
Frontiers in Heat and Mass Transfer (FHMT), 14, 28 (2020)
DOI: 10.5098/hmt.14.28

Global Digital Central
ISSN: 2151-8629

1 

 

Frontiers in Heat and Mass Transfer 

Available at www.ThermalFluidsCentral.org 

ROLE OF MAXWELL VELOCITY AND SMOLUCHOWSKI
TEMPERATURE JUMP SLIP BOUNDARY CONDITIONS TO

NON-NEWTONIAN CARREAU FLUID

T. Sajid†, M. Sagheer , S. Hussain

Capital University of Science and Technology, Islamabad, 46000, Pakistan

ABSTRACT

The forthright aim of this correspondence is to examine the conduct of MHD, viscous dissipation and Joule heating on three dimensional non-
Newtonian Carreau fluid flow over a linear stretching surface. Impact of non-linear Rosseland thermal radiation and homogenous/heterogenous
reaction process have been also considered to examine the heat and mass transfer process during fluid flow. The velocity and thermal slip effect at the
surface have also been scrutinized in detail. By utilizing a suitable transformation, the modelled partial differential equations (PDEs) are renovated
into ordinary differential equations (ODEs) and furthermore solved with the help of the numerical procedure namely the RK-4 method embedded with
shooting procedure. The behaviour of the velocity, temperature and concentration profiles against various parameters are portrayed in the form of
figures and tables. In the presence of the Maxwell velocity slip effect, the velocity profile is found to diminish. It is experienced that the temperature
profile depreciates as a result of an augmentation in the Smoluchowski temperature slip effect and moreover concentration profile depreciates as a
result of an improvement in the homogeneous and heterogeneous reaction parameters. To affirm the reliability of the proposed numerical technique,
a comparison with already published work is also taken into account. A remarkable agreement amongst the accomplished and the existing outcomes
has been obtained.
Keywords: Nonlinear thermal radiation, viscous dissipation, velocity slip, temperature slip, homogenous/heterogenous reaction.

1. INTRODUCTION

During the past two decades, widespread interest is developed in
researchers to analyze the fluid flow behaviour and energy transfer phe-
nomenon in the non-Newtonian fluid models like Bingham, power-law,
Ellis, Casson, Eyring-Powell and Carreau fluid models. Examples of non-
Newtonian fluids are ketchup, genetic liquids, shampoo, blood , tooth
paste etc. Nagalakshm and Vijaya (2020) scrutinized the impact of MHD
on Carreau nanofluid past a nonlinear stretching sheet. Their main find-
ing was that an augmentation in magnetic parameter force guides to an
abatement in the velocity profile. Cortell (2011) studied the impact of
the power-law fluid flow towards an elastic porous stretching sheet em-
bedded with the inclusion of effects like suction, thermal radiation and
viscous dissipation. He observed that the thermal boundary-layer thick-
ness diminishes on the account of an increment in the thermal radiation
parameter. Ghiasi and Saleh (2019) scrutinized the two dimensional Cas-
son fluid past a stretching sheet by incorporating the effects of Joule heat-
ing and non-uniform heat source/sink. They concluded that the tempera-
ture field augments by rising the Eckert number. Ali and Sandeep (2017)
studied the MHD Casson-ferro fluid with the aid of effect like nonlin-
ear thermal radiation and found that the nonlinear thermal radiation is
the major factor responsible for regulation of the temperature at the ther-
mal boundary layer. Three dimensional fluid accompanied with variable
thermal conditions for the case of stretching surface was scrutinized by
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Liu and Andersson (2008) with the conclusion that the Nusselt number
decreases by rising the internal heat parameter. Hayat et al. (2017) pon-
dered three dimensional nanofluid flow over a stretching sheet accompa-
nied with heat and mass flux boundary conditions. Khan et al. (2017a)
studied the behaviour of 3D magneto Carreau nanofluid past a stretch-
ing sheet. They observed that by enhancing the magnetic parameter, a
decrement in the velocity gradient is resulted. Megahed (2019) studied
the impact of variable thermal conductivity and thermal radiation on Car-
reau fluid past a nonlinear stretchable surface. Raju and Sandeep (2016)
investigated the impact of MHD, nonlinear thermal radiation and heat
source/sink on unsteady Carreau fluid moving over a stretching sheet. To
learn a bit more about the discussed issues, some more relevant articles
are cited in Turkyilmazoglu (2014); Mukhopadhyay et al. (2013); Misra
and Adhikary (2017); Narayana et al. (2014); Azam et al. (2017); Olaju-
won (2011); Machireddy and Naramgari (2018).

Thermal radiation is actually an electromagnetic radiation produced
by the thermal motion of particles in matter. These radiations actually
move in the form of electromagnetic waves like those from electric burner
and room heater. Thermal radiation has immense applications in agri-
culture, space exploration, law enforcement, polymer preparation, fur-
nace design, electricity generation etc. The linear thermal radiation can
be achieved by linearizing the Rosseland approximation and furthermore
linear thermal radiation has unique Prandtl number Magyari and Pan-
tokratoras (2011). The problem with linear thermal radiation is that it
looses its effectiveness at high temperature difference. To overcome this
obstacle, researchers recently introduced the nonlinear thermal radiation.
The temperature becomes highly nonlinear in the occurrence of nonlin-
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ear thermal radiation. In the case of nonlinear thermal radiation three key
factors Prandtl number, temperature ratio parameter and thermal radia-
tion are responsible for heat transfer analysis. Nonlinear thermal radi-
ation has been applicable where high temperature difference is required
and has distinguished applications in high temperature energy sector like
polymer production, thermal furnaces, nuclear reactor, space craft etc.
Impact of nonlinear thermal radiation and activation energy on Maxwell
nanofluid past a stretchable surface have been debated in detail by Sajid
et al. (2018). Magyari and Pantokratoras (2011) studied the impact of
linear thermal radiation on various boundary layer flows. The only pa-
rameter which is helpful to linearize the Rosseland approximation is the
radiation parameter. Krishnamurthy et al. (2016) studied the impact of
nonlinear thermal radiation on water based nanofluid accompanied with
slip effects. They perceived that the velocity profile diminishes by rising
the velocity slip parameter. Astuti et al. (2019) contemplated the impact
of thermal radiation on nanofluid past a variable stretchable surface and
observed that an amplification in radiation parameter guides to a augmen-
tation in the temperature field. Mohamed and Wahed (2017) studied the
impact of nanoparticles, MHD and nonlinear Rosseland thermal radiation
on a continuously moving surface. They observed that the Nusselt num-
ber rises by enhancing the radiation parameter. Cortell (2014) pondered
the impact of thermal radiation on the fluid flow over a stretching surface.
It was established that the temperature profile embellishes for the larger
values of the temperature ratio parameter but behaviour is quite opposite
in the case of thermal radiation parameter. Mahanthesha et al. (2016)
delineated the water based nanofluid flow over a stretching surface with
the combination of effect like nonlinear thermal radiation and canvassed
that the nonlinear thermal radiation has higher impact on the flow field as
compared to the linear thermal radiation. The impact of variable thermal
conductivity and viscous dissipation on radiative fluid past a stretching
sheet was investigated by Shateyi and Muzara (2020) with the conclusion
that the temperature profile upsurges because of an escalation in the radia-
tion parameter. The impact of nonlinear thermal radiation on 3D Carreau
fluid past a stretchable surface was investigated by Khan et al. (2017b).
The influence of nonlinear thermal radiation and bio-convection on Car-
reau fluid was deeply investigated by Raju et al. Raju et al. (2016). Jyothi
and Reddy (2019) studied the effect of magnetite nanoparticles and zero
mass flux boundary condition on radiative Carreau fluid past a stretching
sheet.

A catalyst is a substance which speeds up the chemical reaction
without itself being consumed. Catalysts are categorized into two types
namely the homogeneous and the heterogeneous catalysts. In case of the
homogenous reaction, the catalyst and the reactant are in same phases
both are solids or liquids, but reverse in the case of heterogenous reac-
tion where both occur in the different phase (one is solid other is liquid).
Different chemical reaction structures involve homogenous/heterogenous
reactions like polymer production, biochemical systems, combustion and
catalysis. Ziabakhsh et al. (2010) investigated a steady incompressible
fluid along with chemically reactive species past a porous stretching sheet.
Kameswaran et al. (2013) studied the dynamics of a fluid past a porous
stretching sheet with the inclusion of nanoparticles and chemical reac-
tion and claimed that the temperature field decreases with an enrichment
in the Weissenberg number. Merkin (1996) considered the model over
a boundary flow with homogeneous/heterogeneous reaction. Nandkeol-
yar et al. (2014) contemplated a viscous incompressible fluid flow past a
stretching surface under the effects of homogeneous/heterogeneous re-
action and MHD. They deliberated that an augmentation in the mag-
netic field parameter guides to a decrement in the velocity profile. Bilal
et al. (2017) observed the behaviour of non-Newtonian Williamson fluid
past a stretching cylinder under the effect of stagnation point, homoge-
neous/heterogeneous reaction and MHD. Mansur et al. (2016) pondered
a fluid past a stretching surface with the inclusion of nanoparticles and ho-
mogeneous/heterogeneous reaction phenomenon and found a reduction in
the mass fraction due to an increment in the homogeneous/heterogeneous

reaction parameter. The behaviour of Casson-Carreau fluid in addition
to homogeneous/heterogeneous reaction is inspected by Gireesha et al.
(2017) with the main finding that the temperature profile boosts up by
mounting the temperature ratio parameter. Bachok et al. (2011) explored
the effect of a stagnation point flow on the fluid flow over a stretching
sheet combined with homogeneous/heterogeneous reaction and came up
with the conclusion that a variation in the heterogeneous reaction param-
eter brings about a diminishment in the concentration profile. Chaudhary
and Merkin (1995) considered a simple isothermal model with the in-
clusion of homogeneous/heterogeneous and stagnation point. Irfan et al.
(2018) scrutinized Carreau fluid past a stretching sheet embedded with
homogeneous/heterogenous reaction, variable thermal conductivity and
heat source sink. The impact of homogeneous/heterogenous reaction on
3D Carreau fluid past a stretchable sheet was discussed by Khan et al.
(2018).

In recent years, various researchers investigated the behaviour of the
slip boundary layer phenomenon over different types of surfaces. The
velocity of the fluid tends to zero and no surface friction takes place with
regard to no slip condition, but in the case of slip condition, the fluid
velocity normal to the wall is zero whereas its tangential velocity is non-
zero. The slip conditions are considered important to study the micro-
elastic mechanical systems, artificial heart cell etc. It is experienced that
by including the velocity slip condition at the boundary, the heat trans-
fer rate is increased. Recently, Aljoufi and Ebaid (2016) scrutinized a
fluid flow towards a stretchable surface along with slip effects. They de-
termined that the temperature profile diminishes by augmenting the slip
parameter and Biot number. Zheng et al. (2012) scrutinized the viscous
fluid flow towards a stretchable surface along with the velocity slip con-
dition. They profound that the mass transfer rate upsurges by mounting
Prandtl number. The effects of slip conditions, binary chemical reaction
on stagnation point flow in a porous medium with convective boundary
condition are considered by Sivasankaran et al. (2017). They concluded
that an enrichment in the chemical reaction parameter reduces the heat
transfer rate. Devakar et al. (2014) scrutinized the couple stress fluid be-
tween parallel plates with inclusion of slip effects. They perceived that
the velocity in the couette flow is enhanced when the lower and the upper
plates move in the same direction. The effects of nonlinear velocity slip
over a stretching permeable surface is deliberated by Xinhui et al. (2017).
They determined that the boundary layer thickness of velocity becomes
thinner by rising the magnetic field parameter. Fang et al. (2009) delib-
erated the MHD viscous fluid flow over a stretching sheet in the presence
of the slip effect. They analyzed that the wall slip velocity boosts in the
case of an improvement in the magnetic parameter. The behaviour of
velocity slip, thermal slip and solutal slip toward a stretching surface is
pondered by Ibrahim and Shankar (2013) and established that the ther-
mal boundary layer thickness reduces by augmenting the slip parameter.
The difference between the fluid velocity of the wall and the velocity
of the wall itself is directly proportional to shear stress and this propor-
tional factor named as slip length. The slip boundary condition is given
by |u|wall = ls| ∂u∂y |, where ls represents the slip length Hak (2001).
The behaviour of velocity slip |u|wall = 2−σv

σv
λ0

∂u
∂y

and temperature

jump Twall = 2−σT
σT

(
2r
r+1

)
λ0
Pr

∂T
∂y

, σv and σT denote momentum ac-
commodation and temperature accommodation coefficient are studied by
Maxwell (1879) and Smoluchowski (1898). Khan et al. (2013) studied
the impact of velocity and temperature jump slip conditions on double
diffusive nanofluid past a vertical plate and found that the velocity field
increases on the behalf of an improvement in the velocity slip parameter.
Rahman and Eltayeb (2011) pondered the conduct of rarefied fluids flow
over a wedge along with Smoluchowski temperature slip condition and
came up with the conclusion that the temperature field abates owing to
an augmentation in temperature slip parameter. The impact of Maxwell
velocity and Smoluchowski temperature slip boundary condition on rar-
efied gas fluid moving over a wedge is investigated by Das et al. (2017).
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Hayat et al. (2015) have scrutinized the impact of MHD on three dimen-
sional nanofluid flow towards a stretching sheet embedded with Maxwell
velocity slip boundary condition. This paper is extension of work done
by Hayat et al. (2015) under the inclusion of various effects.

In the light of above mentioned study Das et al. (2017) and Hayat
et al. (2015) specially , the purpose of current research is to explore
the conduct of nonlinear thermal radiation, viscous and Ohmic dissipa-
tion, homogeneos/heterogenous reactions, Maxwell velocity and Smolu-
chowski temperature slip boundary conditions on three dimensional rar-
efied Carreau fluid past a stretching sheet. According to best of au-
thor’s knowledge no work have been reported yet to study the impact
of slip conditions along with nonlinear thermal radiation and homoge-
neos/heterogenous reactions on rarefied fluid flow over a three dimen-
sional stretchable surface.

2. MATHEMATICAL FORMULATION

The physical model used to represent the time independent three di-
mensional incompressible Carreau fluid flow behaviour is shown in Fig.
1. A non-uniform magnetic field B0 is executed vertical to the sheet and
furthermore the induced magnetic field effectiveness is amitated by as-
suming the small Reynolds number. The surface coincides with the plane
z = 0 and the flow is restrained in the region z > 0. Flow considered
in the current problem is optically thick and temperature difference of
the fluid flow is large, therefore Rosseland radiative heat flux is not lin-
earized with the help of Taylor’s series. The surface is also assumed to
exhibit the velocity slip conditions. The stretching surface velocities act-
ing along x -axis and y- axis are Uw(x) = lx and Vw(x) = my. The
Maxwell velocity slip Maxwell (1879) acting along x -axis and y- axis at

the surface of the sheet are given
2− σv
σv

λ0
∂u

∂z
and

2− σv
σv

λ0
∂v

∂z
. The

Smoluchowski temperature slip length Smoluchowski (1898) represented

by
2− σT
σT

(
2r

r + 1

)
λ0

Pr
is also considered. The constitutive equation

Fig. 1 Physical model of the problem.

of Carreau fluid is defined by

τ = µ∞ + (µ0 − µ∞)
[
1 + Γ2γ̇2]n−1

2 γ̇, (1)

The shear rate at zero and infinity is represented by µ0 and µ∞. Another
important parameter n in the above equation represents the power-law
index. The fluid exhibits the shear thickening behaviour for n > 1 , shear
thinning as n < 1 and furthermore Newtonian in the case n = 1. In the
current formulation of the problem µ∞ is considered as zero. Then the
Carreau fluid equation reduces to

τ = µ0

[
1 + Γ2γ̇2]n−1

2 γ̇. (2)

The apparent viscosity for Carreau fluid model can be expressed as

µ = µ0

[
β∗ + (1− β∗)

[
1 + Γ2γ̇2]n−1

2

]
, (3)

The term β∗ =
µ0

µ∞
represents the infinite shear-rate viscosity to the zero

shear-rate viscosity and taken less than one in the current study. The ho-
mogeneous as well as the heterogeneous reaction between species A and
B is premeditated byMansur et al. (2016). Cubic homogeneous chem-
ical reaction is considered within the flow field whereas heterogeneous
chemical reaction is taken at the catalyst surface. Homogeneous reaction
is

A+ 2B → 3B, rate = kcab
2, (4)

heterogenous chemical reaction on the catalyst surface is premeditated by

A→ B, rate = ksa. (5)

The concentration of chemical speciesA andB is established by the sym-
bols a and b whereas the termsKc andKs represent the homogeneous as
well as heterogeneous reaction rate constants. The governing nonlinear
PDEs Khan et al. (2017a); Sajid et al. (2018); Mansur et al. (2016) are:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (6)

u
∂u

∂v
+ v

∂u

∂y
+ w

∂u

∂z
=

β∗ + (1− β∗)

(
1 + Γ2

(
∂u

∂z

)2
)n−1

2


ν
∂2u

∂z2
+ ν(n− 1)(1− β∗)Γ2

(
∂u

∂z

)2
∂2u

∂z2

(
1 + Γ2

(
∂u

∂z

)2
)n−3

2

−

σB2
0

ρf
u, (7)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
=

β∗ + (1− β∗)

(
1 + Γ2

(
∂v

∂z

)2
)n−1

2


ν
∂2v

∂z2
+ ν(n− 1)(1− β∗)Γ2

(
∂v

∂z

)2
∂2v

∂z2

(
1 + Γ2

(
∂v

∂z

)2
)n−3

2

−

σB2
0

ρf
v, (8)

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= α1

∂2T

∂z2
+
σB2

0

ρCp

(
u2 + v2

)
− 1

ρCp

∂qr
∂z

,

(9)

u
∂a1
∂x

+ v
∂a1
∂y

+ w
∂a1
∂z

= DA
∂2a1
∂z2

−K0a1b
2
1, (10)

u
∂b1
∂x

+ v
∂b1
∂y

+ w
∂b1
∂z

= DB
∂2b1
∂z2

−K0a1b
2
1. (11)

The boundary conditions Mansur et al. (2016); Maxwell (1879); Smolu-
chowski (1898) associated with the above PDEs are

z = 0 : u = lx+
2− σv
σv

λ0
∂u

∂z
, v = my +

2− σv
σv

λ0
∂v

∂z
,

w = 0, T = Tw +
2− σT
σT

(
2r

r + 1

)
λ0

Pr
,

DA
∂a1
∂z

= Ksa1, DB
∂b1
∂z

= −Ksa1.

z →∞ : u→ 0, v → 0, T → T∞, a1 → a0, b1 → 0.


(12)

The Rosseland approximation Mohamed and Wahed (2017) is defined as

qr = −4σ∗

3κ∗
∂T 4

∂z
= −4σ∗

3κ∗
T 3 ∂T

∂z
. (13)
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The Stefan-Boltzmann and the mean absorption coefficients are expressed
as σ∗ and κ∗ respectively.
By adopting the following similarity transformation Khan et al. (2017b),

u = lxf ′(η), v = lyg′(η), w = −
√
lv (f(η) + g(η)) ,

θ(η) =
T − T∞
Tw − T∞

, η = z

√
l

ν
, h(η) =

a1
a0
, q(η) =

b1
a0

 (14)

Equations (6)-(10) get the following non-dimensional form:

f ′′′
[
(β∗ + (1− β∗))

(
1 +We21f

′′2)n−3
2
(
1 + nWe21f

′′2)]− (15)

f ′2 + f ′′ (f + g)−Mf ′ = 0,

g′′′
[
(β∗ + (1− β∗))

(
1 +We22g

′′2)n−3
2
(
1 + nWe22g

′′2)]− (16)

g′2 + g′′ (f + g)−Mg′ = 0,[
1 +Rd (1 + (θw − 1)θ)3

]
θ′′ + 3Rd (1 + (θw − 1)θ)2 (θw − 1)

θ′2 +MPr
(
Ecxf

′2 + Ecyg
′2)+ Pr (f + g) θ′ = 0, (17)

1

Sc
h′′ + h′(f + g)−Khq2 = 0, (18)

ϕ

Sc
q′′ + q′(f + g) +Khq2 = 0. (19)

The dimensionless form of the boundary conditions (11) is given below:

η = 0 : f ′(0) = 1 + γf ′′(0), g′(0) = β + γg′′(0),

θ(0) = 1 + δθ′(0), f(0) = 0, g(0) = 0,

h′(0) = K1h(0), ϕq′(0) = −K1h(0).

η →∞ : f ′ → 0, g′ → 0, θ → 0, h→ 1, q → 0.

 (20)

Various dimensionless parameters appearing in Equations (14)-(19) are
characterized as

We1 = Γ2 l
3x2

ν
, Pr =

ν

α
, M =

σB2
0

ρl
,

We2 = Γ2l
m2y3

ν
, µ = ρν, ϕ =

DB
DA

,

Rd =
16σ∗T 3

∞

3k∗κ
, θw =

Tw
T∞

, Sc =
ν

DA
,

β =
m

l
, K1 =

Kca
2
0

l
, γ =

2− σv
σv

λ0

√
l

v
,

Ecx =
l2x2

CP (Tw − T∞)
, Ecy =

m2y2

CP (Tw − T∞)
,

δ =
2− σT
σT

(
2r

r + 1

)
λ0

Pr

√
l

v
, K =

Ks

DAa0

√
v

l
.



(21)

By taking DA=DB =1 and δ = 1 Mansur et al. (2016)

h(η) + q(η) = 1. (22)

By using Equation (21) in Equation (17), we get

h′′

Sc
+ h′(f + g)−Kh(1− h)2 = 0, (23)

subject to the boundary conditions

h′(0) = K1h(0), h→ 1 as η →∞. (24)

The heat transfer coefficient is given by

Nux = − x

(Tw − T∞)

∂T

∂z


z=0

+
xqr

k(Tw − T∞)


z=0

. (25)

The dimensionless form of the heat transfer coefficient is bestowed by

NuxRe
−1/2
x = −

(
1 +Rd ((θw − 1)θ(0))3

)
θ′ (0) . (26)

The skin friction coefficients are

Cfx =
τxz

1
2
ρfU2

w

, Cfy =
τyz

1
2
ρfU2

w

, (27)

where the terms τxz and τyz are given by

τxz = µ
∂u

∂z

(β∗ + (1− β∗))

(
1 + Γ2

(
∂u

∂z

)2
)n−1

2

 ,
τyz = µ

∂v

∂z

(β∗ + (1− β∗))

(
1 + Γ2

(
∂v

∂z

)2
)n−1

2

 .


(28)

The skin friction coefficients in the dimensionless form are formulated
as:

1

2
CfxRe

1
2
x = (β∗ + (1− β∗))f ′′ (0)

(
1 +We21f

′′2)n−1
2 ,(

Uw
2Vw

)
CfyRe

1
2
x = (β∗ + (1− β∗))g′′ (0)

(
1 +We22g

′′2)n−1
2 .


(29)

3. SOLUTION METHODOLOGY

The nonlinear, non-dimensional Equations (14)-(16) and Equation
(22) along with the boundary conditions (19) and (23) can be compre-
hended with the assistance of the shooting strategy Na (1979) utilizing the
RK4 method. For numerical solution, the unbounded domain [0,∞) has
been replaced by [0, ηmax] where ηmax is a real number chosen in such
a way that the solution doesn’t show significant variations for η > ηmax.
It is observed that ηmax = 7 guarantees an asymptotic convergence for
all the results presented in this article. For convenience in the choice
of missing conditions and computational efficiency, first the momentum
Equations (14)-(15) will be solved numerically by the shooting method.
Later on, using f and g as known functions, the energy Equation (16) will
be treated numerically. Finally the concentration equation will be solved
by the same technique by using the available solution of Equations (14)-
(15). The momentum equations have been converted into a system of first
order ODEs signifying f by y1, f ′ by y2, f ′′ by y3, g by y4, g′ by y5, g′′

by y6, y2(0) by γ1 and y5(0) by γ2. The resulting system of equations
is:

y′1 = y2,

y′2 = y3,

y′3 =
[y22 − y3 (y1 + y4) +My2]

(β∗ + (1− β∗)) (1 +We21y
2
3)

n−3
2 (1 + nWe21y

2
3)
,

y′4 = y5,

y′5 = y6,

y′6 =
[y25 − y6 (y1 + y4) +My5]

(β∗ + (1− β∗)) (1 +We22y
2
6)

n−3
2 (1 + nWe22y

2
6)
,



(30)

with initial conditions are

y1(0) = 0, y2(0) = 1 + γγ1, y3(0) = γ1, y4(0) = 0,

y5(0) = β + γγ2, y6(0) = γ2.

}
(31)

To reach close enough to the missing initial conditions, Newton’s method
is iteratively applied until the following criteria is met.

max{|y2(ηmax)|, |y5(ηmax)|} < ε, (32)

where ε depicts a small positive number.
In the case of temperature equation, the transformed ODE (16) is con-
verted into first order ODEs by denoting θ by w1, θ′ by w2. As a result of
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the introduction of theses new variables, the following system of ODEs
is achieved.

w′1 = w2,

w′2 =

[
Pr(f + g)w1 +MPr(Ecxf

′2 + Ecyg
′2)

+3Rd(1 + (θw − 1)y1)2(θw − 1)w2
2

]
−
(
1 +Rd (1 + (θw − 1)w1)3

) ,

 (33)

with initial conditions

w1(0) = 1 + δγ3 , w2(0) = γ3.

For the refinement of the initial guess γ3, Newton’s method is applied
unless the condition underneath is fulfilled.

max{|w1(ηmax)− 0|} < ε. (34)

The concentration equation (16) is converted into the first order ODEs by
denoting h by z1, h′ by z2. The first order ODEs are then given by:

z′1 = z2,

z′2 = Sc
(
−z2 (f + g) +Kz1 (1− z1)2

)
,

}
(35)

having initial conditions

z1(0) = γ4 , z2(0) = K1γ4

For the improvement of the initial guess γ4, the iterative scheme called
Newton’s method is used until the criteria given below is achieved.

max{|z1(ηmax)− 1|} < ε. (36)

In Table 1, a comparison of the presently computed values of different
physical quantities with those already published in literature.

Table 1 Comparison of f ′′(0) for different values of β.

β Irfan et al. (2018) Hayat et al. (2015) Present
0.1 1.01702 1.02026 1.02038
0.2 1.03458 1.03949 1.03958
0.3 1.05747 1.05795 1.05802
0.4 1.07052 1.07578 1.07583

4. RESULTS AND DISCUSSIONS

In the present section, the numerical solution of the dimensionless
mathematical model has been presented and analyzed. The skin friction
coefficient and h′(0) against various parameters is delineated in Table 3
by keeping Rd = 1, θw = 1.5, Ecx = 0.5, Ecy = 0.5, Pr = 1,
δ = 1 as fixed. According to Table 2, an enrichment in magnetic pa-
rameter M and the stretching rate parameter β prompts a decrease in the
skin friction coefficient but an inverse behaviour is observed on account
of the power-law index n (shear thickening) and the slip parameter γ.
An improved behavior is seen in the skin friction coefficient along y-axis
for the magnetic parameter M and the stretching rate β. However for n
and γ a reverse behavior is experienced for skin friction coefficient. Ta-
ble 3 demonstrates the behavior of the Nusselt number against different
parameters, for fixed values of We1 = 0.1, We2 = 0.1, Sc = 0.2,
K = 2,K1 = 1. It is quite clear that boosting the values of n (shear
thickening), the radiation parameters Rd, the temperature ratio parame-
ter θw and Prandtl number Pr bring about an enlargement in the Nusselt
number but situation is reverse on account of the remaining parameters
like the magnetic parameterM , Eckert numberEc, stretching rate β, slip
parameters γ and δ.

Figures 2-17 exhibit the behaviour of velocity, temperature and concen-
tration profiles against various parameters arising in the present problem.
Fig. 2 exhibits the dynamics of the velocity profiles f ′ and g′ under the
effect of the magnetic parameter M . It is noted that the magnetic field
in the presence of electric current develops a force called Lorentz force
which lessens the fluid velocity inside the boundary layer. Fig. 3 delin-
eates the impact of the power-law index n on the velocity profiles f ′ and
g′. The values of n have been taken for all the three cases shear thin-
ning n < 1, shear thickening n > 1 and Newtonian n = 1. From this
figure, it can be clearly seen that a boost in f ′ and g′ happens due to an
embellishment in the power-law index. An increment in the power law
also guides to an improvement in the momentum boundary layer thick-
ness. The impact of Weissenberg number We1 on the velocity profile is
manifested in Fig. 4. Weissenberg number is described as the ratio of the
shear rate time to the relaxation time. Liquids turn out to be more thicker
because of an augmentation in the Weissenberg number. Therefore veloc-
ity profile is reduced with an enrichment in the Weissenberg number. The
execution of the velocity profile against the slip parameter γ is displayed
in Fig. 5. Rising the values of the velocity slip over the stretching sheet
lessens the fluid velocity. The impact of the Wessenberg numberWe2 on
the velocity profile is considered in Fig. 6. It is observed that the liquid
turns out to be more viscous on the behalf of an amplification in the Weis-
senberg number which reduces the momentum boundary layer thickness
and the velocity profile. Fig. 7 demonstrates the dynamics of the velocity
field versus the slip parameter γ. The physical reason behind the velocity
decrement is actually an increment in the frictional resistance existing be-
tween the surface and the fluid particles which reduces the fluid flow and
the velocity profile. Fig. 8 displays the impact of the stretching parameter
β on the velocity profile. An enlargement in the value of the stretching
parameter brings about a diminishment in the velocity profile. Fig. 9 and
Fig. 10 depicts the performance of viscosity ratio parameter β∗ on the
velocity profiles f ′(η) and g′(η). It is quite cleat the fluid behaves like
shear thickening on the behalf of an amplification in the β∗ which reduces
the fluid velocity and guides to a reduction in the velocity profiles. Fig.
11 displays the significant role of the frequently used parameter Prandtl
number Pr, which is actually the ratio of the momentum diffusivity to
the thermal diffusivity. It is well established that Prandtl number reduces
the fluid temperature. Thermal diffusivity reduces for the larger values
of Pr which guides to a thickness in the thermal boundary layer. Fig.
12 portrays the behavior of the velocity profile versus the Eckert number
Ecx. By boosting the Eckert number, more heat in the liquid is generated
due to the frictional heating which improves the temperature behaviour.
From Fig. 13, it is probed that by mounting the Eckert number Ecy , an
additional heat in the liquid is generated on account of the frictional force
which is responsible for an augmentation in the temperature field. Fig. 14
demonstrates the effect of the magnetic parameter M on the temperature
field. Lorentz force which is basically a drag force, causes a decrement in
the fluid velocity which amplifies the temperature field. The behavior of
radiation parameter Rd on the temperature profile is deliberated in Fig.
15 It is quite abvious that heightening the value of Rd escorts the tem-
perature rise inside the boundary layer, and hence the temperature profile
rises. Fig. 16 determines the impact of the temperature ratio parameter
θw on the temperature profile. By ascending θw, an enlargement in the
wall temperature is observed. As a result the temperature ratio parameter
escalates and a rise in the temperature profile take place. Fig. 17 sketches
the impact of the Schmidt number Sc on the concentration profile. When
Schmidt number enhances, the viscous diffusion also increases which the
concentration profile. The behavior of the concentration field against the
homogeneous reaction parameter K is depicted in Fig. 18. The flow
diffusivity fluctuates by mounting the value of the homogeneous reac-
tion, which is the prominent factor for diminishment of the concentration
profile. Fig. 19 examines the association between the heterogeneous re-
action K1 and the concentration field. An increment in the homogeneous
reaction brings about a reduction in the concentration field.
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Table 2 Values of momentum and concentration equations for various parameters.

M n β γ We1 We2 K K1 Sc β∗ 1
2
CfRe

1
2
x

1
2
Cf

Uw
Vw

Re
1
2
x h′(0)

0.1 0.5 0.5 0.3 0.1 0.1 2 1 0.2 0.1 -0.77771 -0.34821 0.06335
0.3 -0.82723 -0.37813 0.05855
0.5 -0.87228 -0.40461 0.05479
0.7 -0.91355 -0.42834 0.05178

1 -0.77718 -0.34818 0.06337
1.5 -0.77666 -0.34815 0.06339
2 -0.77614 -0.34812 0.06340

0.7 -0.78847 -0.52203 0.06849
0.9 -0.80171 -0.70978 0.07343
1.1 -0.81413 -0.90886 0.07823

0.5 -0.64588 -0.29456 0.05891
1 -0.46310 -0.21594 0.05206

1.5 -0.36425 -0.17204 0.04798
0.5 -0.75961 -0.34742 0.06302
1 -0.72103 -0.34614 0.06214

1.5 -0.67349 -0.34453 0.06104
0.5 -0.77414 -0.34660 0.06331
1 -0.77389 -0.34269 0.06319

1.5 -0.77349 -0.33658 0.06299
2.2 -0.77422 -0.34790 0.05362
2.4 -0.77422 -0.34790 0.04527
2.6 -0.77422 -0.34790 0.03822

1.2 -0.77422 -0.34790 0.06694
1.4 -0.77422 -0.34790 0.06979
1.6 -0.77422 -0.34790 0.07212

0.6 -0.77422 -0.34790 0.03465
0.7 -0.77422 -0.34790 0.03964
0.8 -0.77422 -0.34790 0.05451

0.2 -0.77416 -0.34789 0.05452
0.3 -0.77410 -0.34789 0.05454
0.4 -0.77405 -0.34789 0.05455

Table 3 Effects of different physical parameters on Nux.

M n Rd θw Ecx Ecy Pr β γ δ NuxRe
−1
2
x

0.1 0.5 1 0.5 0.5 0.5 1 0.5 0.3 1 0.34080
0.3 0.30183
0.5 0.26786
0.7 0.23795

1 0.34086
1.5 0.34092
2 0.34098

1.2 0.35218
1.4 0.36356
1.6 0.37495

1 0.43589
1.5 0.58527
2 0.77819

0.7 0.30118
0.9 0.26196
1.1 0.22313

0.7 0.33103
0.9 0.32128
1.1 0.31155

1.2 0.36337
1.4 0.38293
1.6 0.39986

0.7 0.33602
0.9 0.32090
1.1 0.29619

0.5 0.35229
0.7 0.35673
0.9 0.35774

1.2 0.32066
1.4 0.30303
1.6 0.28744
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Fig. 2 Impact of M on f ′ and g′.

Fig. 3 Effect of n on f ′ and g′.

Fig. 4 Influence of We1 on f ′.

Fig. 5 Influence of γ on f ′.

Fig. 6 Influence of We2 on g′.

Fig. 7 Influence of γ on g′.
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Fig. 8 Influence of β on g′.

Fig. 9 Influence of β∗ on f ′.

Fig. 10 Influence of β∗ on g′.

Fig. 11 Effect of Pr on θ.

Fig. 12 Influence of Ecx on θ.

Fig. 13 Influence of Ecy on θ.
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Fig. 14 Impact of M on θ.

Fig. 15 Impact of Rd on θ.

Fig. 16 Effect of θw on θ.

Fig. 17 Effect of Sc on h.

Fig. 18 Effect of K on h.

Fig. 19 Effect of K1 on h.
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5. FINAL REMARKS

A three dimensional Carreau fluid flow past a stretching sheet along
with different effects like viscous dissipation, homogeneous/heterogeneous
reaction, Ohmic dissipation, velocity slips, temperature slip, nonlinear
thermal radiation is analyzed. The shooting method is utilized to solve
the system of nonlinear ordinary differential equations. Some decisive
comments from the concluding work are as below:

• The temperature profile increases with an increment in the Eckert
number Ecx along x-axis and Ecy along y-axis.

• By enhancing the Weissenberg numbers We1 and We2, a decre-
ment in the velocity profiles is prompted.

• The temperature profile depicts an enhancing behavior for the mag-
netic parameter M and the Schmidt number Sc.

• The velocity profiles f ′(η) and g′(η) are decreased for the higher
values of the velocity slip parameter..

• A decay in the concentration profile is observed for the larger val-
ues of the homogeneous reaction parameter K.

• The concentration field depreciates in the case of an enrichment in
the heterogeneous reaction parameter K1

• The concentration profile depreciates as a result of an augmentation
in the homogeneous and heterogeneous reactions.
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NOMENCLATURE

We1 Weissenberg number along x− axis
We2 Weissenberg number along y − axis
C∞ ambient concentration
DA Thermal diffusion coefficient
DB Brownian diffusion coefficient
Ecx Eckert number along x− axis
Ecy Eckert number along y − axis
M Magnetic parameter
n Power-law index
T temperature (K)
u, v velocity components (m/s)
x, y coordinates along and normal to stretching surface (m)
Rd Radiation parameter
θw temperature ratio parameter
cp specific heat at constant pressure (J/Kg.K)
Sc Schmidt number
Nux Nusselt number
Pr Prandtl number
K1 strength of heterogeneous reaction
K strength of homogeneous reaction
T∞ ambient temperature
Tw wall temperature
Uw, Vw stretching velocities (m/s)

r specific heat ratio
ls slip length (m)
qw surface heat flux
qr surface heat flux
Greek Symbols
Γ relaxation time
ρ density of fluid (Kg/m3)
η similarity variable
φ field concentration
µ dynamic viscosity (Kg/m.s)
ν kinematic viscosity (m2/s)
σ∗ Stefan-Boltzman constant(5.67× 10−8W/m2.K4)
k∗ mean absorption coefficient
ϕ ratio of diffusion coefficients
γ velocity slip parameter
δ temperature jump
γ̇ deformation rate
λ0 molecular mean free path
κ thermal conductivity (W/m.K)
α1 thermal diffusivity (m2/s)
συ momentum accomodation coefficient
σT temperature accomodation coffecient
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