemical 
reaction leads to decrease the concentration of the fluid. The rate of heat 
transfer rises for increasing values of Prandtl number and Schmidt 
number and decreasing values of chemical reaction parameter. 

NOMENCLATURE 

A  suction velocity parameter 
B0  magnetic induction (A.m2) 
c  concentration 
Cp  specific heat at constant pressure (J kg-1K) 

*C   dimensionless concentration (kg m3) 
Ec  viscous dissipation parameter or the Eckert number 
Cf  skin-friction coefficient 
D  mass diffusion coefficient 
Gr  solutal Grashof number 
Gm  thermal Grashof number 
g  accelration due to gravity (ms-2) 
K  permeability of the porous medium 
k  thermal conductivity 
M  magnetic filed parameter (Am-1) 
N  dimentionless material parameter 
n  dimensionless exponential index 
Nu  Nusselt number 
Pr  Prandtl number 
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Rex  local Reynolds number 
Sc  Schmidt number 
Sh  Sherwood number (Kg/m2s) 
T  temperature 
t  dimentionless time(sec) 
U0  scale of free stream velocity 
u,v components of velocities along and perpendicular 

to the  plate, respectively 
V0  scale of suction velocity (m/s) 
x,y  distances along and perpendicular to the            
                                plate,respectivily 
qr             Heat flux per unit area 
R  Radiation parameter (cm2) 
 
Greek symbols 
α  inclined angle 

β*  coefficient of volumetric concentration expansion 

β  coefficient of volumetric thermal expansion 
ε  scalar constant(<< 1) 
σ  fluid electrical conductivity 
ρ  fluid density (kg m-3) 
μ  fluid dynamic viscosity 
ν  fluid kinematic viscosity (m2/s) 
τ  friction coefficient 
θ  dimensionless temperature 
ξ  Aligned angle 
 
Superscripts 
 
'  differentiation with respect to y 
-  dimentional properties 
 
Subscripts 
p  plate 
w  wall condition 
∞  free stream condition 
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