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ABSTRACT 

In this paper, two-dimensional magnetohydrodynamic (MHD) flow of Casson fluid over a fixed plate under non-uniform heat source/sink and Joule 

heating is analyzed by the homotopy analysis method (HAM). The governing boundary-layer equations have been reduced to the ordinary differential 
equations (ODEs) through the similarity variables. The current HAM-series solution is compared and successfully validated by the previous studies. 

Furthermore, the effects of thermo-physical parameters on the current solution are precisely examined. It is found that the skin friction coefficient and 

local Nusselt number are greatly affected by the Hartmann number. It can be concluded that employing the Casson fluid together with the suction effect 

can minimize the rate of heat and mass transfer. 
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1. INTRODUCTION 

In general, fluid mechanics can be categorized into two main types: 

hydraulics and hydrodynamics which are developed through the 
experimental and theoretical analyses, respectively (Falkner and Skan, 

1931). In recent decades, there have been many research studies 

concerning the hydrodynamics as well as heat and mass transfer theory. 

In this way, Khan and Azam (2017) investigated unsteady flow of 
Carreau fluid over a permeable stretching wall with the Lorentz force and 

suction/injection effect. They solved the governing boundary-layer 

equations through the bvp4c function in MATLAB and found that the 

skin friction coefficient increases with an increase in the Weissenberg 
number. They also showed that the nanoparticle concentration boundary-

layer thickness is significantly affected by the Lewis number. Borrelli et 

al. (2017) presented a model dealt with the Oberbeck-Boussinesq 

approximation for three-dimensional (3D) stagnation-point flow of 
Newtonian fluids. They found that the skin friction coefficient increases 

with an increase in the Hartmann number. They also illustrated that the 

reversed flow without the effect of buoyancy force occurs at the 

minimum value of Hartmann number (i.e., 0.7583). They finally proved 
that their findings are fully consistent with those of Ramachandran et al. 

(1988) and Ishak et al. (2008). Rahman et al. (2014) investigated forced-

convection flow of fluids over an exponentially permeable 

shrinking/stretching wall based on the Buongiorno mathematical model 
in which the effect of thermophoresis and Brownian motion had been 

taken into account. They could develop those of Kuznetsov and Nield 

(2013) and found that the momentum boundary-layer thickness decreases 

with an increase in the second order slip parameter. Ranjit and Shit 
(2017) analytically examined the combined effects of Joule heating and 

zeta potential on the flow past a peristaltically induced microchannel 

which was supported by those of Tripathi (2013). They also employed 

the Debye-Hückel approximation technique and found that although the 
viscous dissipation increases with a decrease in the Brinkman number, 

the local Nusselt number is a decreasing function of this number. 

                                                   
* Corresponding author. E-mail: r-saleh@mshdiau.ac.ir 

Besthapu et al. (2017) numerically studied the MHD mixed-convection 

flow of stratified nanofluids using the finite difference method (FDM). 
They showed that the nanoparticle concentration boundary-layer 

thickness increases with an increase in the resistive Lorentz force. 

Furthermore, they found that the effect of thermal stratification 

parameter can be neglected at the surface. Sheikholeslami and Ganji 
(2017) applied the Koo-Kleinstreuer-Li (KKL) model to investigate the 

MHD flow of CuO-H2O nanofluid over a permeable annulus. They 

formulated the averaged Nusselt number in terms of inclination angle, 

Hartmann and Rayleigh numbers, and showed a consistency with those 
of Khanafer et al. (2003). It is to be noted that mode details are set out in 

Hedayati and Domairry, 2015; Khoshrouye Ghiasi and Saleh, 2018a, 

2018b, 2017. 

As discussed above, analytical and numerical models play a leading 
role in solving boundary-layer differential equations. This paper focuses 

on how the HAM (Liao, 1992, 2003) may be implemented to give a 

solution for MHD flow of Casson fluid combined with the non-uniform 

heat source/sink, inclined Lorentz force and Joule heating based on the 
Buongiorno mathematical model (Buongiorno, 2006). It is found that the 

current findings are in agreement with those of previous studies. In 

addition, some tables and graphs are provided to signify the effects of 

thermo-physical parameters on the current solution. To the best of 
author's knowledge, there have been no reports of this problem being 

solved to date. 

2. GOVERNING EQUATIONS 

In rheology, one of the well-known non-Newtonian models is the Casson 

fluid which is defined by the following constitutive equation for an 
isotropic incompressible flow (Casson, 1959): 

 

𝜏𝑖𝑗 = {
2 (𝜇𝐵 +

𝑝𝑦

√2𝜋
) 𝑒𝑖𝑗 ,      𝜋 > 𝜋𝑐 ,

2 (𝜇𝐵 +
𝑝𝑦

√2𝜋𝑐
)𝑒𝑖𝑗 ,    𝜋 < 𝜋𝑐 ,

                                                                  (1) 
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where 𝜏𝑖𝑗  is the shear stress tensor, 𝜇𝐵 is the plastic dynamic viscosity of 

the fluid, 𝑝𝑦 is the yield stress, 𝑒𝑖𝑗  is the (𝑖, 𝑗)th component(s) of the strain 

rate, 𝜋(= 𝑒𝑖𝑗𝑒𝑖𝑗 ) is the product of strain rate component(s) and 𝜋𝑐  is the 

critical value of 𝜋. 
For the 2D flow in the Cartesian coordinate system, the velocity, 

temperature and nanoparticle concentration fields can be expressed as 

follows: 

 

𝕍 = [𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)], 𝕋 = 𝑇(𝑥, 𝑦), ℂ = 𝐶(𝑥, 𝑦),                       (2) 

 

where 𝑢 and 𝑣 are the velocity components along 𝑥 and 𝑦 directions, 

respectively, 𝑇 is the temperature and 𝐶 is the nanoparticle concentration. 
Utilizing the aforementioned assumptions, the governing 

continuity, momentum, energy and nanoparticle concentration equations 

yield: 
 

{
 
 
 
 

 
 
 
 
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0,

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜐 (1 +

1

𝛽
)
𝜕2𝑢

𝜕𝑦2
−

𝜎𝐵0
2

𝜌
sin2𝜔𝑢,

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+ 𝛾 [𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2
]

     +
1

𝜌𝐶𝑝
[𝑞𝑛 + 𝜎𝐵0

2𝑢2],

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2
+

𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2
,

                                             (3) 

 

where 𝜐 is the kinematic viscosity, 𝛽 is the Casson fluid parameter, 𝜎 is 

the electrical conductivity, 𝐵0 is the magnetic field strength, 𝜌 is the 

density, 𝜔 is the inclination angle of magnetic field, 𝛼 is the thermal 

diffusivity, 𝛾(=
(𝜌𝐶)𝑝

(𝜌𝐶)𝑓
) is the ratio of effective heat capacity of the 

nanoparticle to effective heat capacity of the base fluid, 𝐷𝐵 is the 

Brownian diffusion coefficient, 𝐷𝑇 is the thermophoresis diffusion 

coefficient, 𝑇∞ is the ambient temperature, 𝐶𝑝 is the specific heat at 

constant pressure and 𝑞𝑛 is the non-uniform heat source/sink. The 
associated boundary conditions are given by: 

 

{
at 𝑦 = 0: 𝑢 = 0, 𝑣 = 𝑣𝑤(𝑥), 𝑇 = 𝑇𝑤, 𝐶 = 𝐶𝑤,
lim
𝑦→∞

𝑢 → 𝑈∞ , lim
𝑦→∞

𝑇 → 𝑇∞, lim
𝑦→∞

𝐶 → 𝐶∞,
                                      (4) 

 

where 𝑣𝑤(𝑥) is the rate of mass transfer, 𝑇𝑤 is the wall temperature, 𝐶𝑤 

is the nanoparticle concentration at the wall, 𝑈∞ is the free stream 

velocity and 𝐶∞ is the ambient nanoparticle concentration. 
In order to derive the similarity solution of equation (3), the 

following variables can be outlined: 

 

𝜙 = √𝑈0𝜐𝑥𝑓(𝜂), 𝜂 = 𝑦√
𝑈0

𝜐𝑥
, 𝜃 =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝜓 =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
,                         (5) 

 

where 𝜙 is the stream function which is governed by the continuity 

equation (i.e., 𝑢 =
𝜕𝜙

𝜕𝑦
 and 𝑣 = −

𝜕𝜙

𝜕𝑥
), 𝑓 is the similarity function, 𝜂 is the 

similarity parameter, 𝜃 is the non-dimensional temperature and 𝜓 is the 
non-dimensional nanoparticle concentration. 

The non-uniform heat source/sink involved in equation (3) is given 

by (Abo-Eldahab and Aziz, 2004; Nandeppanavar et al., 2010; Subhas et 
al., 2007): 

 

𝑞𝑛 =
𝑘𝑢

𝑥𝜐
[𝐴(𝑇𝑤 − 𝑇∞)

𝜕𝑓

𝜕𝜂
+ 𝐵(𝑇 − 𝑇∞)],                                                           (6) 

 

where 𝐴 and 𝐵 are the coefficients of space and temperature-dependent 

heat source/sink, respectively. 
By substituting equation (5) into equation (3), the following system 

of equations can be stated as: 

{
 
 
 

 
 
 (1 +

1

𝛽
)
𝜕3𝑓

𝜕𝜂3
+ 𝑓

𝜕2𝑓

𝜕𝜂2
−

𝜕𝑓

𝜕𝜂
(
𝜕𝑓

𝜕𝜂
+𝐻𝑎2 sin

2 𝜔) = 0,

𝑃𝑟−1
𝜕2𝜃

𝜕𝜂2
+
1

2
𝑓
𝜕𝜃

𝜕𝜂
+𝑁𝑏 (

𝜕𝜃

𝜕𝜂
) (

𝜕𝜓

𝜕𝜂
) + 𝑁𝑡 (

𝜕𝜃

𝜕𝜂
)
2

     +𝑃𝑟−1 (𝐴
𝜕𝑓

𝜕𝜂
+ 𝐵𝜃) + 𝐻𝑎2𝐸𝑐 (

𝜕𝑓

𝜕𝜂
)
2
= 0,

𝜕2𝜓

𝜕𝜂2
+
1

2
𝐿𝑒𝑓

𝜕𝜓

𝜕𝜂
+

𝑁𝑡

𝑁𝑏

𝜕2𝜃

𝜕𝜂2
= 0,

                         (7) 

 

along with the boundary conditions: 
 

{
at 𝜂 = 0: 𝑓 = 𝑆,

𝜕𝑓

𝜕𝜂
= 0, 𝜃 = 1, 𝜓 = 1,

lim
𝜂→∞

𝜕𝑓

𝜕𝜂
→ 1, lim

𝜂→∞
𝜃 → 0, lim

𝜂→∞
𝜓 → 0,

                                          (8) 

 

where 𝐻𝑎2 =
2𝜎𝐵0

2𝐿

𝜌𝑈0
 is the square of Hartmann number, 𝑃𝑟 =

𝜐

𝛼
 is the 

Prandtl number, 𝑁𝑏 =
𝛾𝐷𝐵

𝜐
(𝐶𝑤 − 𝐶∞) is the Brownian motion 

parameter, 𝑁𝑡 =
𝛾𝐷𝑇

𝜐𝑇∞
(𝑇𝑤 − 𝑇∞) is the thermophoresis parameter, 𝐸𝑐 =

𝑈∞
2

𝐶𝑝(𝑇𝑤−𝑇∞)
 is the Eckert number, 𝐿𝑒 =

𝜐

𝐷𝐵
 is the Lewis number and 𝑆 is the 

mass suction parameter. It should be emphasized that the underlined term 

on the left-hand side of equation (7) indicates the effect of magnetic 
entropy generation. 

The physical quantities of interest are the skin friction coefficient, 

local Nusselt number and local Sherwood number which can be defined 

as follows: 
 

𝐶𝑓 = 2
𝜏𝑤

𝜌𝑈∞
2 , 𝑁𝑢𝑥 =

𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞)
, 𝑆ℎ𝑥 =

𝑥𝑞𝑚

𝐷𝐵(𝐶𝑤−𝐶∞)
,                                      (9) 

 

where, 

 

{
 
 

 
 𝜏𝑤 = 𝜇 (1 +

1

𝜆
) (

𝜕𝑢

𝜕𝑦
)
𝑦=0

,

𝑞𝑤 = −𝑘(
𝜕𝑇

𝜕𝑦
)
𝑦=0

,

𝑞𝑚 = −𝐷𝐵 (
𝜕𝐶

𝜕𝑦
)
𝑦=0

.

                                                                                    (10) 

 
Substituting equations (5) and (10) into equation (9) yields: 

 

{
  
 

  
 𝐶𝑓𝑅𝑒𝑥

1

2 = (1 +
1

𝜆
) (

𝜕2𝑓

𝜕𝜂2
)
𝜂=0

,

𝑁𝑢𝑥 𝑅𝑒𝑥

1

2⁄ = −(
𝜕𝜃

𝜕𝜂
)
𝜂=0

,

𝑆ℎ𝑥 𝑅𝑒𝑥

1

2⁄ = −(
𝜕𝜙

𝜕𝜂
)
𝜂=0

,

                                                           (11) 

 

where 𝑅𝑒𝑥 =
𝑥𝑈∞

𝜐
 is the local Reynolds number. 

3. SOLUTION METHOD 

This section provides an overview of the HAM for finding analytical 
solution of equation (7) together with the boundary conditions given in 
equation (8). To this end, the initial guesses and auxiliary linear operators 
can be chosen as follows: 
 

{
𝑓0 = 𝑆 − 1 + 𝜂 + 𝑒−𝜂 ,𝜃0 = 𝑒

−𝜂 , 𝜓0 = 𝑒−𝜂 ,

𝐿𝑓 =
𝜕3𝑓

𝜕𝜂3
−
𝜕𝑓

𝜕𝜂
, 𝐿𝜃 =

𝜕2𝜃

𝜕𝜂2
− 𝜃, 𝐿𝜓 =

𝜕2𝜓

𝜕𝜂2
−𝜓,

                                        (12) 

 

which have the following properties: 
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{

𝐿𝑓[𝐶1 + 𝐶2𝑒
𝜂 + 𝐶3𝑒

−𝜂] = 0,

𝐿𝜃[𝐶4𝑒
𝜂 + 𝐶5𝑒

−𝜂] = 0,

𝐿𝜓[𝐶6𝑒
𝜂 + 𝐶7𝑒

−𝜂] = 0,

                                                                             (13) 

 

where 𝐶1, 𝐶2, …, 𝐶7 are the arbitrary constants. 

Using Liao's theorem (1992), the following zeroth-order 

deformation equations can be constructed: 
 

{
 
 

 
 
(1 − 𝑝)𝐿𝑓[𝑓(𝜂, 𝑝) − 𝑓0(𝜂)] = 𝑝ℎ𝑓𝑁𝑓[𝑓(𝜂, 𝑝)],

(1 − 𝑝)𝐿𝜃[𝜃(𝜂, 𝑝) − 𝜃0(𝜂)]

     = 𝑝ℎ𝜃𝑁𝜃[𝑓(𝜂, 𝑝), 𝜃(𝜂, 𝑝), 𝜓(𝜂, 𝑝)],
(1 − 𝑝)𝐿𝜓[𝜓(𝜂, 𝑝) − 𝜓0(𝜂)]

     = 𝑝ℎ𝜓𝑁𝜓[𝑓(𝜂, 𝑝), 𝜃(𝜂, 𝑝), 𝜓(𝜂, 𝑝)],

                                 (14) 

 
in which, 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑁𝑓[𝑓(𝜂, 𝑝)] = (1 +

1

𝛽
)
𝜕3𝑓(𝜂,𝑝)

𝜕𝜂3
+ 𝑓(𝜂, 𝑝)

𝜕2𝑓(𝜂,𝑝)

𝜕𝜂2

     −
𝜕𝑓(𝜂,𝑝)

𝜕𝜂
(
𝜕𝑓(𝜂,𝑝)

𝜕𝜂
+𝐻𝑎2 sin2 𝜔) ,

𝑁𝜃[𝑓(𝜂, 𝑝), 𝜃(𝜂, 𝑝), 𝜓(𝜂, 𝑝)] = 𝑃𝑟−1
𝜕2𝜃(𝜂,𝑝)

𝜕𝜂2
+
1

2
𝑓(𝜂, 𝑝)

     ×
𝜕𝜃(𝜂,𝑝)

𝜕𝜂
+ 𝑁𝑏 (

𝜕𝜃(𝜂,𝑝)

𝜕𝜂
) (

𝜕𝜓(𝜂,𝑝)

𝜕𝜂
) + 𝑁𝑡 (

𝜕𝜃(𝜂,𝑝)

𝜕𝜂
)
2

     𝑃𝑟−1 (𝐴
𝜕𝑓(𝜂,𝑝)

𝜕𝜂
+ 𝐵𝜃(𝜂, 𝑝)) + 𝐻𝑎2𝐸𝑐 (

𝜕𝑓(𝜂,𝑝)

𝜕𝜂
)
2

,

𝑁𝜓[𝑓(𝜂, 𝑝), 𝜃(𝜂, 𝑝), 𝜓(𝜂, 𝑝)] =
𝜕2𝜓(𝜂,𝑝)

𝜕𝜂2

     +
1

2
𝐿𝑒𝑓(𝜂, 𝑝)

𝜕𝜓(𝜂,𝑝)

𝜕𝜂
+

𝑁𝑡

𝑁𝑏

𝜕2𝜃(𝜂,𝑝)

𝜕𝜂2
,

    (15) 

 

with the boundary conditions: 
 

{
 
 

 
 𝑎𝑡 𝜂 = 0: 𝑓(𝜂, 𝑝) = 𝑆,

𝜕𝑓(𝜂,𝑝)

𝜕𝜂
= 0, 𝜃(𝜂, 𝑝) = 1,

𝜓(𝜂, 𝑝) = 1,

lim
𝜂→∞

𝜕𝑓(𝜂,𝑝)

𝜕𝜂
→ 1, lim

𝜂→∞
𝜃(𝜂, 𝑝) → 0, lim

𝜂→∞
𝜓(𝜂, 𝑝) → 0,

               (16) 

 

where 0 ≤ 𝑝 ≤ 1 is an embedding parameter, ℎ𝑓 , ℎ𝜃 and ℎ𝜓 are the 

auxiliary parameters, and 𝑁𝑓 , 𝑁𝜃 and 𝑁𝜓 are the nonlinear operators. 

For 𝑝 = 0 and 𝑝 = 1, equation (14) is assumed to be: 

 

{
 
 

 
 
𝐿𝑓[𝑓(𝜂, 0) − 𝑓0(𝜂)] = 0,𝑁𝑓[𝑓(𝜂, 1)] = 0,

𝐿𝜃[𝜃(𝜂, 0) − 𝜃0(𝜂)] = 0,

𝑁𝜃[𝑓(𝜂, 1), 𝜃(𝜂, 1), 𝜓(𝜂, 1)] = 0,

𝐿𝜓[𝜓(𝜂, 0) − 𝜓0(𝜂)] = 0,

𝑁𝜓[𝑓(𝜂, 1), 𝜃(𝜂, 1), 𝜓(𝜂, 1)] = 0.

                                         (17) 

 

Expanding 𝑓, 𝜃 and 𝜓 into the Taylor series with respect to 𝑝 gives: 
 

{

𝑓(𝜂, 𝑝) = 𝑓0(𝜂) + ∑ 𝑓(𝜂)𝑝𝑛∞
𝑛=1 ,

𝜃(𝜂, 𝑝) = 𝜃0(𝜂) + ∑ 𝜃(𝜂)𝑝𝑛∞
𝑛=1 ,

𝜓(𝜂, 𝑝) = 𝜓0(𝜂) + ∑ 𝜓(𝜂)𝑝𝑛∞
𝑛=1 ,

                                                              (18) 

 
in which, 

 

𝑓(𝜂, 𝑝) = (
1

𝑛!

𝜕𝑛𝑓(𝜂,𝑝)

𝜕𝜂𝑛
)
𝑝=0

,

 𝜃(𝜂, 𝑝) = (
1

𝑛!

𝜕𝑛𝜃(𝜂,𝑝)

𝜕𝜂𝑛
)
𝑝=0

,

𝜓(𝜂, 𝑝) = (
1

𝑛!

𝜕𝑛𝜓(𝜂,𝑝)

𝜕𝜂𝑛
)
𝑝=0

.

                                                                               (19) 

 

If the initial guesses, auxiliary linear operators and auxiliary 

parameters are properly chosen, one would get at 𝑝 = 1: 
 

{

𝑓(𝜂, 𝑝) = ∑ 𝑓(𝜂)∞
𝑛=0 ,

𝜃(𝜂, 𝑝) = ∑ 𝜃(𝜂)∞
𝑛=0 ,

𝜓(𝜂, 𝑝) = ∑ 𝜓(𝜂)∞
𝑛=0 .

                                                                                          (20) 

 

Differentiating equation (14) 𝑛 times with respect to 𝑝, setting 𝑝 =
0 and dividing them by 𝑛! gives the following 𝑛th-order deformation 
equations: 

 

{

𝐿𝑓[𝑓𝑛(𝜂) − χ𝑛𝑓𝑛−1(𝜂)] = ℎ𝑓𝑅𝑓,𝑛(𝜂),

𝐿𝜃[𝜃𝑛(𝜂) − χ𝑛𝜃𝑛−1(𝜂)] = ℎ𝜃𝑅𝜃,𝑛(𝜂),

𝐿𝜓[𝜓𝑛(𝜂) − χ𝑛𝜓𝑛−1(𝜂)] = ℎ𝜓𝑅𝜓,𝑛(𝜂),

                                                    (21) 

 

in which, 

 

χ𝑛 = {
0,    𝑛 ≤ 1,
1,    𝑛 > 1,

                                                                                                       (22) 

{
 
 
 
 
 

 
 
 
 
 𝑅𝑓,𝑛(𝜂) = (1 +

1

𝛽
)
𝜕3𝑓𝑛−1

𝜕𝜂3
+∑ 𝑓𝑚

𝜕2𝑓𝑛−𝑚−1

𝜕𝜂2
𝑛−1
𝑚=0

     −∑
𝜕𝑓𝑚

𝜕𝜂

𝜕𝑓𝑛−𝑚−1

𝜕𝜂
𝑛−1
𝑚=0 −𝐻𝑎2 sin2𝜔

𝜕𝑓𝑛−1

𝜕𝜂
,

𝑅𝜃,𝑛(𝜂) = 𝑃𝑟−1
𝜕2𝜃𝑛−1

𝜕𝜂2
+
1

2
∑ 𝑓𝑚

𝜕𝜃𝑛−𝑚−1

𝜕𝜂
𝑛−1
𝑚=0

     +𝑁𝑏∑
𝜕𝜓𝑛

𝜕𝜂

𝜕𝜃𝑛−𝑚−1

𝜕𝜂
𝑛−1
𝑚=0 + 𝑃𝑟−1 (𝐴

𝜕𝜃𝑛

𝜕𝜂
+ 𝐵𝜃𝑛−1)

     +𝐻𝑎2𝐸𝑐∑
𝜕𝑓𝑚

𝜕𝜂

𝜕𝑓𝑛−𝑚−1

𝜕𝜂
𝑛−1
𝑚=0 ,

𝑅𝜓,𝑛(𝜂) =
𝜕2𝜓𝑛−1

𝜕𝜂2
+
1

2
𝐿𝑒 ∑ 𝑓𝑚

𝜕𝜓𝑛−𝑚−1

𝜕𝜂
𝑛−1
𝑚=0 +

𝑁𝑡

𝑁𝑏

𝜕2𝜃𝑛−1

𝜕𝜂2
,

                   (23) 

 

with the boundary conditions: 

 

{
at 𝜂 = 0: 𝑓(𝜂) = 0,

𝜕𝑓(𝜂)

𝜕𝜂
= 0, 𝜃(𝜂) = 0,𝜓(𝜂) = 0,

lim
𝜂→∞

𝜕𝑓(𝜂)

𝜕𝜂
→ 0, lim

𝜂→∞
𝜃(𝜂) → 0, lim

𝜂→∞
𝜓(𝜂) → 0.

                      (24) 

 

The general solutions for equation (21) in terms of particular 

solutions (i.e., 𝑓⋆, 𝜃⋆ and 𝜓⋆) can be expressed as follows: 

 

{

𝑓𝑛(𝜂) = 𝑓𝑛
⋆(𝜂) + 𝐶1 + 𝐶2𝑒

𝜂 + 𝐶3𝑒
−𝜂 ,

𝜃𝑛(𝜂) = 𝜃𝑛
⋆(𝜂) + 𝐶4𝑒

𝜂 + 𝐶5𝑒
−𝜂 ,

𝜓𝑛(𝜂) = 𝜓𝑛
⋆(𝜂) + 𝐶6𝑒

𝜂 + 𝐶7𝑒
−𝜂 ,

                                                         (25) 

 

in which, 

 

{
𝐶2 = 𝐶4 = 𝐶6 = 0, 𝐶1 = −(𝐶3 + 𝑓𝑛

⋆(0)),

𝐶3 =
𝜕𝑓𝑛

⋆(0)

𝜕𝜂
, 𝐶5 = 𝜃𝑛

⋆(0), 𝐶7 = 𝜓𝑛
⋆(0).

                                                  (26) 

 

The square residual errors can be defined as (Liao, 2010): 
 

{
 
 
 

 
 
 ∆𝑓,𝑛=

1

𝑖+1
∑ {𝑁𝑓[∑ 𝑓(𝜂)𝑛

𝑟=0 ]𝜂=𝑗𝛿𝜂}
2𝑖

𝑗=0 ,

∆𝜃,𝑛=
1

𝑖+1

     ×∑ {𝑁𝜃[∑ 𝑓(𝜂)𝑛
𝑟=0 , ∑ 𝜃(𝜂)𝑛

𝑟=0 , ∑ 𝜓(𝜂)𝑛
𝑟=0 ]𝜂=𝑗𝛿𝜂}

2𝑖
𝑗=0 ,

∆𝜓,𝑛=
1

𝑖+1

     ×∑ {𝑁𝜓[∑ 𝑓(𝜂)𝑛
𝑟=0 , ∑ 𝜃(𝜂)𝑛

𝑟=0 , ∑ 𝜓(𝜂)𝑛
𝑟=0 ]𝜂=𝑗𝛿𝜂}

2𝑖
𝑗=0 ,

        (27) 

 

where 𝑖 = 20 and 𝛿𝜂 = 0.5. 
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4. RESULTS AND DISCUSSION 

This section deals with the previously outlined HAM-series solution for 
heat and mass transfer analysis in the MHD flow of Casson fluid 

subjected to inclined Lorentz force and Joule heating. In this way, the 

comparisons and parametric studies are made to investigate the validity 

and accuracy of the current solution. In this paper the pertinent 
parameters, unless stated otherwise, are listed as follows: 

 

{
𝛽 = 0.4, 𝐻𝑎 = 1, 𝜔 = 45°, 𝑆 = 1, 𝑃𝑟 = 0.7,
𝑁𝑏 = 𝑁𝑡 = 0.5, 𝐴 = 0.05, 𝐵 = -0.05, 𝐸𝑐 = 0.1, 𝐿𝑒 = 1.3.

          (28) 

 

Table 1 represents the variation of auxiliary parameters and its 

square residual errors at any order of approximation. From this table, it 
is seen that the allowable values of auxiliary parameters can be chosen 

by minimizing the square residual errors. Therefore, the current findings 

are provided using the optimized 20th-order of approximation (i.e., ℎ𝑓 =

-0.8169, ℎ𝜃 = -0.8246 and ℎ𝜓 = -1.0962). 

Effect of the Hartmann number 𝐻𝑎 on the skin friction coefficient 

−𝐶𝑓𝑅𝑒𝑥

1

2 is depicted in Fig. 1 for different values of inclination angle of 

magnetic field 𝜔. As this figure shows, −𝐶𝑓𝑅𝑒𝑥

1

2 increases with an 

increase in 𝜔 which is due to the presence of resistive Lorentz force. It 

should be noted that the Casson fluid is affected by the viscous force 
while the Lorentz force tends to decelerate flow of the fluid and retards 

its motion (Khoshrouye Ghiasi and Saleh, 2018c). Moreover, unlike 𝜔 =

0°, −𝐶𝑓𝑅𝑒𝑥

1

2 increases with an increase in 𝐻𝑎. Since 𝜔 = 0° the effect of 

Hartmann number on the momentum boundary-layer thickness is 

negligible. 
 

Table 1 selection of auxiliary parameters 

𝑛 ℎ𝑓  ∆𝑓,𝑛 ℎ𝜃 ∆𝜃,𝑛 ℎ𝜓 ∆𝜓,𝑛 

2 -0.7614 6.14×10-8  -0.8006 5.20×10-5  -1.0070 4.54×10-7  

4 -0.7698 3.0.3×10-8  -0.8025 4.68×10-5  -1.0195 2.19×10-7  

6 -0.7740 9.26×10-9  -0.8049 3.90×10-5  -1.0296 9.80×10-8  

8 -0.7788 5.99×10-9  -0.8082 3.51×10-5  -1.0399 7.22×10-8  

10 -0.7939 1.04×10-9  -0.8107 3.08×10-5  -1.0498 4.93×10-8  

12 -0.7983 8.06×10-10  -0.8131 2.79×10-5  -1.0585 2.30×10-8  

14 -0.8032 5.12×10-10  -0.8159 2.32×10-5  -1.0694 9.79×10-9  

16 -0.8070 2.97×10-10  -0.8190 2.01×10-5  -1.0790 6.95×10-9  

18 -0.8111 8.25×10-11  -0.8214 1.71×10-5  -1.0883 3.93×10-9  

20 -0.8169 4.89×10-11  -0.8246 1.46×10-5  -1.0962 1.09×10-9  

 

 

Fig. 1 Variation of −𝐶𝑓𝑅𝑒𝑥

1

2 versus 𝐻𝑎 for 𝜔 = 0°, 𝜔 = 45° and 

𝜔 = 90° 

 

Due to the effect of yield stress 𝑝𝑦 on the Casson fluid given in 

equation (1), one can observe from Fig. 2 that the velocity distribution 

decreases with an increase in the Casson fluid parameter 𝛽. This is 

because, an increase in 𝛽 leads to a decrease in 𝑝𝑦, which is replaced by 

the Newtonian fluid. This fact is also illustrated in Aziz (2016) and 
Khoshrouye Ghiasi and Saleh (2019). It is worth mentioning that some 

previous studies (Raju et al., 2017; Raju and Sandeep, 2017) suggest 

ascending behavior of the velocity distribution with an increase in 𝛽 
which is largely due to the domination of buoyancy force. 

Table 2 tabulates the effect of Hartmann number 𝐻𝑎 and mass 

suction parameter 𝑆 on the values of (
𝜕2𝑓

𝜕𝜂2
)
𝜂=0

. According to the results 

reported in this table, it is observed that (
𝜕2𝑓

𝜕𝜂2
)
𝜂=0

 is an increasing 

function of 𝐻𝑎 and 𝑆 simultaneously. It should be noted that for large 
values of mass suction parameter, the axial velocity decreases. 

 

 

Fig. 2 Variation of 
𝜕𝑓

𝜕𝜂
 for 𝛽 = 1, 𝛽 = 2 and 𝛽 = 3 

 
Table 2 Values of the skin friction coefficient for 𝐻𝑎 and 𝑆 

𝐻𝑎 𝑆 (
𝜕2𝑓

𝜕𝜂2
)
𝜂=0

  

1  1.1665 

2  1.2796 

3  1.3481 

4  1.4195 

1 0.6 0.9228 

 0.7 0.9396 

 0.8 0.9451 

 0.9 0.9517 

 

Table 3 shows a comparison between the current solution and those 

of Khan and Pop (2010) and Wang (1989) to determine the values of 

−(
𝜕𝜃

𝜕𝜂
)
𝜂=0

. The results in this table are provided by 𝛽 → ∞, 𝐻𝑎 = 0.1, 

𝐸𝑐 = 0.1, 𝐿𝑒 = 10 and 𝜔 = 𝑆 = 𝑁𝑏 = 𝑁𝑡 = 𝐴 = 𝐵 = 0. It is seen from 

Table 3 that −(
𝜕𝜃

𝜕𝜂
)
𝜂=0

 increases with an increase in 𝑃𝑟. Moreover, the 

relative error between the current solution and those of Khan and Pop 

(2010) and Wang (1989) does not exceed 0.047% and 0.111%, 

respectively. Hence, the reliability of the current solution is verified. 
As mentioned earlier, the irreversibility of the Joule heating process 

can be measured by the magnetic entropy generation (Bejan, 1982). This 

fact is illustrated in Fig. 3 for the variation of local Nusselt number 

𝑁𝑢𝑥 𝑅𝑒𝑥

1

2⁄  versus 𝐻𝑎. From this figure, it can be seen that 𝑁𝑢𝑥 𝑅𝑒𝑥

1

2⁄  

decreases with an increase in the Eckert number 𝐸𝑐 which is due to the 

stored energy in the fluid. This observation can also be considered as an 
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optimization criterion for minimizing the entropy generation (Bejan, 

1995). 
To investigate the effect of non-uniform heat source/sink on the 

temperature distribution, the variation of 𝜃(𝜂) for different values of 𝐴 

and 𝐵 is depicted in Fig. 4. As this figure shows, 𝜃(𝜂) increases with an 

increase in 𝐴 or 𝐵 which is due to an increase in the thermal boundary-
layer thickness. Furthermore, Fig. 4 emphasizes that the surface 

temperature 𝜃(0) increases with an increase in 𝐴. 
 

Table 3 Values of −(
𝜕𝜃

𝜕𝜂
)
𝜂=0

 compared with those of Khan and Pop 

(2010) and Wang (1989) 

𝑃𝑟 Khan and Pop (2010) Wang (1989) Current solution 

0.07 0.0663 0.0656 0.0661 

0.2 0.1691 0.1691 0.1691 

0.7 0.4539 0.4539 0.4538 

2 0.9113 0.9114 0.9114 

7 1.8954 1.8954 1.8954 

20 3.3539 3.3539 3.3539 

70 6.4621 6.4622 6.4621 

 

 

Fig. 3 Variation of 𝑁𝑢𝑥 𝑅𝑒𝑥

1

2⁄  versus 𝐻𝑎 for 𝐸𝑐 = 0.1, 𝐸𝑐 = 0.2, 

𝐸𝑐 = 0.3 and 𝐸𝑐 = 0.4 
 

 
Fig. 4 Variation of 𝜃(𝜂) for 𝐴 = -1, 𝐴 = 0 and 𝐴 = 1, and, 𝐵 =

-0.5, 𝐵 = 0 and 𝐵 = 0.5 
 

Table 4 shows the effect of Brownian motion parameter 𝑁𝑏 and 

thermophoresis parameter 𝑁𝑡 on the variation of −(
𝜕𝜃

𝜕𝜂
)
𝜂=0

. It can be 

observed from this table that −(
𝜕𝜃

𝜕𝜂
)
𝜂=0

 increases with an increase in 𝑁𝑏, 

which is due to an interaction between the Brownian motion and thermal 

conductivity. Also, Table 4 shows that −(
𝜕𝜃

𝜕𝜂
)
𝜂=0

 clearly decreases with 

an increase in 𝑁𝑡. Therefore, it is essential to account for the effect 
Brownian diffusion and thermophoresis in the Buongiorno mathematical 

model. 
A comparison between the current solution and those of Afify and 

Elgazery (2016) is reported in Table 5 to determine the effect of 𝑁𝑡 and 

𝑁𝑏 on the variation of −(
𝜕𝜓

𝜕𝜂
)
𝜂=0

. It is noted that the pertinent 

parameters utilized by Afify and Elgazery (2016) (i.e., 𝛽 → ∞, 𝑃𝑟 =
𝐿𝑒 = 10 and 𝐻𝑎 = 𝜔 = 𝑆 = 𝐴 = 𝐵 = 𝐸𝑐 = 0) agree with those 

presented in this table. It is found that the relative error between the 

current solution and those of Afify and Elgazery (2016) equals to 0.331% 

in all cases. 

Fig. 5 illustrates the variation of nanoparticle concentration 𝜓(𝜂) 
for different values of Lewis number 𝐿𝑒. From this figure, it is seen that 

𝜓(𝜂) decreases with an increase in 𝐿𝑒 which is due to the effect of 𝐷𝐵. 
 

Table 4 Values of the local Nusselt number for 𝑁𝑏 and 𝑁𝑡 

𝑁𝑏 𝑁𝑡 −(
𝜕𝜃

𝜕𝜂
)
𝜂=0

  

0.1 0.5 0.5059 

0.2  0.5625 

0.3  0.6148 

0.4  0.6809 

0.1 0.6 0.4730 

 0.7 0.4415 

 0.8 0.4120 

 0.9 0.4796 

 

Table 5 Values of −(
𝜕𝜓

𝜕𝜂
)
𝜂=0

 compared with those of Afify and Elgazery 

(2016) 

𝑁𝑡 𝑁𝑏 Afify and Elgazery (2016) Current solution 

0.1 0.1 2.2774 2.2637 

0.2  2.2490 2.2388 

0.3  2.2229 2.2181 

0.4  2.1992 2.1907 

0.1 0.2 2.3110 2.3089 

 0.3 2.3299 2.3216 

 0.4 2.3458 2.3389 

 0.5 2.3560 2.3501 

 

 
Fig. 5 Variation of 𝜓(𝜂) for 𝐿𝑒 = 0, 𝐿𝑒 = 1 and 𝐿𝑒 = 2 
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5. CONCLUSIONS 

This paper aimed to study the effect of non-uniform heat sink/source, 
Joule heating and inclined Lorentz force on flow of Casson fluid based 

on the Buongiorno mathematical model. The governing boundary-layer 

equations correspond to the continuity, momentum, energy and 

nanoparticle concentration equations are derived, and solved through the 
HAM. It was found that the rate of heat transfer is affected by the 

Brownian diffusion and thermophoresis. Moreover, the HAM findings 

were compared and validated by those previous studies available in the 

literature. One can also conclude that this paper would be worthwhile to 
further explore this problem with different boundary conditions, solution 

methodologies and geometries. 
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