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ABSTRACT

A numerical investigation is performed to analyze the transient laminar free convection over an isothermal inclined plate embedded in a saturated
porous medium with the viscous dissipation effects. The flow in the porous medium is modeled with the Darcy-Brinkman- Forchheimer model,
taking into account the convective term. The dimensionless nonlinear partial differential equations are solved numerically using an explicit finite
difference method. The effects of different parameters: (1 ≤ Re ≤ 10 ; 10−2 ≤ Da ≤ 10 ; 0 ≤ Gr ≤ 50 ; 0 ≤ Fr ≤ 3 ; 0 ≤ Ec ≤ 1 ;
0 ≤ φ ≤ 900 and Pr = 0.71) that enter into the problem on the dimensionless streamlines of the velocity field, the isothermal lines distributions
and the local Nusselt number are examined. Also, the physical aspects of the problem are discussed in details. It is found that the viscous dissipation
and the inertial forces have a significant effect on the temperature field whereas the wall heat transfer rate is optimal for the vertical position of the plate.

Keywords: Free convection, unsteady flow, Darcy-Brinkman-Forchheimer model, porous medium, finite difference method.

1. INTRODUCTION

Studies of thermal convection in porous media have generated increasing
interest during the past few decades because of their importance in many
engineering applications such as the infiltration of water in aquifers, the
use of geothermal energy, the extraction of oil and gas through the soil,
the drying of the food products, the storage of radioactive, the biological
systems, etc. The growing volume of work devoted to this area is amply
documented in the recent excellent reviews by Vafai (2005), Nield and
Bejan (2017) and Nield and Simmons (2018).

Numerous studies of such flows have been reported in the past sev-
eral decades using both Darcian and non-Darcian models for the porous
medium. The Darcy law is limited to slow flows. On the other hand, when
the Reynolds number is greater than order of unity, or, for high velocity
flow situations, Darcy’s law is inapplicable because it does not account
the effect of solid boundary, inertia forces. These missing effects are
very significant in most practical situations such as fluid flow in geother-
mal reservoirs, separation processes in chemical industries, thermal insu-
lation, petroleum reservoir, and so on. These effects are incorporated
by using the general flow known as Brinkman-Forchheimer extended
Darcy model (Chen and Chen, 1990; Aldoss et al., 1996; Khanafer and
Chamkha, 1999). The Brinkman’s extension, which includes a viscous
shear stress term in the momentum equation, has been used to account
for the boundary effects. The inertial effects can be modelled through
the addition of a quadratic term in velocity, which is known as Forch-
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heimer’s extension. Therefore, the recent studies have been focused on
the importance of convective heat transport phenomenon in non-Darcian
porous media.

Several studies were carried out to analyse the transient free con-
vection heat transfer in saturated porous media by a Newtonian fluid,
under Darcy’s laws, or, non-Darcy’s law, based on the Darcy- Brinkman-
forchheimer Formulation. Raptis et al. (1987) have examined the un-
steady free convective flow through a porous medium adjacent to a semi-
infinite vertical plate using finite difference scheme. These authors found
that, the velocity increases with permeability parameter, whereas the tem-
perature decreases with it. After, Pop and Herwig (1990) studied tran-
sient mass transfer from an isothermal vertical flat plate embedded in
saturated porous medium. Also, Ganesan and Palani (2004) have stud-
ied the numerical solution of transient free convection MHD flow of an
incompressible viscous fluid flow past a semi-infinite inclined plate with
variable surface heat and mass flux. The set of governing equations are
solved by using an implicit finite difference scheme. Later, the effects
of viscous dissipation on unsteady free convection in a fluid past a ver-
tical and an inclined plate immersed in a porous medium have been dis-
cussed by (El-Amin and Ebrahiem, 2006; Udin and Kumar, 2010). In
these works, the basic equations of the boundary layer are transformed
into a non-dimensional form and reduced to nonlinear systems of partial
differential equations, and solved numerically by using an explicit finite
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difference method. Furthermore, Vasu et al. (2011) have investigated the
effects of radiation and mass transfer on transient free convection flow
of a dissipative fluid past semi-infinite vertical plate with uniform heat
and mass flux. These authors found that the greater viscous dissipative
heat causes rise in the temperature as well as the velocity. Similarly, the
effects of radiation and viscous dissipation on unsteady free convective
flow past a moving vertical porous plate embedded in a porous medium
was analyzed by Das et al. (2013).

Recently, Mohiddin et al. (2014) have considered a numerical study
of buoyancy-driven unsteady natural convection boundary layer flow past
a vertical cone embedded in a non-Darcian isotropic porous media with
transverse magnetic field applied normal to the surface. The results ob-
tained show that an increase in the Forchheimer inertial drag parameter
leads to increase slightly the temperature, but reduces both velocity and
local Nusselt number. The works of Achemlal et al. (2014); Achemlal
and Sriti (2015) used the finite difference method for solving steady free
convection flow based on the Darcy’s laws over an isothermal vertical
plate in a saturated porous medium and compared the results obtained
with those found by the similarity approach. Very recently, Islam et al.
(2015) studied mass transfer flow through an inclined plate with porous
medium. In this numerical investigation, the explicit finite difference
method has used to solve the dimensionless system of equations. Mon-
dal et al. (2016) have analyzed the unsteady free convective flow along
a vertical porous plate with variable viscosity and thermal conductivity,
with viscous dissipation and heat generation. In this work, the problem is
resolved numerically using an explicit finite difference method. The ob-
tained results show that the temperature profile increases for the increas-
ing of thermal conductivity parameter, Eckert number and heat generation
parameter. Also, Flilihi et al. (2017) investigated the variable heat source
and wall radiation effects on boundary layer convection from an inclined
plate in non-Darcian porous medium.

The present paper is an extension of the works of Flilihi et al. (2017,
2019) to an unsteady convective boundary layer flow past an inclined
plate in a non darcian porous medium in the presence of the viscous dis-
sipation effects using the Darcy-Brinkman-Forchheimer model, which in-
cludes the effects of boundary and inertia forces taking into account the
convective term. This study finds applications in the fields of petroleum
engineering, geothermal energy, etc...

2. PHYSICAL MODEL AND GOVERNING EQUATIONS

Consider a two dimensional transient laminar free convection flow of a
fluid over an isothermal inclined plate embedded in a non Darcian porous
medium. Initially, it is assumed that the plate and the fluid are at the
temperature T∞. At t

′
> 0, the temperature of the plate is raised to Tw,

which is then maintained constant. The temperature of the fluid away
from the plate is T∞. The physical model and coordinate system are
shown in Fig. 1.

The Darcy-Brinkman-Forchheimer model is used to describe the
flow in the porous medium. Under the Boussinesq and boundary layer
approximations, the governing equations are:



∂u

∂x
+
∂v

∂y
= 0

∂u

∂t′
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ gβ(T − T∞) cosφ− νε

K
u− Fε2

K1/2
|u|u

∂T

∂t′
+ u

∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

µ

ρCp

(
∂u

∂y

)2

(1)

Fig. 1 Physical model and coordinate system.

The initial and boundary conditions are:

t′ = 0 : u = v = 0, T = T∞ for all x and y

t′ > 0 :


u = v = 0, T = T∞ at x = 0

u = v = 0, T = Tw at y = 0, x > 0

u = 0, T = T∞ at y →∞, x > 0

(2)

where x and y are the Cartesian coordinates and t′ represents time. u and
v are, respectively, the velocity components along the x- and y-axes, T is
the fluid temperature. The constants µ, ν, K, α, g and ρ are, respectively,
fluid viscosity, kinematic viscosity, permeability of porous medium, ther-
mal diffusivity, gravitational acceleration, and density. Cp, β, ε, F are,
respectively, the specific heat at constant pressure, the coefficient of ther-
mal expansion, the porosity of porous medium and the empirical constant.

3. DIMENSIONLESS GOVERNING EQUATIONS

The use of dimensionless variables allows one to express the reality of
physical phenomena independently of the measurement systems. For this,
it is often convenient to write the governing equations in dimensionless
form before its numerical resolution. The nondimensionalization was car-
ried out according to the following definitions (El-Amin and Ebrahiem,
2006; Udin and Kumar, 2010; Achemlal et al., 2014):


(X,Y ) =

(x, y)

H
, (U, V ) =

(u, v)

Ur
, θ =

T − T∞
Tw − T∞

t =
Urt
′

H
with Ur =

ν

H

(3)

here Ur is a reference velocity, and H is the height of the plate.
In terms of these variables, and After substitution and development, the
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system of equations (1) becomes:

∂U

∂X
+
∂V

∂Y
= 0

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
=
∂2U

∂Y 2
+Grθ cosφ− 1

Da
U − Fr

Da
|U |U

∂θ

∂t
+ U

∂θ

∂X
+ V

∂θ

∂Y
=

1

Pr.Re

∂2θ

∂Y 2
+ Ec

(
∂U

∂Y

)2

(4)

Here Gr =
gβ(Tw − T∞)H

U2
r

is the Grashof number, Da =
K

H2ε

is the Darcy number, Fr =
FεK1/2

H
is the inertia coefficient, Pr =

µ

ρα

is the Prandtl number, Re =
ρHUr
µ

is the Reynolds number and Ec =

Ur
Cp(Tw − T∞)

is the Echert number.

The transformed initial and boundary conditions for equations (3)
are now given by:

t = 0 : U = V = θ = 0, for all X and Y.

t > 0 :


U = V = θ = 0, at X = 0

U = V = 0, θ = 1 at Y = 0, X > 0

U = 0, θ = 0 at Y →∞, X > 0

(5)

4. SOLUTION METHOD AND NON-UNIFORM GRID

The system of non-linear equations (4) subject to the initial and boundary
conditions (5) are solved numerically for the velocity and temperature
using the explicit finite differences method, as explained by Carnahan
et al. (1969). For this study, we consider a plate of height Xmax =
100 and regarded Ymax = 35 which corresponds to Y = ∞, where X
direction is taken along the plate and Y direction is taken normal to it.
Subscripts i and j will be used to represent nodes in X and Y directions,
respectively.

Physically, the thickness of the boundary layer is much smaller than
any characteristic length defined in the streamwise direction. Therefore,
the changes in physical properties in the direction parallel to the plate
are small compared to the corresponding changes in perpendicular to the
plate. Thus, grids in the Y direction should be much finer close to the
plate and spaced elsewhere. Figure 2 shows the grid used in this study
for numerical solution, making the grid much finer close to the plate for
a better appreciation of the formation of the boundary layer.

A variable grid size in the Y-axis is calculated with Eq.(7).

Y (j) = Ymax.

[
eαy(j−N) −Ay

1−Ay

]
(6)

4Y (j − 1) = Y (j)− Y (j − 1) (7)

with j = 2, ..., N and Ay = eαy(1−N), where αy is the distribution
coefficient in the Y -axis, generally between 0 and 1. N is the number of
nodes contained on Y direction.

5. NUMERICAL FORMULATION AND SOLUTION

The unsteady non-linear coupled equations (4) subject to the initial and
boundary conditions (5) are solved by using an explicit finite-difference
scheme. The set of approximate finite difference equations corresponding

Fig. 2 Grid used in the numerical solution.

to system of equations (4) are:
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4Y (j)
= Grθk+1

i,j

+
Uki,j+1 − 2Uki,j + Uki,j−1

(4Y (j))2
− 1

Da
Uki,j −

Fr

Da
|Uki,j |Uki,j

θk+1
i,j − θ

k
i,j

4t + Uki,j
θki,j − θki−1,j

4X + V ki,j
θki,j+1 − θki,j
4Y (j)

=

1

Pr.Re

θki,j+1 − 2θki,j + θki,j−1

(4Y (j))2
+ Ec.

(
Uki,j+1 − Uki,j
4Y (j)

)2

(8)
The coefficients Ui,j and Vi,j are treated as constants, during any

one time-step. Then, at the end of any time step ∆t, the new velocity
components Uk+1 and V k+1, and the new temperature θk+1 at all inte-
rior grid points may be obtained by successive applications of system of
equations (8). The region of integration is considered as a rectangle with
sides X, Xmax = 100 and Y, Ymax = 35. After performing few tests on
sets of mesh sizes to access grid independence taking account a variable
grid size in the Y-axis calculated with Eq.(7), the time and spatial step
sizes ∆t = 0.05 and ∆X = 2 were found to give accurate results.

6. LOCAL NUSSELT NUMBER

The primary physical quantity of interest is the local Nusselt numberNu.
From the definition of the local surface heat flux:

qw = −ke
∂T

∂y

∣∣∣∣
y=0

= −ke(Tw − T∞)

L

∂θ

∂Y

∣∣∣∣
Y=0

(9)

where ke is the effective thermal conductivity of the saturated porous
medium. Therefore the local Nusselt number is given by:

Nu =
qw

Tw − T∞
L

ke
= − ∂θ

∂Y

∣∣∣∣
Y=0

(10)

7. RESULTS AND DISCUSSION

A numerical investigation has been made for an unsteady thermal con-
vection flow along an isothermal inclined plate embedded in non-Darcian
porous medium, using the Darcy-Brinkman-Forchheimer model, taking
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into account the convective term. In this study, we have analyzed the
effects of the time t, inclination angle φ, Darcy number Da, Reynolds
number Re, Grashof number Gr, Forchheimer number Fr and Echert
number Ec on the thermal, dynamic and the wall heat transfer rate pro-
files.

To assess the accuracy of our results, the comparisons are made with
Udin and Kumar (2010) results in term of local Nusselt number for Eckert
number Ec = 0.0 at Gr = 1, Re = 10, Da = 1, Fr = 0.5, Pr = 10 and
φ = 300 are presented in Figure 3, showing a very good agreement.

Fig. 3 Steady local Nusselt number as a function of X, for Ec = 0.0 with
Fr = 0.5, Gr = 1, Pr = Re = 10, Da = 1 and φ = 300.

7.1. Mesh-Size Effect on Numerical Solutions

The effect of the size and number of nodes on the solution expressed by
the average heat transfer at the plate surface is shown in figure 4, for
Re = 2, Da = 0.1, Fr = 0.5, Ec = 0.05, Pr = 0.71 and φ = 300.
It is clear that the heat transfer is practically insensitive to the number of
nodes from the grid 45 × 45. In the remainder of this work, we adopt,
for reasons of compromise accuracy/computation time, the mesh of size
50× 50.

7.2. Velocity Profiles and Streamlines

Figure 5 shows the transient velocity profiles in the boundary layer area
of an isothermal inclined plate injected in a saturated porous medium for
different values of non-dimensional time. Here, it is clearly notable that
the steady state is obtained at t = 250, i.e. there is no major change in the
velocity profiles after time t = 250. Also, it is observed that, the velocity
first increases near the plate and approaches to zero away from the plate,

Fig. 4 Variation of Num as a function to mesh size.

and consequentially the momentum boundary layer thickness increases
with time. Figure 6 displays the steady state velocity profiles as a func-

Fig. 5 Unsteady velocity profiles as a function of Y for various times at
X = 50.

tion of Y at different X position. From this figure, it is remarkable that
the fluid activity at upper portion of the plate increases with increased X ,
which explains the widening of the dynamic boundary layer. The dis-
played figures 7 and 8 show the effect of Reynolds number on dimension-
less streamlines of the velocity field over an isothermal and impermeable
inclined plate (φ = 30o) in a saturated porous medium for Gr = 10,
Pr = 0.71, Da = 0.1 and Fr = 0.5 in the presence of viscous dissi-
pation parameter (Ec = 0.05). From the streamlines velocity, we notice
that the importance of the inertia forces in the medium allows to accel-
erate the fluid flow in the boundary layer area. The displayed figures
9 and 10 show the effect of Darcy number on dimensionless streamlines
of the velocity field over an isothermal and impermeable inclined plate
(φ = 30o) in a saturated porous medium for Gr = 10, Pr = 0.71,
Re = 2 and Fr = 0.5 in the presence of viscous dissipation parameter
(Ec = 0.05). It is seen from these figures that, in the boundary layer
area, the velocity is intensified in the case of Da = 10 when compared
to the case where Da = 0.05. This is quite logical because the more Da
increases the more the permeability of the porous medium increases and
consequently, the fluid flows faster in comparison to the porous medium
at low Darcy number.
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Fig. 6 Steady velocity profiles as a function of Y for selected position X .
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Fig. 7 Streamlines of dimensionless velocity field according to X and Y
for Re = 2.

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100
Streamlines of the velocity field for Re = 10

Y

X

Fig. 8 Streamlines of dimensionless velocity field according to X and Y
for Re = 10.

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100
Streamlines of the velocity field for Da = 0.05

Y

X

Fig. 9 Streamlines of dimensionless velocity field according to X and Y
for Da = 0.05.
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Fig. 10 Streamlines of dimensionless velocity field according to X and Y
for Da = 10.

7.3. Isothermal Lines

Figures 11 and 12 show for Gr = 10, Pr = 0.71, Re = 2, Da =
0.1, Fr = 0.5 and Ec = 0.05, the isothermal lines distributions in
the boundary layer area of an isothermal and impermeable inclined plate
(φ = 30o) placed in a saturated porous medium, for selected values of
the time t = 10 and t = 300, respectively. These figures show the
development of the thermal boundary layer with the time t up to t = 250
(steady state start), where the latter is fully formed, which is consistent
with the result found in Figure 5.

Figures 13 and 14 show for Gr = 10, Pr = 0.71, Re = 2, Fr =
0.5 and Ec = 0.05, the isothermal lines distributions in the boundary
layer area of an isothermal and impermeable inclined plate (φ = 30o)
embedded in a saturated porous medium, for selected values of the Darcy
number Da = 0.05 and Da = 3, respectively. From these figures, we
notice that the permeable porous medium promotes more the cooling in
the boundary layer area, which explained the reduction in the thermal
boundary layer thickness, unlike the case where the porous medium is
less permeable.

Figures 15 and 16 show for Gr = 10, Pr = 0.71, Da = 0.1,
Re = 2 andEc = 0.05, the isothermal lines distributions in the boundary
layer area of an isothermal and impermeable inclined plate (φ = 30o)

5



Frontiers in Heat and Mass Transfer (FHMT), 12, 12 (2019)
DOI: 10.5098/hmt.12.12

Global Digital Central
ISSN: 2151-8629

θ(X,Y) for  t = 10

Y

X

0.
02

77
78

0.
08

33
33

0.22222

0.5

0.80556

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Fig. 11 Dimensionless isothermal lines according to X and Y at t = 10.
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Fig. 12 Dimensionless isothermal lines according to X and Y at t = 300.
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Fig. 13 Dimensionless isothermal lines according to X and Y for Da =
0.05 at t = 300.

placed in a saturated porous medium, for selected values of Forchheimer
number Fr = 0 and Fr = 3. Here, we notice that the increasing Fr
values causes a strong increase in Forchheimer drag which decelerates
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Fig. 14 Dimensionless isothermal lines according to X and Y forDa = 3
at t = 300.
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Fig. 15 Dimensionless isothermal lines according to X and Y for Fr = 0
at t = 300.
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Fig. 16 Dimensionless isothermal lines according to X and Y for Fr = 3
at t = 300.
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Fig. 17 Dimensionless isothermal lines according to X and Y for Ec = 0
at t = 300.
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Fig. 18 Dimensionless isothermal lines according to X and Y at Ec = 1
at t = 300.
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Fig. 19 Dimensionless isothermal lines according to X and Y at forGr =
5 at t = 300.
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Fig. 20 Dimensionless isothermal lines according to X and Y for Gr =
50 at t = 300.
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Fig. 21 Dimensionless isothermal lines according to X and Y for φ = 0o

at t = 300.
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Fig. 22 Dimensionless isothermal lines according to X and Y for φ = 80o

at t = 300.
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the flow i.e. reduces velocities, which translates to a slight increase in
temperature.

Figures 17 and 18 show for Gr = 10, Pr = 0.71, Da = 0.1,
Re = 2 and Fr = 0.5, the isothermal lines distributions in the boundary
layer area of an isothermal and impermeable inclined plate (φ = 30o)
embedded in a saturated porous medium, for selected values of the Eck-
ert number Ec = 0 and Ec = 1, indicate respectively without and with
viscous dissipation. Here, the effect of viscous dissipation on free con-
vection is to increase the energy, producing a rise in the temperature of
the medium, which explains the widening of the thermal boundary layer
thickness.

Figures 19 and 20 depict at Pr = 0.71, Da = 0.1, Re = 2, Fr =
0.5, Ec = 0.05, the steady isothermal lines distributions in the boundary
layer area of an isothermal and impermeable inclined plate (φ = 30o)
inserted in a saturated porous medium, for selected values of the Grashof
numberGr = 5 andGr = 50 respectively. From these figures, we notice
that the temperature decreases with increasing the Grashof number Gr,
and consequently leads to the reduction of the thermal boundary layer
thickness. This can be justified by the importance of the buoyancy forces,
which lead to a fast cooling around the plate.

Figures 21 and 22 show the isothermal lines distributions in the
boundary layer area of an isothermal and impermeable plate placed in
a saturated porous medium, for both position of the plate: vertical and
inclined corresponding respectively to φ = 0o and φ = 80o at Gr = 10,
Pr = 0.71, Da = 0.1, Re = 2, Fr = 0.5 and Ec = 0.05. From
these figures, it is observed that, passing from the vertical to the hori-
zontal position (φ = 90 degree) of the plate, more heat is transferred to
the porous medium, which leads to the widening of the thermal boundary
layer thickness. Consequently, in the field of petroleum extraction by the
thermal method, the vertical position of the used equipment is the most
suitable for optimum oil extraction (high transfer rate).

7.4. Local Heat Transfer Rate Profiles

In figure 23, we present the variation of the heat transfer rate at the wall
for several positions of the plate with Gr = 10, Pr = 0.71, Re = 2,
Fr = 0.5 and Ec = 0.05 atX = 50 for selected values of Dacy number
Da. From this figure, it’s concluded that passing from the vertical (φ =
0o) to the horizontal (φ = 90o) position of the plate, the heat transfer
rate at the surface decreases independently of the Darcy number Da. In
addition, the rate of heat transfer to the wall becomes important, when
the porous medium is more permeable.

Fig. 23 Nu profiles versus φ for selected values of Da at X = 50 and
t = 300.

Steady state local Nusselt number profiles are plotted as a function of
Forchheimer number Fr for an angle of inclination of the plate φ = 30o

Fig. 24 Nu profiles versus Fr for selected values of Ec at X = 50 and
t = 300 for φ = 30o.

with Gr = 10, Pr = 0.71, Da = 0.1, Re = 2 at X = 50 for selected
values of Eckert number Ec in figure 24. From this figure, it is clear that
for Ec = 0 (without viscous dissipation) and for Ec =0.2 or 0.5 (in
the presence of viscous dissipation), the heat transfer rate at the surface
of the plate decreases for all values of Forchheimer number Fr. Also,
it’s observed when the viscous dissipation increases, the heat transfer rate
decreases.

The effects of the Grashof number and Reynolds number on the wall
heat transfer rate at Pr = 0.71, Da = 0.1, Fr = 0.5, Ec = 0.05
and X = 50 for an inclined isothermal plate (φ = 30o) embedded in
a saturated porous medium in the presence of viscous dissipation, are
plotted in figure 25. Here, we notice that the buoyancy forces amplified
the heat transfer rate at the wall for all values of the Reynolds number.
Moreover, the importance of the inertia forces makes to amplify the heat
transfer rate at the wall.

Fig. 25 Nu profiles versus Gr for selected values of Re at X = 50 and
t = 300 for φ = 30o.

8. CONCLUSION

The finite difference method was used in this study to compute unsteady
laminar free convection boundary layer flow around a multi-oriented plate
embedded in a saturated porous medium with a Newtonian fluid in the
presence of viscous dissipation. the Darcy-Brinkman-Forchheimer model
was used to describe the flow field, taking into account the convective
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term. Numerical calculations were carried out for the various parameters
entering into the problem. Velocity profiles, streamlines of the velocity
field, isothermal lines distributions and the local Nusselt number profiles
were shown graphically. The main conclusions of the current analysis are
as follow:

1. The momentum and thermal boundary layer thicknesses increase
with time.

2. The momentum boundary layer thickness and maximum velocity
depends on the X position.

3. The importance of the buoyancy forces leads to a rapid cooling
around the plate, and reduces the thermal boundary layer thickness.

4. The increase in the dissipation parameter Ec induces the increase
in the fluid temperature.

5. Passing from the vertical to the horizontal position of the plate,
more heat is transferred to the porous medium, which leads to the
widening of the thermal boundary layer thickness.

6. An increase in the inertial forces leads to the increase of the heat
transfer in the boundary layer area.

NOMENCLATURE

Cp specific heat of fluid (J Kg−1K−1)
Da Darcy number
Ec Eckert number
F empirical constant
Fr inertia coefficient
g gravitational acceleration (ms−2)
Gr Grashof number
H height of the plate (m)
i index nodes in the X - direction
j index nodes in the Y - direction
K permeability of the porous medium (m2)
ke effective thermal conductivity of porous medium
N number of nodes contained on the Y - direction
Nu local Nusselt number
Pr Prandlt number
Re Reynolds number
T fluid temperature (K)
t′ dimensional time
t dimensionless time
u dimensional velocity in x - direction (ms−1)
U dimensionless velocity in X - direction
Ur reference velocity (ms−1)
v dimensional velocity in y - direction (ms−1)
V dimensionless velocity in Y - direction
w wall plate condition
x dimensional coordinate along the plate (m)
X dimensionless coordinate along the plate
y dimensional coordinate normal to the plate (m)
Y dimensionless coordinate normal to the plate
∆t time step
∆X space step in the X-axis
∆Y space step in the Y-axis
Greek Symbols
α thermal diffusivity (m2 s−1)
αy distribution coefficient in the Y-axes
β thermal expansion coefficient (K−1)
ε porosity of porous medium
ν kinematic viscosity (m2 s−1 )
ρ fluid density (Kgm−3)
θ dimensionless temperature

φ angle of inclination to the vertical direction
∞ infinity plate condition
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