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ABSTRACT 

The significance of an externally applied magnetic field and an imposed negative temperature gradient on the onset of natural convection in a thin 

horizontal layer of alumina-water nanofluid for various sizes of spherical alumina nanoparticles (e.g., 30𝑛𝑚, 35𝑛𝑚, 40𝑛𝑚, 45𝑛𝑚) and volumetric 

fractions (e.g., 0.01, 0.02, 0.03, 0.04) is explored and analyzed numerically in this paper. The generalized Buongiorno's mathematical model with the 

simplified Maxwell's equations and the Oberbeck-Boussinesq approximation were adopted to simulate the two-phase transport phenomena, in which 

the Brownian motion and thermophoresis aspects are taken into account. Moreover, the rheological behavior of alumina-water nanofluid and related 

flow are assumed to be Newtonian, incompressible and laminar. Based on the linear stability theory, the perturbed partial differential equations (PDEs) 

of magnetohydrodynamic convective nanofluid flow are firstly simplified formally using the normal mode analysis technique and secondly converted to 

a generalized eigenvalue problem considering more realistic boundary conditions, in which the thermal Rayleigh number is the associated eigenvalue. 

Additionally, the resulting eigenvalue problem was solved numerically using powerful collocation methods, like Chebyshev-Gauss-Lobatto Spectral 

Method (CGLSM) and Generalized Differential Quadrature Method (GDQM). Furthermore, the thermo-magneto-hydrodynamic stability of the 

nanofluidic system and the critical size of convection cells are highlighted graphically in terms of the critical thermal Rayleigh and wave numbers, for 

various values of the magnetic Chandrasekhar number, the volumetric fraction and the diameter of alumina nanoparticles.   
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1. INTRODUCTION 

In recent decades, numerous investigations have been conducted on the 

conventional fluids, in an attempt to enhance their intrinsic thermo-

physical properties and consequently improve heating and cooling 

systems by dispersing insoluble nano-sized particles (Maxwell, 1873) 

like copper, silver, gold, alumina, copper oxide, titanium dioxide, carbon 

nanotubes, graphene, graphene oxide and diamond into a specified fluid 

such as water, ethylene glycol and oil. This new type of working fluids, 

which was first invented by Choi (1995) is called nanofluids. In other 

words, the terminology of nanofluid or nanoliquid was introduced 

scientifically in fluid mechanics and rheology to refer to the fluids with 

suspended solid nanoparticles of average size less than 100 𝑛𝑚 . 

Moreover, these engineered colloidal suspensions of nanoparticles in a 

chosen base fluid can be synthesized under some experimental conditions 

to obtain stable homogeneous mixtures. Today, these new innovative 

materials become among the most commonly used smart fluids, which 

have gained the significant attention of researchers around the globe, 

because of their widespread applications in modern science, engineering 

and industry. After the pioneering theoretical work of Buongiorno 

(2006), other experimental studies (Buongiorno, 2009 ; Żyła et al., 2018), 

as well as numerical modeling investigations (Boulahia et al., 2017a, 
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2017b , 2017c , 2017d) have been carried out by many researchers, in 

order to show the excellent heat transfer performance of nanofluids and 

their higher energy storage capacity compared to the commonly used   

conventional thermal fluids. As the main result, it was found that the 

inclusion of a small volumetric fraction of nanoparticles inside a base 

fluid can increase the thermal conductivity of the mixture dramatically, 

and also improve its thermal performance enormously. All these thermal 

benefits have made the nanofluids potentially useful in many engineering 

applications, such as heat and mass transfer enhancement, energy 

efficient buildings, solar collectors, biomedical applications and many 

others. Due to the considerable advancement in modern technology and 

growing demands in the development of efficient and powerful cooling 

systems, the nanofluid technology has gained worldwide acceptance 

from researchers in recent years, mainly in the field of cooling systems 

like nuclear power reactors, transformer oils, devices in automotive 

vehicles and microelectronic components. Following the same trends, 

Makinde and Animasaun (2016a , 2016b), Pandey and Kumar (2016 , 

2017a , 2017b , 2017c) , Boulahia et al. (2016 , 2018) and Koriko et al. 

(2018) studied the convection heat transfer behavior of nanofluids and 

the significance of quartic chemical reactions through various practical  

engineering problems , in order to achieve a profound understanding of 

the importance of these liquid substances (i.e., nanofluids or nanoliquids) 
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towards the advanced industrial and technological systems requiring 

ultra-high rates of heating or cooling. 

From the chemical and physical point of views, the nanofluids can 

be actually synthesized in the scientific laboratories by utilizing various 

experimental methods. In spite of these numerous approaches, there are 

only two primary ways, namely single-step and two-step processes 

among the most widely used methods for preparing homogeneous 

mixtures with almost negligible agglomeration of nanoparticles. These 

techniques have been carried out by respecting specified experimental 

protocols, which require careful steps to ensure that the mixture (e.g., 

base fluid + nanoparticles) remains stable over a long period of time.       

In addition, the single-step and two-step methods have been classified 

according to the number of steps involved during their preparation. In the 

first method, the nanoparticles are prepared and dispersed simultaneously 

into a base fluid during the manufacturing process of nanoparticles. 

While in the two-step method, the nanoparticles are first produced either 

by physical or chemical processes, which can be thereafter dispersed into 

the base fluid using an intensive magnetic force agitation. In term of the 

economic cost, the two-step procedure is considered as the easiest 

method applied by the experimenters to manufacture enhanced working 

fluids in large and applicable scales. Regardless of the method employed 

for preparing nanofluids, the nanoparticles always have a tendency to 

agglomerate or aggregate due to the van der Waals forces. Consequently, 

the heavier nanoparticles tend to settle at the bottom under the impact of 

gravitational forces. Due to this fact, many undesirable phase instabilities 

driven by the agglomeration and sedimentation of nanoparticles can be 

induced in the medium. For this purpose, it is recommended to introduce 

suitable surfactants into the nanofluidic medium for suppressing these 

instabilities. In addition, the presence of surfactant molecules inside the 

nanofluid can significantly increase the repulsive forces between the 

nanoparticles. Physically, it is well known that when the repulsive forces 

are higher than the attractive van der Waals forces, the impact of the 

agglomeration can be quantitatively reduced for the nanoparticles.  

In the light of the aforementioned results, Angayarkanni and Philip 

(2015) reported in their innovative work that to ensure the stability 

maintenance of nanofluids, it is suggested to minimize the destabilizing 

effect of the attractive van der Waals forces either by decreasing the size 

of solid nanoparticles  𝑑𝑛𝑝 , increasing the base fluid viscosity 𝜇𝑏𝑓  or  

decreasing the density difference between the nanoparticles and the base 

fluid. Furthermore, it is also proved that due to the presence of the 

nanoparticles migration inside the base fluids, the nanofluids can achieve 

a substantial enhancement in the thermal transfer performances.  In view 

of all these results, Wakif et al. (2018a) revealed  that the heterogeneity 

of nanoparticles concentration increases locally with the temperature. 

The main reasons behind the non-homogeneity in the volumetric fraction 

of nanoparticles are the Brownian motion and thermophoresis slip 

mechanisms, which are evidently due to the random movements of 

nanoparticles and their very small dimensions. In this framework, 

Buongiorno (2006) in his seminal work suggested a two-component four- 

equation non-homogeneous equilibrium model for mass, momentum, 

volumetric fraction of nanoparticles and heat transfer in nanofluids by 

taking into account the effects of the thermophoresis phenomenon (i.e., 

movement of solid nanoparticles from the warmer regions to the colder 

regions) and Brownian motion (i.e., movement of solid nanoparticles 

from the greater concentration areas to those with lower concentration) 

as possible slip mechanisms between the base fluid and nanoparticles.    

In related works, Nield and Kuznetsov (2014a , 2014b) extended the 

validity of the Buongiorno's mathematical model for the impermeable  

boundaries, in which the volumetric fraction of solid nanoparticles can 

be passively rather than actively controlled at the  boundaries. In this 

revised model, the nanoparticles on the impermeable walls are indirectly 

adjusted via the volumetric fraction gradient of nanoparticles by adopting 

the condition of zero nanoparticles mass flux. Physically, this newly 

suggested assumption for controlling the nanoparticles is more realistic 

as compared to other models.  Likewise, this approach remains possible 

for the nanofluids, as long as the boundaries are assumed impermeable 

to the base fluid and nanoparticles. Very recently, Animasaun (2016) 

investigated the dynamics of water conveying alumina nanoparticles on 

an upper horizontal surface of paraboloid of revolution coated with three 

molecules of catalyst using quartic autocatalysis chemical reaction. It 

was observed that the horizontal velocity and temperature distribution 

across the flow increase with the volumetric fraction of nanoparticles. In 

another related study about the influence of Hall effect on the flow of 

36𝑛𝑚 alumina-water and 47𝑛𝑚 alumina-water nanofluids, Animasaun 

et al. (2018) remarked that the maximum cross-flow velocity is attained 

within the fluid domain when 36 nm nanoparticles alumina is used. 

Nowadays, the Buongiorno's two-phase approach becomes the most 

plausible and used model for predicting the heat transfer enhancement 

and analyzing the nanoparticles transportation in nanofluids, owing to its 

reasonable explanation. Therefore, many researchers are constantly 

working to develop this heterogeneous model, in order to improve 

its capability as an advanced mathematical model for simulating the two-

phase convective flows (i.e., natural, forced or mixed convection flows) 

and estimating the heat transfer performance of nanofluids. Lately, this 

model has been generalized to take care of the nanofluid flow variables, 

due to the effective dependence of the thermophysical properties of 

nanofluids on the temperature and the volume fraction of nanoparticles. 

Based on the revised form of the Buongiorno's two-phase model, several 

interesting investigations were reported by many researchers using the 

generalized version of the heterogeneous two-phase model. Among the 

more recent researches on nanofluids, it can be found a lot of related 

papers in the literature survey regarding the generalized Buongiorno's 

nanofluid model. To mention a few, Garoosi and Talebi (2017) used the 

Buongiorno's  two - phase model to examine a  numerical  simulation  of 

the combined conduction and natural convection nanofluid flows and 

temperature distribution in an enclosure with the presence of vertical 

partition or several conductive obstacles with finite thickness and thermal 

conductivity. In this regard, the authors used Corcione's  correlations 

(Corcione, 2011) as the best ways for estimating the effective thermal 

conductivity 𝑘𝑛𝑓  and dynamic viscosity 𝜇𝑛𝑓 . Alsabery et al. (2018) 

investigated the problem of conjugate natural convection of 𝐴𝑙2𝑂3 - 

water nanofluids in a square cavity with concentric solid insert and 

isothermal corner boundaries using the non-homogenous Buongiorno’s 

two-phase model in combination with the Corcione's correlations. 

Astanina et al. (2018) adopted the heterogeneous Buongiorno’s model to 

investigate the natural convection in a partially heated enclosure by 

considering the dependence of thermophysical properties of 𝐶𝑢𝑂- water 

nanofluids on temperature  𝑇∗ and volume fraction  𝜙∗. Accordingly, the 

researchers who authored this work recommended employing Chon’s 

correlation (Chon et al., 2005) for predicting the effective thermal 

conductivity 𝑘𝑛𝑓 and another powerful model developed by Nguyen et 

al. (2007) to estimate the effective dynamic viscosity 𝜇𝑛𝑓  based on 

experimental data. 

Owing to the relevance of heat transfer of nanofluids and their 

widespread usage area in today's advanced nanotechnologies, other 

related investigations on 𝑆𝑖𝑂2  - ethylene glycol nanofluids have been 

carried out  experimentally by Żyła and Fal (2017) to measure the 

effective dynamic viscosity 𝜇𝑛𝑓 and thermal conductivity 𝑘𝑛𝑓 as well as 

the electrical conductivity 𝜎𝑛𝑓. This great work has been subsequently 

extended and analyzed by Żyła et al. (2018) in the same manner for 

ethylene glycol  (𝐸𝐺)  - based nanofluids containing nanodiamonds 

(𝑁𝐷), in order to explore the rheological, thermophysical and dielectric 

properties of these nanofluids. Among the main results of these 

experimental investigations, it was found that the thermal conductivity 

𝑘𝑛𝑓  and the electrical conductivity 𝜎𝑛𝑓  of 𝑆𝑖𝑂2 - ethylene glycol and 

𝑁𝐷 - ethylene glycol nanofluids generally increase with the volumetric 

fraction of solid nanoparticles 𝜙0 according to the specified empirical 

correlations. Similarly, it was furtherly reported that the electrical 

conductivity 𝜎𝑛𝑓  can be increased with the inclusion of some typical 
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nanoparticles within a specified base fluid. For instance, Naddaf and 

Heris, (2018) measured the electrical conductivity 𝜎𝑛𝑓  of diesel oil 

(𝐷𝑂)- based nanofluids containing graphene nanoplatelets (𝐺𝑁𝑃)  or 

multi-walled carbon nanotubes (𝑀𝑊𝐶𝑁𝑇)  as solid nanoparticles and 

hexylamine (𝐻𝐴)  or oleic acid (𝑂𝐴) as suitable surfactants. In this 

investigation, the electrical conductivity was greatly improved with the 

increase in nanomaterials concentration and temperature. This stems 

from the fact that the interaction between the nanoparticles is increased 

with the concentration as well as the electrons of the solid phase can be 

thermally excited from the valence band to the conduction band for 

enhancing the electrical conductance of the mixture and producing the 

so-called electrically conducting nanofluid, whose the flow behavior can 

be influenced by the existence of Lorentz forces generated within the 

medium under the effect of an externally applied magnetic field.  

Over the last several decades, a wide variety of practical engineering  

problems dealing with the magnetohydrodynamic (MHD) convective 

heat and mass transfer flows have attracted substantial attention by many 

researchers, due to their widespread and vital potential applications in 

technological and industrial disciplines. More recently, tremendous 

research works focusing on the magnetohydrodynamic convective 

flows of electrically conducting fluids or nanofluids were reported 

previously by many researchers. Later, Amanulla et al. (2018) performed 

a thorough numerical investigation to simulate the steady MHD 

convective flow of Carreau non-Newtonian fluid past an isothermal 

sphere by applying Keller-Box Method (KBM). Qasim et al. (2018) 

conducted an innovative numerical simulation of MHD peristaltic flow 

with variable electrical conductivity and joule dissipation by utilizing 

Generalized Differential Quadrature Method (GDQM). On the other 

hand, a comprehensive survey was done by Wakif et al. (2017a)  on the 

thermo-magneto-hydrodynamic stability of nanofluids saturating porous 

mediums by means of Chebyshev-Gauss-Lobatto Spectral Method 

(CGLSM). Similarly, Rana et al. (2017) studied the onset of thermo-

magneto-hydrodynamic instability in a rotating viscoelastic nanofluid 

layer under the influence of an internal heat source with the help of 

Galerkin Weighted Residuals Technique (GWRT). Also, Akbarzadeh 

(2018) carried out a numerical study concerning the effect of a purely  

internal heat generation and chemical reaction on the onset of thermo-

magneto-hydrodynamic instabilities inside a  porous medium saturated 

by a nanofluid by using GWRT. In another stability problem, Wakif et 

al. (2018b) proposed a generalized mathematical formulation to perform 

numerical examinations of the thermo-magneto-hydrodynamic stability 

of some metallic nanofluids by considering  the Buongiorno’s and  

Corcione’s models and utilizing Runge-Kutta-Fehlberg Method (RKFM) 

as a powerful  approach for implementing the stability problems.  

Based on the above-cited papers concerning the thermo-magneto-

hydrodynamic stability of nanofluids, it is found that there is a great 

lack of numerical works dealing with the realistic analysis of the thermo-

magneto-hydrodynamic instabilities occurred inside the electrically 

conducting nanofluids under the effects of buoyancy and Lorentz forces. 

However, to the best of author's knowledge, the revised form of the 

generalized Buongiorno's two-phase model with the assumption of zero 

nanoparticles mass flux condition has not been given any attention 

from researchers, despite the importance of magneto-convection in many 

thermal engineering systems. Inspired by the above-mentioned works, 

our configuration of interest focuses on using the revised Buongiorno's 

mathematical model as a more realistic approach for analyzing the 

thermo-magneto-hydrodynamic stability of alumina-water nanofluids by 

considering the Chon’s and Corcione’s nanofluid models for estimating 

the effective thermal conductivity 𝑘𝑛𝑓  and dynamic viscosity 𝜇𝑛𝑓 , 

respectively. Likewise, the resulting stability equations are solved 

numerically with a good accuracy by utilizing Chebyshev-Gauss-Lobatto 

Spectral Method (CGLSM) and Generalized Differential Quadrature 

Method (GDQM), for non-slip, impermeable, zero nanoparticles mass 

flux and isothermal boundary conditions. Moreover, the present findings 

are multiply validated by comparing our numerical outcomes with the 

results of the existing literature. Furthermore, the effects of various 

emerging parameters (i. e. , 𝑄 , 𝜙0 and 𝑑𝑛𝑝) on the criterion for the onset 

of magneto-convection in alumina-water nanofluids are provided in the 

form of graphical and tabular illustrations coupled with comprehensive 

discussions. 

2. PROBLEM FORMULATION  

The schematic diagram of the studied problem is depicted in Fig. 1.  In 

this physical configuration, we consider a thin horizontal layer of a dilute 

colloidal suspension containing spherical alumina nanoparticles 𝐴𝑙2𝑂3  

dispersed into a pure water  𝐻2𝑂 . A fixed spatial Cartesian frame of 

reference  (𝑥∗, 𝑦∗, 𝑧∗)  is located in the lower level of the plates (IHP) 

and (ICP), in which the 𝑧∗-axis is directed vertically upwards. Also, the 

studied homogeneous mixture (𝐴𝑙2𝑂3 + 𝐻2𝑂)  is assumed electrically 

conducting nanofluid, incompressible fluid, has Newtonian rheological 

behavior, confined between two electrically non-conducting infinite 

parallel plates, subjected to a uniform gravitational field 𝐠 , heated from 

below and affected by an external transverse magnetic field   𝐇𝟎 with 

a constant magnetic strength 𝐻0. In order to simplify the proposed model, 

the viscous dissipation, Ohmic heating and Hall effects are not taken into 

account in the present numerical examination. As imposed boundary 

conditions, the lower and upper boundaries are maintained at constant 

temperatures 𝑇ℎ  and 𝑇𝑐  (𝑇𝑐 < 𝑇ℎ), respectively, whereas the volumetric 

fraction of solid nanoparticles is controlled passively at the horizontal 

impermeable plates, in such a way  that the vertical component 𝐽𝑧
∗ of the 

nanoparticles mass flux is assumed to be zero on these boundaries 

(i. e. , (𝜕𝜙∗ 𝜕𝑧∗⁄ ) + [𝐷𝑇 (𝐷𝐵𝑇𝑐)⁄ ] (𝜕𝑇∗ 𝜕𝑧∗⁄ ) = 0), in  which there are 

no slip velocities between the nanofluid and the plates (IHP) and (ICP). 

For a given volumetric fraction of nanoparticles 𝜙0 , the thermophysical 

properties of alumina-water nanofluids (e.g., dynamic viscosity  𝜇𝑛𝑓 , 

thermal conductivity 𝑘𝑛𝑓, specific heat 𝑐𝑛𝑓, magnetic permeability �̅�𝑛𝑓 

and electrical conductivity 𝜎𝑛𝑓) are assumed to remain constant in the 

vicinity of the cold plate temperature 𝑇c , except for the density 𝜌 in the  

gravitational force 𝐅𝐠 = −𝜌 𝑔 𝐞𝐳 , which is estimated formally based on 

the Oberbeck-Boussinesq approximation. 
 

According to Buongiorno (2006) and Wakif et al. (2017b , 2018b), 

the various partial differential equations governing the nanofluid flow, 

heat and mass transfer in the presence of an external magnetic field are 

written as follows: 

∇∗. 𝐕∗ = 0 (1)  

𝜌𝑛𝑓 [
𝜕𝐕∗

𝜕𝑡∗
+ (𝐕∗. ∇∗)𝐕∗] = −∇∗𝑃∗ + 𝜇𝑛𝑓 ∇

∗2𝐕∗ + 𝐅𝐠 +𝐅𝐦 (2)  

𝜕𝑇∗

𝜕𝑡∗
+ (𝐕∗. ∇∗)𝑇∗ =

𝑘𝑛𝑓
(𝜌𝑐)𝑛𝑓

∇∗2𝑇∗ +
(𝜌𝑐)𝑛𝑝
(𝜌𝑐)𝑛𝑓

[

𝐷𝐵∇
∗𝜙∗. ∇∗𝑇∗

+
𝐷𝑇
𝑇𝑐
∇∗𝑇∗. ∇∗𝑇∗   

] (3)  

𝜕𝜙∗

𝜕𝑡∗
+ (𝐕∗. ∇∗)𝜙∗ = 𝐷𝐵∇

∗2𝜙∗ +
𝐷𝑇
𝑇𝑐
∇∗2𝑇∗ (4)  

𝜕𝐇∗

𝜕𝑡∗
+ (𝐕∗. ∇∗)𝐇∗ = (𝐇∗. ∇∗)𝐕∗ + 𝜂𝑛𝑓 ∇

∗2𝐇∗ (5)  

∇∗. 𝐇∗ = 0 (6)  

Within the framework of the above-mentioned assumptions, the 

gravitational body force  𝐅𝐠 (Wakif et al., 2018a , 2018b, 2018c) and the 

Lorentz force 𝐅𝐦 (Chandrasekhar, 1961) are expressed by: 

𝐅𝐠 = −[1 − 𝛽𝑛𝑓  (𝑇
∗ − 𝑇𝑐) + 𝛽𝜙 (𝜙

∗ − 𝜙0)] 𝜌𝑛𝑓𝑔 𝐞𝐳 (7)  

𝐅𝐦 =
�̅�𝑛𝑓
4𝜋

(∇∗ × 𝐇∗) × 𝐇∗ (8)  



Frontiers in Heat and Mass Transfer (FHMT), 12, 3 (2019)
DOI: 10.5098/hmt.12.3

Global Digital Central
ISSN: 2151-8629

 

   

4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Description of the physical flow model. 

Here, 𝐕∗  is the nanofluid velocity vector,  𝐇∗ denotes the induced 

magnetic field and ∇∗ refers to the nabla vector operator, whereas 𝑡∗, 𝑃∗, 
𝑇∗ , 𝜙∗ represent the  time , the pressure, the temperature and the volume 

fraction of solid nanoparticles, respectively, where 𝐕∗ = (𝑢∗, 𝑣∗, 𝑤∗) , 

𝐇∗ = (𝐻𝑥
∗, 𝐻𝑦

∗ , 𝐻𝑧
∗) and ∇∗= (𝜕 𝜕𝑥∗⁄ , 𝜕 𝜕𝑦∗⁄ , 𝜕 𝜕𝑧∗⁄ ).  

Following Buongiorno (2006) , McNab and Meisen (1973), the  

Brownian diffusion coefficient 𝐷𝐵   and  the thermophoretic diffusion 

coefficient 𝐷𝑇  shown in Eqs. (3) and (4) can be calculated at the 

reference state (i. e. , (𝑇∗, 𝜙∗) = (𝑇𝑐 , 𝜙0)) by: 

𝐷𝐵 =
𝑘𝐵𝑇𝑐

3𝜋 𝜇𝑏𝑓  𝑑𝑛𝑝
 (9)  

𝐷𝑇 = 0.26 (
𝑘𝑏𝑓

2𝑘𝑏𝑓 + 𝑘𝑛𝑝
)(
𝜇𝑏𝑓
𝜌𝑏𝑓

)𝜙0 (10)  

In addition, the physical problem under consideration is subjected to 

the following boundary conditions: 

𝑤∗ =
𝜕𝑤∗

𝜕𝑧∗
= 0 ,  𝑇∗ = 𝑇ℎ  ,

𝜕𝜙∗

𝜕𝑧∗
 +

𝐷𝑇
𝐷𝐵𝑇𝑐

 
𝜕𝑇∗

𝜕𝑧∗
= 0  at  𝑧∗ = 0 (11)  

𝑤∗ =
𝜕𝑤∗

𝜕𝑧∗
= 0 ,  𝑇∗ = 𝑇𝑐  ,

𝜕𝜙∗

𝜕𝑧∗
 +

𝐷𝑇
𝐷𝐵𝑇𝑐

 
𝜕𝑇∗

𝜕𝑧∗
= 0  at  𝑧∗ = 𝐿 (12)  

As is well-known, the nanofluid properties depend strongly on the 

values of temperature and volumetric fraction of nanoparticles taken into 

account during the estimation. Accordingly, the effective thermo-

physical properties of  Alumina - water nanofluids like the density      

𝜌𝑛𝑓  ,  the thermal diffusivity  𝛼𝑛𝑓 , the specific heat capacity  (𝜌𝑐)𝑛𝑓  , 

the volumetric mass expansion coefficient  (𝜌𝛽)𝑛𝑓 , the electrical 

conductivity  𝜎𝑛𝑓  , the magnetic permeability  �̅�𝑛𝑓  and the magnetic 

diffusivity 𝜂𝑛𝑓 are given by Garnett (1905) , Sihvola and Lindell (1992) 

and Wakif et al. (2018a , 2018b) as follows: 

𝜌𝑛𝑓 = (1 − 𝜙0) 𝜌𝑏𝑓 + 𝜙0 𝜌𝑛𝑝 (13)  

𝛼𝑛𝑓 =
 𝑘𝑛𝑓
 (𝜌𝑐)𝑛𝑓

 (14)  

(𝜌𝑐)𝑛𝑓 = (1 −𝜙0)(𝜌𝑐)𝑏𝑓 + 𝜙0 (𝜌𝑐)𝑛𝑝 (15)  

(𝜌𝛽)𝑛𝑓 = (1 − 𝜙0)(𝜌𝛽)𝑏𝑓 + 𝜙0 (𝜌𝛽)𝑛𝑝 (16)  

𝜎𝑛𝑓
𝜎𝑏𝑓

= 1 +
3[(𝜎𝑛𝑝 𝜎𝑏𝑓⁄ )  − 1]𝜙0

[(𝜎𝑛𝑝 𝜎𝑏𝑓⁄ ) + 2] − [(𝜎𝑛𝑝 𝜎𝑏𝑓⁄ ) − 1]𝜙0
 (17)  

�̅�𝑛𝑓
�̅�𝑏𝑓

= 1 +
3[(�̅�𝑛𝑝 �̅�𝑏𝑓⁄ )   − 1]𝜙0

[(�̅�𝑛𝑝 �̅�𝑏𝑓⁄ ) + 2] − [(�̅�𝑛𝑝 �̅�𝑏𝑓⁄ ) − 1]𝜙0
 (18)  

𝜂𝑛𝑓 =
1

4𝜋 �̅�𝑛𝑓 𝜎𝑛𝑓
 (19)  

Here, the subscripts  𝑛𝑓  , 𝑛𝑝  and 𝑏𝑓  represents the nanofluid, the 

solid nanoparticles and the base fluid, respectively. 

Furthermore, the magnetic permeabilities of alumina �̅�𝑛𝑝 and water 

�̅�𝑏𝑓 can be concluded from their corresponding magnetic susceptibilities  

𝜒𝑛𝑝  and  𝜒𝑏𝑓 , respectively, using the following formulas: 

�̅�𝑛𝑝 = �̅�0(1 + 𝜒𝑛𝑝) (20)  

�̅�𝑏𝑓 = �̅�0(1 + 𝜒𝑏𝑓) (21)  

Here, �̅�0 represents the magnetic permeability of free space, where 

�̅�0 = 4𝜋 × 10−7 𝐻 𝑚−1. In order to perform a realistic prediction of the 

other effective thermophysical properties of  𝐴𝑙2𝑂3  - water nanofluids , 

the effective thermal conductivity 𝑘𝑛𝑓 and  dynamic viscosity 𝜇𝑛𝑓 can be 

computed efficiently at the reference state by making use of  Chon’s and 

Corcione’s nanofluid models , respectively, which are expressed by : 

𝑘𝑛𝑓
𝑘𝑏𝑓

= 1 + 64.7𝜙0
0.746 (

𝑑𝑏𝑓
𝑑𝑛𝑝

)

0.369

(
𝑘𝑛𝑝
𝑘𝑏𝑓

)

0.7476

𝑃𝑟  0.9955𝑅𝑒  1.2321 (22)  

𝜇𝑛𝑓
𝜇𝑏𝑓

=
1

1 − 34.87 (𝑑𝑛𝑝 𝑑𝑏𝑓⁄ )
−0.3

𝜙0
 1.03

 (23)  

The Reynolds number 𝑅𝑒  and the molecular diameter of water 𝑑𝑏𝑓 

shown above can be computed from: 

𝑅𝑒 =
𝜌𝑏𝑓 𝑘𝐵𝑇c
3𝜋 𝜇𝑏𝑓2 𝑙𝑏𝑓

 (24)  

𝑑𝑏𝑓 = 0.1 (
6𝑀

𝑁𝑎𝑣𝜋 𝜌𝑓0
)

1
3

 (25)  

Here, 𝑘𝐵 represents the Boltzmann constant, 𝑙𝑏𝑓  denotes the mean-

free path for water and 𝑑𝑛𝑝  refers to the diameter of alumina 

nanoparticles 𝐴𝑙2𝑂3, whereas 𝑀 , 𝑁𝑎𝑣 and 𝜌𝑓0 show the molecular mass 

weight of water , the Avogadro number and the density of water at 293𝐾, 

respectively, where 𝑘𝐵  = 1.38066 × 10−23𝐽𝐾−1 , 𝑙𝑏𝑓  = 0.17𝑛𝑚  ,  

𝑀 = 18 𝑔 𝑚𝑜𝑙−1, 𝑁𝑎𝑣 = 6.022 × 10
23 𝑚𝑜𝑙−1 and 𝜌𝑓0 = 998 𝑘𝑔 𝑚−3. 

 𝑧∗   
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 𝐠 = (0,0,−𝑔) 
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 𝑧∗ = 𝐿   

Water 

(H2O) 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

S 

N 

 

MHD Device 

       

Impermeable Cold Plate (ICP) 

 

𝑇∗ = 𝑇𝑐   

𝑇∗ = 𝑇ℎ   
Impermeable Hot Plate (IHP) 

 

 𝑦∗   

Alumina - Water Nanofluid 

       

Alumina Nanoparticles 

(Al2O3) 

       

DC 

Power 

Source 

 

 

 

Zoom 

       

Gravitational Field 

       



Frontiers in Heat and Mass Transfer (FHMT), 12, 3 (2019)
DOI: 10.5098/hmt.12.3

Global Digital Central
ISSN: 2151-8629

 

   

5 

Consequently, by virtue of Eqs. (13) - (25) , the thermophysical 

properties 𝜌𝑛𝑓  , 𝛼𝑛𝑓  , (𝜌𝑐)𝑛𝑓  , (𝜌𝛽)𝑛𝑓  , 𝜎𝑛𝑓  , �̅�𝑛𝑓  , 𝜂𝑛𝑓  , 𝑘𝑛𝑓  and 𝜇𝑛𝑓 

of 𝐴𝑙2𝑂3 - water nanofluids can be computed realistically based on  the 

thermophysical properties of alumina nanoparticles 𝐴𝑙2𝑂3  and pure 

water   𝐻2𝑂  given by Schenck (1996) and Mehmood et al. (2017) at  

𝑇𝑐 = 300 𝐾 as  shown in Table 1. 

Table 1 Thermophysical properties of water and alumina nanoparticles. 

Properties 
Pure Water  

 
Alumina Nanoparticles  

𝐻2𝑂 𝐴𝑙2𝑂3 

𝑑 (× 10−9 𝑚) 0.385 

 

30 - 45 

𝜌 (𝑘𝑔 𝑚−3) 997.1 3970 

𝑐 (𝐽 𝑘𝑔−1 𝐾−1) 4179 765 

𝑘 (𝑊 𝑚−1 𝐾−1) 0.613 40 

𝛽 (× 10−5 𝐾−1) 21 0.85 

𝜎 (𝑆 𝑚−1) 0.05 10−10 

𝜒 (× 10−6) -9.05 -18.1 

𝜇 (× 10−5 𝑃𝑎 𝑠) 89 ---------- 

In order to reformulate the present physical problem in another way, 

the governing partial differential equations can be written in non-

dimensional form by introducing the following dimensionless variables: 

(𝑥 , 𝑦 , 𝑧) = (𝑥∗ , 𝑦∗, 𝑧∗) 𝐿⁄   ,  𝑡 =  (𝛼𝑏𝑓 𝐿2⁄ )𝑡∗ , 

 𝑃 = [𝐿2 (𝜌𝑏𝑓  𝛼𝑏𝑓
2 ) ⁄ ] 𝑃∗ ,  T = (𝑇∗ −𝑇𝑐) ∆𝑇⁄  , 

  𝜙 = (𝜙∗ − 𝜙0) 𝜙0⁄   ,   𝐕 = (𝐿 𝛼𝑏𝑓⁄ )𝐕∗ ,   𝐇 = 𝐇∗ 𝐻0⁄  . 

(26)  

Then, after making use of the non-dimensionalization procedure, 

Eqs. (1) - (6) reduce to: 

∇.𝐕 = 0 (27)  

∂𝐕

∂t
+ (𝐕. ∇)𝐕 = −

1

𝑓𝜌
∇𝑝 + 𝑓1∇

2 𝐕 + [
(𝑓2𝑅𝑎𝑇 − 𝑓3𝜙)𝐞𝐳
+𝑓4(∇ × 𝐇) × 𝐇

] (28)  

𝜕𝑇

𝜕𝑡
+ (𝐕. ∇)𝑇 = 𝑓5∇

2𝑇 + 𝑓6∇𝜙 . ∇𝑇 + 𝑓7 ∇𝑇 . ∇𝑇 (29)  

𝜕𝜙

𝜕𝑡
+ (𝐕. ∇)𝜙 = 𝑓8 𝛻

2𝜙 + 𝑓9 𝛻
2𝑇 (30)  

𝜕𝐇

𝜕𝑡
+ (𝐕. ∇)𝐇 = (𝐇 . ∇)𝐕 + 𝑓10 ∇

2𝐇 (31)  

∇. 𝐇 = 0 (32)  

Here, the modified dimensionless pressure 𝑝  shown in Eq. (28) is 

given by 𝑝 = 𝑃 + 𝑓𝜌𝑃𝑟𝑅𝑎𝑧 (𝛽𝑏𝑓∆𝑇)⁄  , where ∆𝑇 = 𝑇ℎ − 𝑇𝑐 .  

In view of Eq. (26), the boundary conditions (11) and (12) become: 

𝑤 =
𝜕𝑤

𝜕𝑧
= 0 , 𝑇 = 1 ,

𝜕𝜙

𝜕𝑧
= −(

𝑁𝑡
𝑁𝑏
) 
𝜕𝑇

𝜕𝑧
   at   𝑧 = 0 (33)  

𝑤 =
𝜕𝑤

𝜕𝑧
= 0 , 𝑇 = 0 ,

𝜕𝜙

𝜕𝑧
= −(

𝑁𝑡
𝑁𝑏
) 
𝜕𝑇

𝜕𝑧
   at   𝑧 = 1 (34)  

As mentioned before, the set  {𝑓𝑖 1 ≤ 𝑖 ≤ 10⁄ }  of simplifying 

coefficients used in Eqs. (28) - (31) are given by: 

𝑓1 = (
𝑓𝜇

𝑓𝜌
)𝑃𝑟  ,  𝑓2 = (

𝑓(𝜌𝛽)

𝑓𝜌
)𝑃𝑟  ,  𝑓3 = (

1

𝑓𝜌
)𝑅𝑁𝑃𝑟 , 

𝑓4 = (
𝑓�̅�
𝑓𝜌
)
𝑃𝑟
2𝑄

𝑃𝑟𝑀
  ,  𝑓5 =

𝑓𝑘
𝑓(𝜌𝑐)

 ,  𝑓6 = (
1

𝑓(𝜌𝑐)
)𝑁𝑏  , 

𝑓7 = (
1

𝑓(𝜌𝑐)
)𝑁𝑡   ,  𝑓8 =

1

𝐿𝑒
  ,  𝑓9 =

𝑁𝑡
𝑁𝑏 𝐿𝑒

 , 𝑓10 = (
1

𝑓�̅� 𝑓𝜎
)
𝑃𝑟
𝑃𝑟𝑀

 . 

(35)  

Additionally, the relative thermophysical properties 𝑓𝜌 , 𝑓𝜇  , 𝑓�̅�  , 𝑓𝑘 ,  

𝑓𝜎 , 𝑓(𝜌𝛽) and 𝑓(𝜌𝑐) shown above are given by: 

𝑓𝜌 =
𝜌𝑛𝑓
𝜌𝑏𝑓

  ,  𝑓𝜇 =
𝜇𝑛𝑓
𝜇𝑏𝑓

 ,  𝑓�̅� =
�̅�𝑛𝑓
�̅�𝑏𝑓

 ,  𝑓𝑘 =
𝑘𝑛𝑓
𝑘𝑏𝑓

 , 

𝑓𝜎 =
𝜎𝑛𝑓

𝜎𝑏𝑓
 ,  𝑓(𝜌𝛽)  =

(𝜌𝛽)𝑛𝑓
(𝜌𝛽)𝑏𝑓

 ,  𝑓(𝜌𝑐) =
(𝜌𝑐)𝑛𝑓
(𝜌𝑐)𝑏𝑓

 . 

(36)  

The non-dimensional parameters 𝑅𝑎  , 𝑅𝑁  , 𝑄 , 𝑁𝑏  , 𝑁𝑡  , 𝐿𝑒  , 𝑃𝑟  and 

 𝑃𝑟𝑀  appeared  in Eq. (35)  represents the thermal Rayleigh  number, the 

concentration Rayleigh number, the magnetic Chandrasekhar number,  

the Brownian motion parameter, the thermophoresis parameter, the 

Lewis number , the Prandtl number and the Magnetic Prandtl number, 

respectively. These non-dimensional physical quantities can be regarded 

as the pertinent parameters of the present stability problem , which are 

defined as follows: 

𝑅𝑎 =
(𝜌𝛽)𝑏𝑓  ∆𝑇𝑔 𝐿

3

𝜇𝑏𝑓  𝛼𝑏𝑓
 ,  𝑅𝑁 =

 (𝜌𝑛𝑝 − 𝜌𝑏𝑓)𝑔𝐿
3𝜙0

𝜇𝑏𝑓  𝛼𝑏𝑓
 ,  

𝑄 =
�̅�𝑏𝑓𝐿

2𝐻0
2

4𝜋𝜂𝑏𝑓 𝜇𝑏𝑓
 ,  𝑁𝑏 =

𝐷𝐵(𝜌𝑐)𝑛𝑝𝜙0
𝛼𝑏𝑓(𝜌𝑐)𝑏𝑓

 ,  𝑁𝑡 =
𝐷𝑇(𝜌𝑐)𝑛𝑝 ∆𝑇

𝛼𝑏𝑓(𝜌𝑐)𝑏𝑓𝑇𝑐  
 , 

 𝐿𝑒 =
𝛼𝑏𝑓
𝐷𝐵

 ,  𝑃𝑟 =
𝜇𝑏𝑓

𝜌𝑏𝑓  𝛼𝑏𝑓
 ,  𝑃𝑟𝑀 =

𝜇𝑏𝑓
𝜌𝑏𝑓  𝜂𝑏𝑓

  . 

(37)  

Based on the aforementioned nanofluid models proposed for 𝐴𝑙2𝑂3- 

water nanofluids , the relative thermophysical properties  𝑓𝜌 , 𝑓𝜇 , 𝑓�̅� , 𝑓𝑘, 

𝑓𝜎 , 𝑓(𝜌𝛽) and 𝑓(𝜌𝑐) in combination with the physical  parameters  𝑅𝑁, 𝐿𝑒 , 

 𝑁𝑏 and  𝑁𝑡  are accurately computed from  Eqs. (36) and (37) and then 

summarized in Table 2 and Table 3, for varying values of  𝑑𝑛𝑝 and 𝜙0. 

Here, these physical quantities are obtained by considering fixed values 

for the layer depth  𝐿 , the reference temperature  𝑇𝑐  and the temperature 

difference  ∆𝑇  , where  0.01 ≤ 𝜙0 ≤ 0.04  ,  30 𝑛𝑚 ≤ 𝑑𝑛𝑝 ≤ 45 𝑛𝑚 ,  

𝐿 = 4.1 × 10−5𝑚  ,  𝑇𝑐 = 300𝐾  and  ∆𝑇 = 1𝐾 . 

2.1 Basic Solutions 

The thermo-magneto-hydrodynamic stability problem described by Eqs. 

(27) - (32) and the boundary conditions (33) and (34) has a steady state 

solution. In this particular state, the nanofluid is assumed to be at 

rest (i. e. , 𝐕𝐛 = (0,0,0)), in which the pressure 𝑃𝑏, the temperature 𝑇𝑏, 

the volumetric fraction of nanoparticles 𝜙𝑏 as well as the components 

(𝐻𝑥𝑏 , 𝐻𝑦𝑏 , 𝐻𝑧𝑏)  of the magnetic field 𝐇𝐛  depend solely on  𝑧 . Hence, 

under these restricted considerations, the basic state of the nanofluidic 

system is defined by:  

𝑑𝑃𝑏
𝑑𝑧

 = 𝑓2 𝑓𝜌𝑅𝑎𝑇𝑏 − 𝑓3𝑓𝜌 𝜙𝑏 −
𝑓𝜌 𝑃𝑟 𝑅𝑎

𝛽𝑏𝑓 ∆𝑇
 (38)  

𝑇𝑏 = 1 − 𝑧  (39)  

𝜙𝑏 = 𝑁𝐴 (𝑧 −
1

2
) (40)  

(𝐻𝑥𝑏 , 𝐻𝑦𝑏 , 𝐻𝑧𝑏) = (0,0,1) (41)  

In addition to the above findings, it is important to mention here 

that the basic volumetric fraction 𝜙𝑏 of solid nanoparticles established in 

Eq. (40) is found analytically by taking into account the newest wakif’s 

results (Wakif et al., 2016 , 2018a , 2018b , 2018c) concerning the revised 

nanofluid model, such that: 

�̅�𝑏
∗ =

1

𝐿
∫𝜙𝑏

∗𝑑𝑧∗

𝐿

0

= 𝜙0 (42)  

∫𝜙𝑏𝑑𝑧 = 0

1

0

 (43)  
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Here, �̅�𝑏
∗ is the mean value of the dimensional volumetric fraction of 

nanoparticles 𝜙𝑏
∗. 

2.2 Perturbation Equations 

In order to examine the linear stability of the basic state defined 

previously by Eqs. (38) - (41) , it is more convenient to superimpose 

infinitesimal perturbations 𝐕′ , 𝑃′ , 𝑇′ , 𝜙′ and 𝐇′ on the basic solutions 

𝐕𝐛 , 𝑃𝑏 , 𝑇𝑏 , 𝜙𝑏 and 𝐇𝐛 , respectively ,  in such a way that: 

𝐕 = 𝐕′ , 𝑃 = 𝑃𝑏 + 𝑃
′, 𝑇 = 𝑇𝑏 + 𝑇

′, 𝜙 = 𝜙𝑏 + 𝜙
′ , 𝐇 = 𝐞𝐳 + 𝐇

′. (44)  

Hence, after substituting the above expressions into Eqs. (27) - (32) 

and neglecting the nonlinear terms arising in the resulting differential 

system, we obtain the following linearized perturbation equations: 

∇. 𝐕′ = 0 (45)  

𝜕𝐕′

𝜕𝑡
= −

1

𝑓𝜌
∇𝑃′ + 𝑓1 ∇

2 𝐕′ + [
(𝑓2 𝑅𝑎𝑇

′ − 𝑓3 𝜙
′)𝐞𝐳

+𝑓4(∇ × 𝐇
′) × 𝐞𝐳

] (46)  

𝜕𝑇′

𝜕𝑡
− 𝑤′ = 𝑓5 ∇

2𝑇′ − (𝑓6
𝜕𝜙′

𝜕𝑧
+ 𝑓7

𝜕𝑇′

𝜕𝑧
) (47)  

𝜕𝜙′

𝜕𝑡
+
𝑁𝑡
𝑁𝑏
𝑤′ = 𝑓8∇

2𝜙′ + 𝑓9∇
2𝑇′ (48)  

𝜕𝐇′ 

𝜕𝑡
=  
𝜕𝐕′

𝜕𝑧
+ 𝑓10 ∇

2𝐇′ (49)  

∇.𝐇′ = 0 (50)  

For the resulting equations (45) - (50), the corresponding boundary 

conditions are stated as: 

𝑤′ =
𝜕𝑤′

𝜕𝑧 
= 𝑇′ =

𝜕𝜙′

𝜕𝑧 
+
𝑁𝑡
𝑁𝑏

𝜕𝑇′

𝜕𝑧 
= 0    at    𝑧 = 0 , 1 (51)  

By operating curl twice on Eq. (46), the pressure term  𝑃′  can be 

assuredly removed from this equation. Hence, after some simplifications 

that take into account Eqs. (45) and (50), the 𝑧-components of Eqs. (46) 

and (49) can be formulated as follows: 

𝜕  

𝜕𝑡
(∇2𝑤′) = 𝑓1 ∇

4 𝑤′  + 𝑓2𝑅𝑎∇2
2𝑇′ − 𝑓3 ∇2

2𝜙′ + 𝑓4
𝜕  

𝜕𝑧
(∇2𝐻𝑧

′) (52)  

𝜕𝐻𝑧
′  

𝜕𝑡
=  
𝜕𝑤′

𝜕𝑧
+ 𝑓10∇

2𝐻𝑧
′  (53)  

Here, the operator ∇ represents the dimensionless gradient vector, 

whereas the dimensionless mathematical symbols ∇2,  ∇2
2 and ∇4 denote 

the usual Laplacian, horizontal Laplacian and bi-Laplacian operators, 

respectively, where ∇ =  (𝜕 𝜕𝑥⁄ , 𝜕 𝜕𝑦⁄ , 𝜕 𝜕𝑧⁄ )  , ∇2 =  ∇2
2 + 𝜕2 𝜕𝑧2⁄ ,  

∇2
2 =  𝜕2 𝜕𝑥2⁄ + 𝜕2 𝜕𝑦2⁄  and  ∇4 =  ∇2(∇2).  

2.3 Normal Mode Analysis 

Due to the existence of periodic solutions, the normal mode analysis is 

adopted as a useful means to study the linear stability of the present 

nanofluidic system.  Accordingly, the small quantities 𝑤′ ,𝑇′, 𝜙′ and  𝐻𝑧
′  

can then be analyzed into two-dimensional waves by considering time-

dependent periodic disturbances , which are characterized by particular 

wave numbers 𝑎𝑥 and 𝑎𝑦 .Therefore, the disturbances 𝑤′ ,𝑇′, 𝜙′ and  𝐻𝑧
′  

can be written in the following form: 

[

𝑤′

 𝑇′ 
𝜙′

𝐻𝑧
′

] = [

𝓌(𝑧)

𝜃(𝑧)

𝛷(𝑧)

ℋ(𝑧)

]  𝑒𝑥𝑝[𝑖(𝑎𝑥𝑥 + 𝑎𝑦𝑦) + 𝜆𝑡] (54)  

Consequently, after substituting Eq. (54) into Eqs. (47), (48), (52) 

and (53), we get the following stability equations: 

[
𝑓1(𝐷

4 − 2𝑎2𝐷2 + 𝑎4)𝓌

−𝑓2𝑅𝑎𝑎
2𝜃 + 𝑓3𝑎

2𝛷
] + 𝑓4(𝐷

3 − 𝑎2𝐷)ℋ = 𝜆 (𝐷2 − 𝑎2)𝓌 (55)  

𝓌 + (𝑓5𝐷
2 − 𝑓7𝐷 − 𝑓5𝑎

2)𝜃 − 𝑓6 𝐷𝛷 = 𝜆𝜃 (56)  

−
𝑁𝑡
𝑁𝑏
𝓌 + 𝑓9 (𝐷

2 − 𝑎2)𝜃 + 𝑓8(𝐷
2 − 𝑎2)𝛷 = 𝜆𝛷 (57)  

𝐷𝓌 + 𝑓10(𝐷
2 − 𝑎2)ℋ = 𝜆ℋ (58)  

Here, 𝑎  shows the dimensionless wave number in the 𝑥 -𝑦  plane 

and 𝐷𝑛 represents the 𝑛𝑡ℎ- order derivative with respect to the variable 𝑧, 

where 𝑎 = (𝑎𝑥
2 + 𝑎𝑦

2)
0.5

 and 𝐷𝑛 = 𝑑𝑛 𝑑𝑧𝑛⁄ .  

By assuming that the principle of exchange of stabilities is valid for 

the present thermo-magneto-hydrodynamic stability problem and the 

stationary convection  (i. e. , 𝜆 = 0)  is the solely considered mode, the 

system of Eqs. (55) - (58) can be reduce to the following eigenvalue 

problem: 

(
𝐴𝓌 0  𝑓3 𝑎

2

1 𝐵𝜃 𝐵𝛷
−𝑁𝑡 𝑁𝑏⁄ 𝐶𝜃 𝐶𝛷

)(
𝓌
𝜃
𝛷
) = 𝑅𝑎 (

0 𝑓2 𝑎
2 0

0 0 0
0 0 0

)(
𝓌
𝜃
𝛷
) (59)  

Additionally, the differential operators  𝐴𝓌  , 𝐵𝜃  , 𝐵𝛷  , 𝐶𝜃   and 𝐶𝛷  

shown above are expressed as follows: 

𝐴𝓌 = 𝑓1𝐷
4 − (2𝑓1𝑎

2 +
𝑓4
 𝑓10

)𝐷2 + 𝑓1𝑎
4 (60)  

𝐵𝜃 = 𝑓5𝐷
2 − 𝑓7𝐷 − 𝑓5 𝑎

2 (61)  

𝐵𝛷 = −𝑓6 𝐷 (62)  

𝐶𝜃 = 𝑓9 (𝐷
2 − 𝑎2) (63)  

𝐶𝛷 = 𝑓8(𝐷
2 − 𝑎2) (64)  

In view of the linear stability theory and normal mode analysis, the 

boundary conditions (51) become:  

𝓌 = 𝐷𝓌 = 𝜃 = 𝐷𝛷 +
𝑁𝑡
𝑁𝑏
𝐷𝜃 = 0      at     𝑧 = 0 , 1 (65)  

From the computational point of view, the criterion for the onset 

magneto-convection in 𝐴𝑙2𝑂3 - water nanofluids can be examined 

efficiently after converting the Neumann boundary condition for the 

nanoparticles 𝐷𝛷 + (𝑁𝑡 𝑁𝑏⁄ )𝐷𝜃 = 0   into a Dirichlet type boundary 

condition. For this purpose, it is more useful to apply a suitable change in 

the mathematical formulation of the problem by considering a new 

variable 𝛤 instead of 𝛷 . Based on the latest work of Wakif et al. (2018b), 

this modification can be easily made by setting the imposed change          

of variable 𝛤 = −𝐷𝛷 − (𝑁𝑡 𝑁𝑏⁄ )𝐷𝜃. In view of this consideration, the 

eigenvalue problem described by Eq. (59) becomes: 

(

�̅�𝓌 −𝑅𝑁𝑁𝑡 𝑎
2 𝑁𝑏⁄   �̅�𝛤

𝑓(𝜌𝑐) �̅�𝜃 𝑁𝑏

�̅�𝑤 0 �̅�𝛤

)(
𝓌
𝜃
𝛤
) = 

𝑅𝑎 (
0 𝑓(𝜌𝛽) 𝑎

2 0

0 0 0
0 0 0

)(
𝓌
𝜃
𝛤
) 

(66)  

Here, the modified differential operators �̅�𝓌 , �̅�𝛤  , �̅�𝜃  , �̅�𝑤  and �̅�𝛤  

are given explicitly by : 

�̅�𝓌 = 𝑓𝜇𝐷
4 − (2 𝑓𝜇𝑎

2 +𝑄 𝑓𝜎𝑓�̅�
2)𝐷2 + (𝑓𝜇𝑎

4 −
𝑅𝑁𝑁𝑡𝐿𝑒
𝑁𝑏

) (67)  

�̅�𝛤 = −𝑅𝑁𝐷 (68)  

�̅�𝜃 = 𝑓𝑘(𝐷
2 − 𝑎2) (69)  
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�̅�𝑤 =
𝐿𝑒𝑁𝑡
𝑁𝑏

𝐷 (70)  

�̅�𝛤 = 𝐷2 − 𝑎2 (71)  

For the resulting eigenvalue problem (66), the associated boundary 

conditions are written as follows:  

𝓌 = 𝐷𝓌 = 𝜃 = 𝛤 = 0      at     𝑧 = 0 , 1 (72)  

Table 2 Computed values of   𝑓𝜌 , 𝑓𝜇 , 𝑓�̅� , 𝑓𝑘 , 𝑓𝜎 , 𝑓(𝜌𝛽) and 𝑓(𝜌𝑐) , for different values of  𝑑𝑛𝑝 and 𝜙0 . 

Table 3 Effective values of the parameters 𝑅𝑁 , 𝐿𝑒  , 𝑁𝑏 and 𝑁𝑡 , for different values of  𝑑𝑛𝑝 and 𝜙0 . 

𝑑𝑛𝑝 𝜙0 𝑓𝜌 𝑓𝜇 𝑓�̅� 𝑓𝑘 𝑓𝜎 𝑓(𝜌𝛽) 𝑓(𝜌𝑐) 

30 nm 

0.01 1.02981 1.08960 0.99999 1.04922 0.98507 0.99161 0.99728 

0.02 1.05963 1.20181 0.99999 1.08255 0.97029 0.98322 0.99457 

0.03 1.08944 1.34222 0.99999 1.11171 0.95566 0.97483 0.99186 

0.04 1.11926 1.52185 0.99999 1.13845 0.94117 0.96644 0.98915 

35 nm 

0.01 1.02981 1.08520 0.99999 1.04650 0.98507 0.99161 0.99728 

0.02 1.05963 1.19095 0.99999 1.07798 0.97029 0.98322 0.99457 

0.03 1.08944 1.32178 0.99999 1.10553 0.95566 0.97483 0.99186 

0.04 1.11926 1.48679 0.99999 1.13079 0.94117 0.96644 0.98915 

40 nm 

0.01 1.02981 1.08158 0.99999 1.04426 0.98507 0.99161 0.99728 

0.02 1.05963 1.18208 0.99999 1.07423 0.97029 0.98322 0.99457 

0.03 1.08944 1.30529 0.99999 1.10046 0.95566 0.97483 0.99186 

0.04 1.11926 1.45890 0.99999 1.12450 0.94117 0.96644 0.98915 

45 nm 

0.01 1.02981 1.07853 0.99999 1.04238 0.98507 0.99161 0.99728 

0.02 1.05963 1.17466 0.99999 1.07108 0.97029 0.98322 0.99457 

0.03 1.08944 1.29160 0.99999 1.09618 0.95566 0.97483 0.99186 

0.04 1.11926 1.43602 0.99999 1.11921 0.94117 0.96644 0.98915 

𝑑𝑛𝑝 𝜙0 𝑅𝑁 𝐿𝑒(× 10
4) 𝑁𝑏(× 10

−6) 𝑁𝑡(× 10
−6) 

30 nm  

0.01 0.15336 0.89376 0.81548 0.56988 

0.02 0.30672 0.89376 1.63097 1.13976 

0.03 0.46008 0.89376 2.44646 1.70964 

0.04 0.61344 0.89376 3.26194 2.27952 

35 nm  

0.01 0.15336 1.04272 0.69898 0.56988 

0.02 0.30672 1.04272 1.39797 1.13976 

0.03 0.46008 1.04272 2.09696 1.70964 

0.04 0.61344 1.04272 2.79595 2.27952 

40 nm  

0.01 0.15336 1.19168 0.61161 0.56988 

0.02 0.30672 1.19168 1.22323 1.13976 

0.03 0.46008 1.19168 1.83484 1.70964 

0.04 0.61344 1.19168 2.44646 2.27952 

45 nm  

0.01 0.15336 1.34064 0.54365 0.56988 

0.02 0.30672 1.34064 1.08731 1.13976 

0.03 0.46008 1.34064 1.63097 1.70964 

0.04 0.61344 1.34064 2.17463 2.27952 
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3. NUMERICAL SOLUTION 

3.1 Solution Methodology 

As already mentioned , the obtained linear eigenvalue problem (66) in 

association with the reduced boundary conditions (72) can be handled 

numerically by discretizing their ordinary differential equations along the 

𝑧-direction. Consequently, after choosing an appropriate discretization 

scheme, the continuous stationary differential equations arising from the 

present stability problem are treated mathematically with their associated 

boundary conditions (72)  as a generalized algebraic eigenvalue problem, 

whose eigenvalues constitute a discrete set of all possible values of the 

control parameter 𝑅𝑎 . In this regards, it bears mentioning here that the 

thermal Rayleigh number  𝑅𝑎  corresponding to a fixed wave number  𝑎 

is selected in such a way to be the smallest value among all positive 

real eigenvalues. Moreover, this possible value depends greatly on the 

values of the control parameters  𝜙0  , 𝑑𝑛𝑝  and 𝑄  characterizing the 

nanofluidic system. 

Accordingly, in order to find the underlying relationship between the 

thermal Rayleigh number  𝑅𝑎  and the wave number 𝑎 corresponding to 

the stationary mode of convection, we adopt an efficient tool that can 

yield more accurate results. In view of this, the physical domain is 

converted from [0  1]  to the space interval [−1  1]  by replacing the 

space variable 𝑧  with another variable  𝜉 , where  𝜉 = 2𝑧 − 1 . At this 

stage, the main unknowns 𝓌, 𝜃  and 𝛤 are transformed to �̅�, �̅� and 𝛤 , 

respectively, such that   �̅� = 𝓌 (𝑧(𝜉))  , �̅� = 𝜃 (𝑧(𝜉))  , 𝛤 = 𝛤 (𝑧(𝜉)) 

and  𝐷𝑛𝑋 = 2𝑛�̅�𝑛𝑋 , where  𝑛  is an integer derivative order and  𝑋  is 

an unknown of the problem (i. e. ,𝓌, 𝜃 or 𝛤 )  with �̅�𝑛 = 𝑑𝑛 𝑑𝜉𝑛⁄ . 

Keeping in mind this mathematical considerations, the computational 

domain [−1  1]   is discretized non-uniformly into a set of  (𝑁 − 1) 
successive sub-domains [𝜉𝑖+1  𝜉𝑖]  by utilizing the Gauss-Lobatto grid 

collocation points, in such a way that  𝜉𝑖 = 𝑐𝑜𝑠[𝜋(𝑖 − 1) (𝑁 − 1)⁄ ] and  

𝜉𝑁 ≤ 𝜉𝑖 ≤ 𝜉1  , where  𝑖 is an integer index varying decreasingly from 

(𝑁 − 1)  to 1 and 𝑁 is the total number of collocation points chosen in 

the numerical implementation. 

Hence, based on the Gauss-Lobatto grid collocation points and the 

Chebyshev polynomial interpolation, the derivatives of the function 𝑋(𝜉) 
with respect to the variable 𝜉 at a collocation point 𝜉𝑖  are expressed by: 

�̅�𝑛𝑋(𝜉𝑖) =∑�̃�𝑖𝑗
(𝑛)

𝑁

𝑗=1

𝑋(𝜉𝑗) =∑�̃�𝑖𝑗
(𝑛)

𝑁

𝑗=1

𝑋𝑗  (73)  

In addition, the discrete solutions {(�̅�𝑖 , �̅�𝑖, 𝛤𝑖) 2 ≤ 𝑖 ≤ 𝑁 − 1⁄ }  at 

each collocation point 𝜉𝑖  can be found through the following resulting 

algebraic eigenvalue problem: 

(

 

�̅�𝑖𝑗
�̅� −𝑅𝑁𝑁𝑡 𝑎

2𝛿𝑖𝑗 𝑁𝑏⁄ �̅�𝑖𝑗
�̅�

𝑓(𝜌𝑐)𝛿𝑖𝑗 �̅�𝑖𝑗
�̅� 𝑁𝑏𝛿𝑖𝑗

�̅�𝑖𝑗
�̅� 𝑍𝑖𝑗 �̅�𝑖𝑗

�̅�
)

 (

�̅�𝑗

�̅�𝑗

𝛤𝑗

) = 

𝑅𝑎 (

𝑍𝑖𝑗 𝑓(𝜌𝛽) 𝑎
2𝛿𝑖𝑗 𝑍𝑖𝑗

𝑍𝑖𝑗 𝑍𝑖𝑗 𝑍𝑖𝑗
𝑍𝑖𝑗 𝑍𝑖𝑗 𝑍𝑖𝑗

)(

�̅�𝑗

�̅�𝑗

𝛤𝑗

) 

(74)  

 Here, 𝛿𝑖𝑗  represents the Kronecker symbol, where 2 ≤ 𝑖, 𝑗 ≤ 𝑁 − 1. 

Furthermore, the elements �̅�𝑖𝑗
�̅�  , �̅�𝑖𝑗

�̅�  , �̅�𝑖𝑗
�̅�  , �̅�𝑖𝑗

�̅�, �̅�𝑖𝑗
�̅�  , 𝑍𝑖𝑗  shown above are 

expressed formally by: 

�̅�𝑖𝑗
�̅�  = 16 𝑓𝜇�̃�𝑖𝑗

(4) + [

−4(2𝑓𝜇𝑎
2 + 𝑄 𝑓𝜎𝑓�̅�

2)�̃�𝑖𝑗
(2)

+(𝑓𝜇𝑎
4 −

𝑅𝑁𝑁𝑡𝐿𝑒
𝑁𝑏

) 𝛿𝑖𝑗
] (75)  

�̅�𝑖𝑗
�̅� = −2𝑅𝑁 �̃�𝑖𝑗

(1)
 (76)  

�̅�𝑖𝑗
�̅� = 𝑓𝜅 (4 �̃�𝑖𝑗

(2) − 𝑎2𝛿𝑖𝑗) (77)  

�̅�𝑖𝑗
�̅� = 

2 𝐿𝑒𝑁𝑡
𝑁𝑏

�̃�𝑖𝑗
(1)

 (78)  

�̅�𝑖𝑗
�̅� = 4 �̃�𝑖𝑗

(2) − 𝑎2𝛿𝑖𝑗 (79)  

𝑍𝑖𝑗 = 0 (80)  

According to Canuto et al. (2012) , the elements  �̃�𝑖𝑗
(1)

 of the first-

order Chebyshev differentiation matrix �̃�(𝟏) are given by: 

�̃�𝑖𝑗
(1)
=

{
 
 

 
 
(2𝑁2 − 4𝑁 + 3)  6⁄          for 𝑖 = 𝑗 = 1      

𝜉𝑖   (2𝜉𝑖
2 − 2)⁄                  for 𝑖 = 𝑗 ≠ 1 , 𝑁

  (−1)𝑖+𝑗𝑐𝑖   (𝑐𝑗𝜉𝑖 − 𝑐𝑗 𝜉𝑗)⁄

(−2𝑁2 + 4𝑁 − 3)  6⁄      

for
for

𝑖 ≠ 𝑗              
𝑖 = 𝑗 = 𝑁     

 (81)  

Here, the coefficients 𝑐𝑖 are defined as follows: 

𝑐𝑖 = {
2 for 𝑖 = 1, 𝑁
1 for 𝑖 ≠ 1, 𝑁

 (82)  

In view of the Chebyshev-Gauss-Lobatto Spectral Method, the other 

elements �̃�𝑖𝑗
(𝑛)

 corresponding to the  𝑛𝑡ℎ- order Chebyshev differentiation 

matrix �̃�(𝐧) can be computed recurrently as follows: 

�̃�𝑖𝑗
(𝑛) =∑ �̃�𝑖𝑘

(𝑛−1)

𝑁

𝑘=1

�̃�𝑘𝑗
(1)

 (83)  

Based on the mathematical techniques reported by Trefethen (2000) 

and the boundary conditions  𝓌 = 0 and  𝐷𝓌 = 0, the other elements  

�̃�𝑖𝑗
(1)

 , �̃�𝑖𝑗
(2)

 and �̃�𝑖𝑗
(4)

 used above are computed analytically from the basic 

elements �̃�𝑖𝑗
(1)

,�̃�𝑖𝑗
(2)

, �̃�𝑖𝑗
(3)

and �̃�𝑖𝑗
(4)

 as follows : 

�̃�𝑖𝑗
(1) =

1

(1 − 𝜉𝑖
2)
[(1 − 𝜉𝑖

2)�̃�𝑖𝑗
(1) − 2𝜉𝑖𝛿𝑖𝑗] (84)  

�̃�𝑖𝑗
(2) =

1

(1 − 𝜉𝑖
2)
[(1 − 𝜉𝑖

2)�̃�𝑖𝑗
(2) − 4𝜉𝑖�̃�𝑖𝑗

(1) − 2𝛿𝑖𝑗] (85)  

�̃�𝑖𝑗
(4) =

1

(1 − 𝜉𝑖
2)
[(1 − 𝜉𝑖

2)�̃�𝑖𝑗
(4) − 8𝜉𝑖�̃�𝑖𝑗

(3) − 12�̃�𝑖𝑗
(2)
] (86)  

As proved above, the generalized algebraic eigenvalue problem 

described by Eq. (74) has (3N − 6) eigenvalues 𝛾𝑖 . These characteristic 

values depend implicitly upon several parameters, including the wave 

number 𝑎 , the volumetric fraction of nanoparticles 𝜙0 , the diameter of 

nanoparticles 𝑑𝑛𝑝  as well as the magnetic Chandrasekhar number  𝑄 . 

Hence, for specified values of these physical parameters , the possible 

eigenvalues 𝛾𝑖 can be found numerically for each fixed wave number 𝑎 , 

in such a way that the sought thermal Rayleigh number  𝑅𝑎  must be the 

smallest eigenvalue among the whole set of positive real eigenvalues 

(i. e. , 𝑅𝑎 = 𝑚𝑖𝑛{𝛾𝑖 𝛾𝑖 > 0⁄ }) . After employing the Golden Section 

Search Method (GSSM), we can find the critical stability parameters 𝑅𝑎𝑐  

and 𝑎𝑐 by minimizing numerically  𝑅𝑎  with respect to 𝑎  in a wide 

interval [𝑎𝑖 𝑎𝑓]  (e. g. , 𝑎 𝜖 [0  10]). 

3.2 Numerical, Analytical and Semi-Analytical Validations 

As discussed above, for analyzing the thermo-magneto-hydrodynamic 

instability occurred in a thin horizontal layer of a nanofluid, several 

numerical implementations have been performed for of 𝐴𝑙2𝑂3 - water 

nanofluids using Chebyshev-Gauss-Lobatto Spectral Method (CGLSM). 

Recently, this method attracts extensive attention from researchers due to 

its importance in a wide range of applications as a fast, flexible and 

accurate numerical procedure to solve the linear and nonlinear problems 
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in fluid mechanics and other related areas. Hence, in order to verify the 

correctness and reliability of our present numerical findings in terms of 

the critical stability parameters 𝑅𝑎𝑐 and 𝑎𝑐 , a detailed side-by-side 

comparison has been carried out using Chebyshev-Gauss-Lobatto 

Spectral Method (CGLSM) and Generalized Differential Quadrature 

Method (GDQM). Moreover, it is worth mentioning here that GDQM is 

exceptionally used in this investigation as a comparative numerical 

method to validate our results. To the best of our knowledge, no previous 

studies have systematically examined by means of GDQM to solve 

similar stability problems. Hence, in order to provide extensive details 

about this numerical method, the readers can refer to the book of Shu 

(2012). Also, the interested researchers can see the innovative works of  

Fidanoglu et al. (2014) , Qasim et al. (2018) and the references therein, 

in which GDQM is explained more  fully through  two different practical 

situations. Based on our CGLSM and GDQM codes, the results are 

presented in tabular and graphical forms to discuss the significant effects 

of the emerging parameters  𝑄  , 𝜙0  and 𝑑𝑛𝑝  on the thermo-magneto-

hydrodynamic stability of 𝐴𝑙2𝑂3- water nanofluids as well as to quantify 

the agreement between the results of these numerical methods. As shown 

in Fig. 2 , Fig. 3 , Fig. 4 , Fig. 5 , Fig. 6 and Table 4, it is found that the 

graphical and tabular results given by CGLSM are very close to those of 

GDQM, which lends further credibility to our final outcomes and also 

emphasizes the robustness and validity of the CGLSM code. 

In the aim to authenticate the accuracy of our numerical results 

generated by the aforementioned collocation numerical methods and 

verify the efficiency of the computational codes used in this investigation 

towards some limiting cases for computing the critical values of the   

parameters 𝑅𝑎  and a , we first compare the results of our CGLSM and 

GDQM codes with those obtained analytically by Chandrasekhar (1961) 

and numerically by Wakif et al. (2018b) using Variational Method (VM) 

and Runge-Kutta-Fehlberg Method (RKFM), respectively, for the case of 

electrically conducting fluids (i. e. , 𝜙0 = 0 ) as shown in Table 5. 

 

 

 

 

Fig. 2 Convergence test for 𝑅𝑎𝑐  and  𝑎𝑐  using (a,b) CGLSM and (c,d) 

GDQM, when 𝑄 = 200 ,  𝜙0 = 0.01 and 𝑑𝑛𝑝 = 30𝑛𝑚.  

In the second set of examination tests, we compare in Table 6 our 

numerical results given by CGLSM and GDQM with those obtained 

semi-analytically with the help of Wakif-Galerkin Weighted Residuals 

Technique (WGWRT) based on the revised Buongiorno's two-phase 

classical model, in the case of electrically conducting nanofluids, where 

𝑓𝜌 = 𝑓𝜇 = 𝑓�̅� = 𝑓𝑘 = 𝑓𝜎 = 𝑓(𝜌𝛽) = 𝑓(𝜌𝑐) = 1.  

For a more explanation and detailed description of WGWRT , 

the interested reader is strongly encouraged to refer to the pioneering 

work of Wakif et al. (2018c), in which WGWRT is used as a semi- 

analytical method for analyzing the onset of electro-convection in 

dielectric nanofluids.  

As expected, it is clearly seen from Table 5 and Table 6 that the 

numerical results of CGLSM and GDQM have an excellent degree of 

agreement with those of VM, RKFM and WGWRT. Consequently, the 

validation of our results is confirmed numerically, analytically and semi-

analytically with a very high degree of precision.  

Moreover, Fig. 2 is plotted for 𝐴𝑙2𝑂3- water nanofluids to control the 

convergence efficiency of CGLSM and GDQM in terms of the critical 

stability parameters 𝑅𝑎𝑐  and 𝑎𝑐. From this graphical representation, it is 

clearly observed that the convergence curves obtained by CGLSM and 

GDQM can be stabilized when the number of collocation points 𝑁 

exceeds a certain value  𝑁0 . As a result, it is noticed graphically from 

Fig. 2 that   𝑁0 = 10 , in the case where   𝑄 = 200  , 𝜙0 = 0.01  and               

𝑑𝑛𝑝 = 30 𝑛𝑚.  

In order to achieve an absolute accuracy of the order of 10−6, it is 

more recommended to take 𝑁 = 28  for the number of collocation points 

during all subsequent analyses by CGLSM and GDQM. Furthermore, it 



Frontiers in Heat and Mass Transfer (FHMT), 12, 3 (2019)
DOI: 10.5098/hmt.12.3

Global Digital Central
ISSN: 2151-8629

 

   

10 

is found that the average CPU time taken for computing the accurate 
critical stability parameters 𝑅𝑎𝑐  and 𝑎𝑐  by CGLSM or GDQM is no 

more than 40 𝑠. 

4. ANALYSIS OF RESULTS 

In the present numerical investigation, the onset of thermo-magneto-

hydrodynamic instability in 𝐴𝑙2𝑂3- water nanofluids  is analyzed more 

realistically for non-slip , zero nanoparticles mass flux and isothermal 

boundary conditions, in such a way that the effects of Brownian motion 

and thermophoresis of nanoparticles are taken into account by using 

Buongiorno's two-phase nanofluid model with variable thermophysical 

properties.  

Based on the linear stability analysis and the normal mode method, 

the set of the governing partial differential equations along with their 

corresponding boundary conditions are carefully transformed into a 

generalized algebraic eigenvalue problem with the help of Chebyshev-

Gauss-Lobatto Spectral Method (CGLSM), in order to solve this problem 

numerically by means of the Golden Section Search Method (GSSM). 

Additionally, all the results given by our CGLSM algorithm are validated 

numerically against those obtained using Generalized Differential 

Quadrature Method (GDQM).  

The generated CGLSM and GDQM codes used in this investigation 

are further tested and multiply validated (i.e., numerically, analytically 

and semi-analytically) for some limiting cases using other powerful 

existing methods, such as Variational Method (VM), Runge-Kutta-

Fehlberg Method (RKFM) and Wakif-Galerkin Weighted Residuals 

Technique (WGWRT).  

Moreover, the effects of some parameters including the magnetic 

Chandrasekhar number 𝑄 , the volumetric fraction 𝜙0 and the diameter 

𝑑𝑛𝑝 of alumina nanoparticles on the onset of magneto-convection in a 

thin horizontal layer filled with alumina - water nanofluid are examined 

numerically by CGLSM and GDQM via various graphical illustrations 

as highlighted in Fig. 3 and Fig. 4. In these figures, the variations of the 

critical stability parameters 𝑅𝑎𝑐  and 𝑎𝑐 as a function of the magnetic 

Chandrasekhar number 𝑄 are plotted and discussed for multiple values 

of the pertinent parameters 𝜙0   and   𝑑𝑛𝑝  , where  200 ≤ 𝑄 ≤ 1000  ,  

0.01 ≤ 𝜙0 ≤ 0.04 and 30𝑛𝑚 ≤ 𝑑𝑛𝑝 ≤ 45𝑛𝑚.  

Furthermore, it is worth mentioning here that the graphical curves 

and tabular results highlighted in Fig. 3 , Fig. 4 and Table 4 are re-

illustrated in another way in Fig. 5 and Fig. 6, in order to facilitate the 

stability analysis of 𝐴𝑙2𝑂3- water nanofluids. 

Additionally, the rates of increase or decrease for the tabulated 

functions 𝑅𝑎𝑐 = 𝑔1(𝑄)  ,  𝑎𝑐 = ℎ1(𝑄)  ,  𝑅𝑎𝑐 = 𝑔2(𝜙0)  ,  𝑎𝑐 = ℎ2(𝜙0)  , 

𝑅𝑎𝑐 = 𝑔3(𝑑𝑛𝑝)  ,  𝑎𝑐 = ℎ3(𝑑𝑛𝑝)  and  𝑅𝑎𝑐 = 𝑓(𝑎𝑐)  are estimated 

numerically by computing the slopes of their corresponding data, 

respectively, using the linear regression model (Makinde et al., 2018 ; 

Animasaun and Pop , 2017; Shah et al., 2018) as shown in Table 4.  

The effect of the presence of an externally applied magnetic field on 

the critical stability parameters 𝑅𝑎𝑐  and 𝑎𝑐  characterizing the onset of 

magneto-convection in 𝐴𝑙2𝑂3- water nanofluids is exhibited clearly in 

Fig. 3 and Fig. 4 by varying the magnetic Chandrasekhar number 𝑄 . In 

these graphical illustrations, the variations of 𝑅𝑎𝑐  and 𝑎𝑐  are depicted as 

a function of the magnetic Chandrasekhar number 𝑄 , for different values 

of the parameters 𝜙0 and 𝑑𝑛𝑝.  

As seen in Fig. 3 and Fig. 4, it is obviously observed that the critical 

thermal Rayleigh number 𝑅𝑎𝑐  increases with the simultaneous elevation 

of the magnetic Chandrasekhar number 𝑄. Physically, this fact is mainly 

happened due to the Lorentzian magnetic drag force generated by the 

magnetic field in the electrically conducting medium. Likewise, this 

magnetic force has a resistive behavior, which acts to oppose and slow 

down the nanofluid flow caused by the imposed heating gradient ∆𝑇 𝐿⁄ . 

In view of this, it is concluded that the thermo-magneto-hydrodynamic 

stability of 𝐴𝑙2𝑂3-water nanofluid can be affected by applying a uniform 

transverse magnetic field to a horizontal thin layer of this electrically 

conducting nanofluid. Hence, the onset of magneto-convection in the 

medium can be delayed under the influence of the magnetic field strength 

𝐻0, in such a way that the nanofluidic system becomes more stable with 

increasing the magnetic Chandrasekhar number 𝑄. Similarly, it is noticed 

from the same figures that the critical wave number 𝑎𝑐 can be increased 

by intensifying the magnetic field strength 𝐻0, indicating that the thermo-

magneto-hydrodynamic stability of  𝐴𝑙2𝑂3- water nanofluids caused by 

the increase in the magnetic Chandrasekhar number  𝑄 is accompanied 

by a significant reduction in the critical size of convection cells  𝐿𝑐  

(𝑖. 𝑒. , 𝐿𝑐 = 2𝜋 𝑎𝑐⁄ ). 

As shown in Table 2 and Table 3, the effect of adding alumina 

nanoparticles 𝐴𝑙2𝑂3  into a pure water 𝐻2𝑂 has a major influence on the 

thermophysical properties of the resulting nanofluid. This subsequently 

affects the physical control parameters  𝑅𝑁  , 𝑁𝑏  and 𝑁𝑡  characterizing 

respectively the significant impact of nanoparticles volume fraction, 

Brownian motion and thermophoresis of alumina nanoparticles on the 

thermo-magneto-hydrodynamic stability of 𝐴𝑙2𝑂3 - water nanofluids. 

 From Table 2, it can be concluded that the increasing amount of 

alumina nanoparticles 𝐴𝑙2𝑂3  inserted into the pure water is the most 

important factor responsible for significant enhancement in the heat 

transfer rate efficiency of 𝐴𝑙2𝑂3- water nanofluid, due to the fact that the 

thermal conductivity of this nanofluid is an increasing function of  the 

volumetric fraction 𝜙0. In view of this fact, it can be concluded from 

Table 3 that raising the volumetric fraction 𝜙0 of alumina nanoparticles 

𝐴𝑙2𝑂3  brings about a noteworthy boost in the Brownian motion and 

thermophoresis effects, which yields significant random movement of 

alumina nanoparticles 𝐴𝑙2𝑂3 throughout the whole medium. Therefore, 

keeping that in mind, the nanofluidic system becomes more unstable due 

to the intensive disturbances exerted by the nanoparticles flow in the 

nanofluid layer. Hence, the volumetric fraction of nanoparticles 𝜙0 has a 

destabilizing effect on the nanofluidic system. This physical analysis is 

consistent with the graphical results depicted in Fig. 3, in which the onset 

of magneto-convection in alumina-water nanofluids can be hasten by 

adding alumina nanoparticles 𝐴𝑙2𝑂3 in the nanofluidic medium in very 

small amounts. Also, it is revealed from this graphical content that there 

is a marked enhancement in the critical size of convection cells 𝐿𝑐  . These 

results are happened due to the significant decrease in the critical stability 

parameters 𝑅𝑎𝑐  and 𝑎𝑐  during the concentration increase. 

Fig. 4 is plotted to explore the influence of alumina nanoparticles 

dimension 𝑑𝑛𝑝 on the critical values 𝑅𝑎𝑐  and 𝑎𝑐  characterizing the onset 

of thermo-magneto-hydrodynamic instability and the critical size of 

convection cells, respectively. As for the previous graphical illustrations, 

it is observed similar behaviors in Fig. 4 for the diameter 𝑑𝑛𝑝 of alumina 

nanoparticles 𝐴𝑙2𝑂3  on the critical stability parameters  𝑅𝑎𝑐  and 𝑎𝑐 . 

Consequently, the rise in the diameter 𝑑𝑛𝑝 has a destabilizing effect on 

the nanofluidic system. Besides this, the onset of the magneto-convection 

in alumina - water nanofluids is accelerated and the critical size of 

convection cells 𝐿𝑐  is increased due to the increase in the diameter 𝑑𝑛𝑝. 

Additionally, it can be noticed from the expressions of Lewis number  𝐿𝑒 

and Table 3 that there is a direct proportionality between  𝐿𝑒  and 𝑑𝑛𝑝. 

Therefore, these parameters have the same influence on the thermo-

magneto-hydrodynamic stability of  𝐴𝑙2𝑂3- water nanofluids. 

As a remark, it is worth mentioning here that the limiting case of 

electrically conducting fluids is highlighted graphically by  𝜙0 = 0  and 

𝑑𝑛𝑝 = 0 as shown in Fig. 3 and Fig. 4, respectively. Based on these 

graphical presentations, it can be noted that the electrically conducting 

fluids are more stable than the electrically conducting nanofluids. Also, 

the key results arising from the present numerical investigation are 

summarized graphically as shown in Fig. 5 and Fig. 6. 
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Fig. 3 Examination of the influence of 𝑄  and 𝜙0  on 𝑅𝑎𝑐 and  𝑎𝑐  by 

means of (a,b) CGLSM and (c,d) GDQM, when  𝑑𝑛𝑝 = 30𝑛𝑚. 

 

 

 

 

Fig. 4 Examination of the influence of 𝑄  and 𝑑𝑛𝑝  on 𝑅𝑎𝑐  and  𝑎𝑐  by 

means of (a,b) CGLSM and (c,d) GDQM, when  𝜙0 = 0.01.  
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Fig. 5 Numerical determination of the variation of  𝑅𝑎𝑐  with respect to 

𝑎𝑐 , for increasing values of 𝑄 (200 ≤ 𝑄 ≤ 1000) and various values of 

𝜙0 using (a) CGLSM and (b) GDQM, when  𝑑𝑛𝑝 = 30𝑛𝑚. 

 

 

Fig. 6 Numerical determination of the variation of  𝑅𝑎𝑐  with respect to 

𝑎𝑐 , for increasing values of 𝑄 (200 ≤ 𝑄 ≤ 1000) and various values of 

𝑑𝑛𝑝 using (a) CGLSM and (b) GDQM, when  𝜙0 = 0.01. 

Table 4 Numerical estimation of 𝑅𝑎𝑐  and 𝑎𝑐 with the help of CGLSM and GDQM, for various values of 𝑄 , 𝜙0 and 𝑑𝑛𝑝 . 

𝑄 𝜙0 𝑑𝑛𝑝(𝑛𝑚) 

Present Numerical Results  

CGLSM 
 

GDQM  

𝑅𝑎𝑐  𝑎𝑐  𝑅𝑎𝑐  𝑎𝑐  

200 

0.01 30  

4680.26505 4.16141 

 

4680.26505 4.16142 

500 9665.04216 4.97386 9665.04216 4.97383 

700 12720.09144 5.29646 12720.09144 5.29649 

1000 17107.11916 5.65539 17107.11916 5.65540 

Slope1 for 𝑅𝑎𝑐 = 𝑔1(𝑄) and 𝑎𝑐 = ℎ1(𝑄) 15,51837 0,00185  15,51837 0,00185 

Slope2 for 𝑅𝑎𝑐 = 𝑓(𝑎𝑐) 8071,95022  8071,92481 

500 

0.01 

35 

9190.50576 4.93653  9190.50576 4.93652 

0.02 8004.13357 4.67673  8004.13357 4.67673 

0.03 6663.78341 4.37595  6663.78341 4.37598 

0.04 5175.71261 4.01388  5175.71262 4.01386 

Slope1 for 𝑅𝑎𝑐 = 𝑔2(𝜙0) and 𝑎𝑐 = ℎ2(𝜙0) -133847,29610 -30,68730  -133847,29580 -30,68730 

Slope2 for 𝑅𝑎𝑐 = 𝑓(𝑎𝑐) 4353,65216  4353,63155 

700 0.02 

30  12220.32039 5.10955 

 

12220.32039 5.10950 

35  11231.94926 5.05038 11231.94926 5.05039 

40  10120.77628 4.97275 10120.77628 4.97275 

45  8877.84191 4.87224 8877.84191 4.87221 

Slope1 for 𝑅𝑎𝑐 = 𝑔3(𝑑𝑛𝑝) and 𝑎𝑐 = ℎ3(𝑑𝑛𝑝) -222,77216 -0,01579  -222,77216 -0,01579 

Slope2 for 𝑅𝑎𝑐 = 𝑓(𝑎𝑐) 13999,50057  13999,73352 
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Table 5  Comparison of our numerical results with the Chandrasekhar’s and Wakif’s results, in the case of electrically conducting fluids (i. e. , 𝜙0 = 0 ). 

𝑄 

Existing Literature Results  Present Numerical Results 

VM 

(Chandrasekhar, 1961) 

 RKFM 

(Wakif et al., 2018b) 

CGLSM 

(N = 15) 

 GDQM 

(N = 15) 

𝑅𝑎𝑐  𝑎𝑐  𝑅𝑎𝑐  𝑎𝑐  𝑅𝑎𝑐  𝑎𝑐  𝑅𝑎𝑐  𝑎𝑐  

0 1707.8 3.13  1707.7617 3.1163  1707.7617 3.1163  1707.7617 3.1163 

10 1945.9 3.25 1945.7457 3.2653 1945.7456 3.2652 1945.7456 3.2652 

50 2802.1 3.68 2802.0058 3.6792 2802.0058 3.6792 2802.0058 3.6792 

100 3757.4 4.00 3757.2301 4.0120 3757.2301 4.0120 3757.2301 4.0120 

200 5488.6 4.45 5488.5332 4.4458 5488.5332 4.4458 5488.5332 4.4458 

Table 6 Comparison of our numerical and semi-analytical results given by CGLSM, GDQM and WGWRT, in the case of electrically conducting 

nanofluids , when  𝑅𝑁 = 0.1, 𝐿𝑒 = 5000, 𝑁𝑏 = 10−6 and  𝑁𝑡 = 10−6.  

5.  CLOSING REMARKS 

A generalized nanofluid model has been developed in this investigation 

for alumina-water nanofluids, in order to examine the thermo-magneto-

hydrodynamic stability in a thin nanofluid layer. Under the Oberbeck-

Boussinesq approximation, the governing partial differential equations 

(PDEs) were derived formally based on Buongiorno’s, Chon’s and 

Corcione’s nanofluid models. By applying the linear stability theory and 

the normal mode analysis method, the resulting dimensionless PDEs are 

converted into a set of dimensionless ordinary differential equations 

(ODEs). These ODEs together with the boundary conditions 

constitute an eigenvalue problem, which has been solved numerically 

using Chebyshev-Gauss-Lobatto Spectral Method (CGLSM) and 

Generalized Differential Quadrature Method (GDQM). Moreover, our 

numerical findings have been validated and discussed in detail via tabular 

and graphical illustrations, in the case of isothermal impermeable plates 

with no-slip and zero nanoparticles mass flux conditions. The important 

findings derived from the present analysis are summarized as follows: 

• The numerical results given by CGLSM and GDQM are 

presented in this paper with an absolute accuracy of the order 

of 10−6  and validated with the results of other powerful 

methods like VM, WGWRT and RKFM. 
 
 

• Due to the zero nanoparticles mass flux condition, the 

volumetric fraction of alumina nanoparticles 𝐴𝑙2𝑂3  is 

controlled passively by the resulting temperature gradient on 

the impermeable plates.  

 
 

• Based on the results of the proposed nanofluid model, it is 

found that the basic dimensional volumetric fraction of 

alumina nanoparticles 𝐴𝑙2𝑂3 at the hot plate 𝜙ℎ
∗  and cold plate 

𝜙𝑐
∗ verify the two criterions 𝜙ℎ

∗ + 𝜙𝑐
∗ =  2𝜙0  and   𝜙𝑐

∗ > 𝜙ℎ
∗ . 

 

• The thermo-magneto-hydrodynamic stability of alumina-water 

nanofluids increases with the increase in the magnetic 

Chandrasekhar number 𝑄, while it decreases significantly with 

the increase in the volumetric fraction  𝜙0 and the diameter 

 𝑑𝑛𝑝 of alumina nanoparticles. 
 

• The presence of an applied transverse magnetic field has a 

stabilizing effect on the onset of magneto-convection in 

alumina-water nanofluids.  
 

• Brownian motion and thermophoresis slip mechanisms have a 

destabilizing impact on the onset of magneto-convection in 

alumina-water nanofluids. 
 

• The electrically conducting fluids are generally more stable 

than their corresponding nanofluids. 
 

• An increase in the magnetic Chandrasekhar number 𝑄 leads to 

a reduction in the critical size of convection cells 𝐿𝑐  , while the 

volumetric fraction  𝜙0  and the diameter  𝑑𝑛𝑝  of alumina 

nanoparticles 𝐴𝑙2𝑂3  increase the critical size of convection 

cells  𝐿𝑐. 

𝑄 

Present Numerical and Semi-Analytical Results   

CGLSM (𝑁 = 28)  GDQM (𝑁 = 28)  

 

WGWRT (𝑁 = 15) 

𝑅𝑎𝑐  𝑎𝑐  𝑅𝑎𝑐  𝑎𝑐  𝑅𝑎𝑐  𝑎𝑐  

0 846.86043 2.43637  846.86042 2.43637  846.86043 2.43638 

100 3091.08440 3.83811 3091.08440 3.83812 3091.08440 3.83812 

200 4860.63528 4.33833 4860.63528 4.33834 4860.63528 4.33833 

300 6485.38722 4.66476 6485.38722 4.66473 6485.38722 4.66474 

400 8029.93455 4.91140 8029.93455 4.91143 8029.93455 4.91142 

500 9521.32407 5.11151 9521.32407 5.11151 9521.32407 5.11151 

600 10974.01001 5.28079 10974.01001 5.28078 10974.01001 5.28078 

700 12396.81589 5.42804 12396.81589 5.42804 12396.81589 5.42805 

800 13795.60743 5.55875 13795.60743 5.55874 13795.60744 5.55875 

900 15174.52413 5.67649 15174.52414 5.67648 15174.52414 5.67649 

1000 16536.61956 5.78378 16536.61956 5.78377 16536.61958 5.78379 
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