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ABSTRACT 
An analysis was performed to study the effects of variable viscosity on steady, laminar, hydromagnetic simultaneous heat and mass transfer by mixed 
convection flow along a vertical cylinder embedded in a non-Darcy porous medium. The analysis was performed for the case of power-law variations 
of both the surface temperature and concentration. The viscosity of the fluid is assumed to be an inverse linear function of temperature. Certain 
transformations were employed to transform the governing differential equations to non-similar form. The transformed equations were solved 
numerically by finite difference method. The entire regime of mixed convection was studied. From this study it can be concluded that increasing the 
values of power law index, curvature parameter and buoyancy ratio leads to enhance the local Nusselt and Sherwood numbers. The local Nusselt and 
Sherwood numbers weaken as the inertia effect parameter and the square of the Hartmann number increases. The raise in the value of the Lewis number 
decreases the rate of heat transfer while increases the rate of mass transfer. For lower values of viscosity, the heat transfer increased for both gases and 
liquids, while the mass transfer decreased for gases and increased for liquids.   

Keywords: Heat and mass transfer, Mixed convection, Non-similarity solution, Porous medium, variable viscosity, vertical cylinder. 
 
 

1. INTRODUCTION 
During the past few decades the study of convective heat and mass 
transfer from different surfaces embedded in a saturated porous medium 
has got great attention. The motivation of this interest is the applications 
in thermal engineering systems (Flilihi et al., 2019). For example, 
thermal insulation, petroleum industries, nuclear engineering, 
geothermal systems, drying of porous solids and many other applications. 
In this field of studies, it’s well known that, Darcy law is restricted by 
slow fluid velocity. Therefore, non-Darcian effects should be included in 
the mathematical formulation of the problem to get results more close to 
the real situations. These non-Darcian effects included inertia effects, 
thermal dispersion, boundary viscous resistance and porosity variation 
near the wall. Non-Darcy effects on flow and heat transfer characteristics 
in porous medium for different convection types and for different 
geometries can be found in earlier reports or studies. Generally , it can 
be infer from these studies that both thermal dispersion and variable 
porosity effects tend to increase the heat transfer rate, while boundary 
effects and flow inertia tend to decrease the rate of heat transfer. Due to 
these non-Darcian phenomenas it was found that the velocity and 
temperature profiles are altered considerably as compared to those 
estimated by Darcy law (Chen, 1998). In many situations it is adequate 
to regard the viscosity as constant. However, when a fluid layer is 
undergo to thermal gradients it may be rightly to take into account the 
variation of viscosity with temperature (Richardson and Straughan, 
1993).  

 

 
 
Studying of  magneto hydrodynamic MHD flow and heat and mass  

transfer in different geometries has received good attention from 
researchers. This is because the effect of magnetic field on the flow 
control and performance of many systems using electrically conducting 
fluids like water mixed with little acid, liquid metals and others. Magneto 
hydrodynamic flow problems have become more important in industry. 
For instance, many metallurgical processes such as drawing, annealing 
and tinning of copper wires involve cooling of continuous strips or 
filaments by drawing them in an electrically conducting fluid in the 
presence of a magnetic field. The rate of cooling can be controlled in 
these processes which can be affect the properties of the final product 
(Amanulla et al., 2018; Ganapathirao et al., 2019). Study the effect of the 
magnetic field on the flow through porous medium is motivated from the 
fact that the fluids are electrically conducting in geothermal regions and 
can be significantly influenced by the magnetic field. Furthermore, 
magnetic field effects are encountered in various technological 
applications like metal casting, nuclear reactor coolers, geothermal 
energy extraction, purification of molten metals and many others 
(Ganapathirao et al., 2019). Below there are some of the studies about 
convection heat transfer over vertical cylinder. 

First let us started with natural convection. Chen and Horng, (1999) 
studied the free convection along a vertical cylinder embedded in a 
thermally stratified non-Darcy porous medium. Hossain et al., (1999) 
study the effect of heat and mass transfer on the non-Darcy free 
convection flow along a vertical permeable cylinder. Takhar et al., 
(2002) analyzed the problem of free convection flow over a vertical 
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Fig. 1 Physical flow model and coordinate system. 
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cylinder embedded in non-Darcy thermally stratified high porosity 
medium. Chamkha et al., (2004) considered steady natural convection 
adjacent to an isothermal vertical circular cylinder in the presence of the 
thermophoresis particle deposition effect. Rani and Kim, (2008) study 
the influence of temperature-dependent viscosity and prandtl number on  
unsteady laminar natural convection flow along a vertical cylinder. 
Chamkha et al., (2011) investigate the heat and mass transfer by free 
convection over a vertical cylinder for a temperature-dependent fluid 
viscosity in the presence of radiation and chemical reaction effects. 
Shakeri et al., (2012) presented an analysis for natural convection flow 
adjacent to a vertical cylinder. Variable surface temperature condition 
was considered in this study. Furthermore, the fluid solid matrix are 
assumed to be in local thermal non-equilibrium, thus, two models of 
temperature for heat transfer is applied. Rashad et al., (2014) presented a 
study to investigate the free convection flow along a vertical cylinder 
embedded in a thermally stratified nanofluid-saturated non-Darcy porous 
medium. In the presence of thermal radiation a numerical solution of 
transient free convection MHD flow over a vertical cylinder of thermal 
and mass diffusion was presented by Reddy (2014). El-Kabeir et al., 
(2014) study non-Darcy free convection flow adjacent to a vertical 
cylinder embedded in a porous medium saturated with nanofluids with 
thermal radiation. Ferdows et al., (2015) studied the similarity solution 
of natural convection flow of a nanofluid on a heated vertical cylinder 
embedded in a nanofluid-saturated porous medium. The problem of 
unsteady non-Darcy natural convection flow of a viscous incompressible 
fluid past a vertical cylinder with the effect of chemical reaction was 
investigated by Vasu et al., (2017). 

Now let us review some of the papers on mixed convection over 
vertical cylinder. Merkin and Pop, (1987) study the problem of mixed 
convection boundary layer flow over a vertical circular cylinder. The 
effect of the thermal dispersion on the non-Darcy mixed convection flow 
on a vertical cylinder was studied by Kumari et al., (1993). Hooper et al., 
(1994) analyze the problem of mixed convection from an isothermal 
vertical cylinder using Darcy model. Aldoss et al., (1996) investigated 
non-Darcy mixed convection flow from a vertical cylinder. Another 
study for Aldoss (1996) considered MHD mixed convection flow along 
with non-Darcy model. The effect of steady non-uniform suction or 
injection on mixed convection boundary layer flow over a vertical heated 
or cooled permeable slender cylinder was studied numerically using the 
Darcy law by Kumari et al., (2007). Gorla and Hossain, (2013) study the 
mixed convection boundary layer flow past a vertical cylinder in a porous 
medium saturated with a nanofluid. For both cases of a heated and a 
cooled cylinder, the steady mixed convection flow over a vertical 
cylinder embedded in a nanofluid-saturated porous medium is studied by 
Rohni et al., (2013). Jafarian et al., (2016) studied numerically the 
problem of conjugate heat transfer of magneto hydrodynamic MHD 
mixed convection of nanofluid over a vertical slender hollow cylinder 
embedded in a high porosity porous medium. The problem of steady 
mixed convection flow on a cooled vertical permeable circular cylinder 
was studied by Shu et al., (2017). Mohammad (2019) analyze the 
problem of simultaneous heat and mass transfer by steady mixed 
convection flow of an incompressible, viscous and electrically 
conducting fluid adjacent to a vertical cylinder embedded in a non-Darcy 
porous medium with heat source.   

In this Work, It will be study the effects of variable viscosity on 
hydromagnetic coupled heat and mass transfer by combined convection 
flow over a vertical cylinder embedded in a non-Darcy porous medium. 
The entire regime of mixed convection will be studied (i.e. from pure free 
convection limit to pure forced convection limit). The high cost and the 
time required in experimental work has made the numerical modeling 
widely used in analyzing such problems. This type of studies or solutions 
are acceptable because of its capability of providing qualitative 
understanding of the physics of such problems. This study finds 
applications in the fields of geothermal and geophysical engineering such 
as extraction of geothermal energy, underground disposal of nuclear 

waste, the migration of moisture in fibrous insulation, and the spreading 
of chemical pollutant in saturated soil. To the best of my knowledge, such 
study has been overlooked in all of previous publications so that the 
results are novel and original.   

2. MATHEMATICAL ANALYSIS 
Consider the problem of two dimensional, steady, incompressible, 
laminar, non-Darcy, hydromagnetic coupled heat and mass transfer by 
mixed convection flow adjacent to a vertical circular cylinder embedded 
in a saturated porous medium as shown in Figure 1. It will be assumed 
that the fluid and solid matrix are in local thermal equilibrium. The fluid 
is Newtonian, electrically conducting and has constant properties except 
the density in the buoyancy terms of the balance of momentum equation 
that is approximated according to the Boussinesq approximation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The permeability and porosity of the porous medium are constant. 
The porous medium is non-deformable. Wall temperature and 
concentration vary according to power-law with the vertical distance. It 
will be assumed that the viscosity of the fluid is an inverse linear function 
of temperature. Under the above assumptions and using the Boussinesq 
and boundary layer approximations, the governing equations are given 
by 

2.1 Continuity Equation 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕+

𝜕𝜕(𝑟𝑟𝑟𝑟)
𝜕𝜕𝑟𝑟 =0                                                                                          (1) 

 
Where 𝑢𝑢 is the velocity component in the 𝑥𝑥-direction and 𝑣𝑣 is the 

velocity component in the 𝑟𝑟-direction. 

2.2 Momentum Equation (Bejan, 1995) 
 
𝜇𝜇𝑢𝑢 = −𝐾𝐾 �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜌𝜌𝑔𝑔 + 𝜎𝜎𝛽𝛽𝑜𝑜2𝑢𝑢

∅
� − 𝑐𝑐√𝐾𝐾𝜌𝜌∞𝑢𝑢2                                           (2) 

 
𝜇𝜇𝑣𝑣 = −𝐾𝐾�𝜕𝜕𝜕𝜕𝜕𝜕𝑟𝑟� − 𝑐𝑐√𝐾𝐾𝜌𝜌∞𝑣𝑣2                                                                   (3) 
 
𝑐𝑐 = 1.75 �√150 ∅1.5�⁄       𝐾𝐾 = 𝑑𝑑2∅3 [150(1 − ∅)2]⁄                         (4) 
 

Where 𝑔𝑔 is the gravitational acceleration; 𝑃𝑃, 𝜌𝜌 and 𝜇𝜇 are pressure, 
density and dynamic viscosity of the fluid respectively; 𝐾𝐾 and ∅ are the 
permeability and porosity of the porous medium respectively; 𝑑𝑑 is 
particle diameter; 𝑐𝑐 is constant; 𝜎𝜎 and 𝛽𝛽𝑜𝑜 are the electrical conductivity 
of the fluid and the magnetic induction respectively. As stated above, 
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fluid viscosity is assumed to be an inverse linear function of temperature 
(Rani and Kim, 2008; Chamkha et al., 2011; Jayanthi and Kumari, 2006) 
 
1
𝜇𝜇

= 1
𝜇𝜇∞

[1 + 𝑅𝑅(𝑇𝑇 − 𝑇𝑇∞)] = 𝑎𝑎(𝑇𝑇 − 𝑇𝑇𝑒𝑒)                                                 (5) 

where   𝑎𝑎 = 𝑅𝑅
𝜇𝜇∞

     𝑎𝑎𝑎𝑎𝑑𝑑     𝑇𝑇𝑒𝑒 − 𝑇𝑇∞ = − 1
𝑅𝑅

     , 𝑎𝑎 ≠ 0,𝑅𝑅 ≠ 0  

In Eq. (5) 𝑇𝑇 and 𝑇𝑇∞ are temperature and free stream temperature 
respectively. 𝑎𝑎 and 𝑇𝑇𝑒𝑒 are constants and their values depend on the 
thermal property of the fluid 𝑅𝑅 and the reference state. For liquids 𝑎𝑎 > 0 
and for gases 𝑎𝑎 < 0. The viscosity of a gas usually increases with 
increasing temperature and it decreases for liquids. By differentiating 
Eqs. (2) and (3) with respect to 𝑟𝑟 and 𝑥𝑥 respectively, it can be eliminate 
pressure term from the resulting equations. Invoking the Boussinesq 
approximation 
 
𝜌𝜌 = 𝜌𝜌∞[1 − 𝛽𝛽𝑇𝑇(𝑇𝑇 − 𝑇𝑇∞) − 𝛽𝛽𝐶𝐶(𝐶𝐶 − 𝐶𝐶∞)]                                            (6) 

where 𝐶𝐶 and 𝐶𝐶∞ are concentration and free stream concentration 
respectively. 𝜌𝜌∞, 𝛽𝛽𝑇𝑇 and 𝛽𝛽𝐶𝐶  are free stream density, thermal expansion 
coefficient and concentration expansion coefficient respectively. It will 
be assumed that within the boundary layer (𝑣𝑣 ≪ 𝑢𝑢,𝜕𝜕𝑣𝑣 𝜕𝜕𝑥𝑥⁄ ≪ 𝜕𝜕𝑢𝑢 𝜕𝜕𝑟𝑟⁄ ), 
the final form of the momentum equation can be written as 
 
− 1

𝐾𝐾
�𝜇𝜇 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕
+ 𝑢𝑢 𝜕𝜕𝜇𝜇

𝜕𝜕𝜕𝜕
� − 𝑐𝑐𝜌𝜌∞

√𝐾𝐾
�2𝑢𝑢 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕
� − 𝑔𝑔 𝜕𝜕𝜌𝜌

𝜕𝜕𝜕𝜕
− 𝜎𝜎𝛽𝛽𝑜𝑜2

∅
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

= 0                        (7) 

 
2.3 Energy Equation 
 
𝑢𝑢 𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

= 𝛼𝛼 �𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2

+ 1
𝜕𝜕
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟 𝜕𝜕𝑇𝑇

𝜕𝜕𝜕𝜕
��                                                      (8) 

where 𝛼𝛼 is the thermal diffusivity. 

2.4 Concentration Equation 

𝑢𝑢 𝜕𝜕𝐶𝐶
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝐶𝐶
𝜕𝜕𝜕𝜕

= 𝐷𝐷
𝜕𝜕
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟 𝜕𝜕𝐶𝐶

𝜕𝜕𝜕𝜕
�                                                                      (9) 

where 𝐷𝐷 is the mass diffusivity. 

2.5  Boundary Conditions 

𝑟𝑟 = 𝑟𝑟𝑜𝑜             𝑣𝑣 = 0            𝑇𝑇 = 𝑇𝑇𝑤𝑤(𝑥𝑥) = 𝑇𝑇∞ + 𝐴𝐴𝑥𝑥𝑛𝑛             

𝐶𝐶 = 𝐶𝐶𝑤𝑤(𝑥𝑥) = 𝐶𝐶∞ + 𝐵𝐵𝑥𝑥𝑛𝑛                                                                                                                    

𝑟𝑟 → ∞     𝑢𝑢 = 𝑈𝑈∞     𝑇𝑇 = 𝑇𝑇∞     𝐶𝐶 = 𝐶𝐶∞                                              (10) 

The subscript 𝑤𝑤 refer to the condition at the cylinder surface. 𝐴𝐴, 𝐵𝐵 
and 𝑎𝑎 are constants. 

2.6 Dimensionless Variables 
To  obtain a system of non-similar boundary layer equations 

applicable to the natural, mixed and forced convection regions, the 
following dimensionless variables are introduced 
 

𝜂𝜂 = 1
𝜕𝜕
𝑃𝑃𝑃𝑃𝜕𝜕

1 2⁄ 𝜁𝜁−1 � 𝜕𝜕
2

2𝜕𝜕𝑜𝑜
− 𝜕𝜕𝑜𝑜

2
�      𝜁𝜁 = �1 + �𝑅𝑅𝑅𝑅𝜕𝜕

𝜕𝜕𝑒𝑒𝜕𝜕
�
1 2⁄

�
−1

                          (11)  

𝑓𝑓(𝜁𝜁, 𝜂𝜂) = 𝜓𝜓(𝜁𝜁,𝜂𝜂)

𝛼𝛼𝜕𝜕𝑜𝑜𝜕𝜕𝑒𝑒𝜕𝜕
1 2⁄ 𝜁𝜁−1

               𝜃𝜃(𝜁𝜁, 𝜂𝜂) = 𝑇𝑇−𝑇𝑇∞
𝑇𝑇𝑤𝑤−𝑇𝑇∞

       

𝜃𝜃𝑒𝑒 = 𝑇𝑇𝑒𝑒−𝑇𝑇∞
𝑇𝑇𝑤𝑤−𝑇𝑇∞

= −1
𝑅𝑅(𝑇𝑇𝑤𝑤−𝑇𝑇∞)            𝜃𝜃 − 𝜃𝜃𝑒𝑒 = 𝑇𝑇−𝑇𝑇𝑒𝑒

𝑇𝑇𝑤𝑤−𝑇𝑇∞
  

Φ(𝜁𝜁, 𝜂𝜂) = 𝐶𝐶−𝐶𝐶∞
𝐶𝐶𝑤𝑤−𝐶𝐶∞

                                                                                 (12) 

Where 𝜂𝜂 is the pseudosimilarity variable. 𝜁𝜁 is the non-similar mixed 
convection parameter such that 𝜁𝜁 = 1 for pure forced convection and 𝜁𝜁 =
0 for pure natural convection. 𝑓𝑓 is the dimensionless stream function. 𝜃𝜃 
is the dimensionless temperature. Φ is the dimensionless concentration. 
𝜓𝜓 is the stream function. 𝜓𝜓 is defined by 𝑢𝑢 = (1 𝑟𝑟⁄ )(𝜕𝜕𝜓𝜓 𝜕𝜕𝑟𝑟⁄ ) and 𝑣𝑣 =
−(1 𝑟𝑟⁄ )(𝜕𝜕𝜓𝜓 𝜕𝜕𝑥𝑥⁄ ) . Therefore, the continuity equation is satisfied 
automatically. 𝜃𝜃𝑒𝑒 is a parameter defines the variable viscosity effect. It is 
negative for liquids and positive for gases. If 𝜃𝜃𝑒𝑒 is large, then the effect 
of variable viscosity can be neglected. 𝑅𝑅𝑎𝑎𝜕𝜕 = [𝑔𝑔𝛽𝛽𝑇𝑇𝐾𝐾𝑥𝑥(𝑇𝑇𝑤𝑤 − 𝑇𝑇∞) 𝛼𝛼𝛼𝛼⁄ ]   
is the local Rayleigh number. 𝑃𝑃𝑃𝑃𝜕𝜕 = 𝑈𝑈∞𝑥𝑥 𝛼𝛼⁄    is the local Peclet number. 
By substituting Eqs. (11) and (12) into equations of momentum, energy, 
concentration and boundary conditions the following non-similar 
dimensionless equations can be obtained: 

2.7 Dimensionless Momentum Equation 
 

[𝜃𝜃𝑒𝑒(𝜃𝜃 − 𝜃𝜃𝑒𝑒) − 2Γ(𝜃𝜃 − 𝜃𝜃𝑒𝑒)2𝑓𝑓′ − 𝑀𝑀(𝜃𝜃 − 𝜃𝜃𝑒𝑒)2]𝑓𝑓′′ − 𝜃𝜃𝑒𝑒𝜃𝜃′𝑓𝑓′  

 −(1 − 𝜁𝜁)2(𝜃𝜃 − 𝜃𝜃𝑒𝑒)2[−𝜃𝜃′ − 𝑁𝑁Φ′] = 0                                             (13) 

where  

Γ =
𝑐𝑐√𝐾𝐾�𝜕𝜕𝑒𝑒𝜕𝜕

1 2⁄ +𝑅𝑅𝑅𝑅𝜕𝜕
1 2⁄ �

2
𝛼𝛼

𝜈𝜈𝜕𝜕
  is the inertia effect parameter. 

𝑁𝑁 = 𝛽𝛽𝐶𝐶𝐵𝐵𝜕𝜕𝑛𝑛

𝛽𝛽𝑇𝑇𝐴𝐴𝜕𝜕𝑛𝑛
  is the Buoyancy ratio. 

𝑀𝑀 = 𝜎𝜎𝛽𝛽𝑜𝑜2𝐾𝐾
𝜇𝜇𝜇𝜇

  is the square of the Hartmann number. 

2.8 Dimensionless Energy Equation 
 

−(2𝜂𝜂𝜂𝜂 + 1)𝜃𝜃′′ + �− 1
2
�1 + 𝑎𝑎(1 − 𝜁𝜁)�𝑓𝑓 − 2𝜂𝜂� 𝜃𝜃′ + 𝑎𝑎𝑓𝑓′𝜃𝜃 =  

−𝑛𝑛
2
𝜁𝜁(1 − 𝜁𝜁) �𝜕𝜕𝜕𝜕

𝜕𝜕𝜁𝜁
𝜃𝜃′ − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜁𝜁
𝑓𝑓′�                                                               (14) 

where 

𝜂𝜂 = 𝜕𝜕
𝜕𝜕𝑜𝑜

1
�𝜕𝜕𝑒𝑒𝜕𝜕

1 2⁄ +𝑅𝑅𝑅𝑅𝜕𝜕
1 2⁄ �

 is the curvature parameter. The limit of 𝜂𝜂 = 0 

corresponds to vertical flat plate. 

2.9 Dimensionless Concentration Equation 
 

− 1
𝐿𝐿𝑒𝑒

(2𝜂𝜂𝜂𝜂 + 1)Φ′′ + �− 1
2
�1 + 𝑎𝑎(1 − 𝜁𝜁)�𝑓𝑓 − 2𝜆𝜆

𝐿𝐿𝑒𝑒
�Φ′ + 𝑎𝑎𝑓𝑓′Φ = 

−𝑛𝑛
2
𝜁𝜁(1 − 𝜁𝜁) �𝜕𝜕𝜕𝜕

𝜕𝜕𝜁𝜁
Φ′ − 𝜕𝜕Φ

𝜕𝜕𝜁𝜁
𝑓𝑓′�                                                              (15) 

where 
 
𝐿𝐿𝑃𝑃 = 𝛼𝛼

𝐷𝐷
  is the Lewis number. 
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If Eq. (13) is divided by 𝜃𝜃𝑒𝑒(𝜃𝜃 − 𝜃𝜃𝑒𝑒) and rearranged, it can be written 
as follows: 
 

𝑓𝑓′′ − 2Γ �𝜕𝜕
𝜕𝜕𝑒𝑒
− 1� 𝑓𝑓′𝑓𝑓′′ − 𝑀𝑀 �𝜕𝜕

𝜕𝜕𝑒𝑒
− 1� 𝑓𝑓′′ −

1
𝜃𝜃𝑒𝑒

� 𝜃𝜃
𝜃𝜃𝑒𝑒
−1�

𝜃𝜃′𝑓𝑓′  

−(1 − 𝜁𝜁)2 � 𝜕𝜕
𝜕𝜕𝑒𝑒
− 1� (−𝜃𝜃′ − 𝑁𝑁Φ′) = 0                                               (16) 

as stated previously when 𝜃𝜃𝑒𝑒 has large value, then the effect of variable 
viscosity can be neglected. Therefore, if 𝜃𝜃𝑒𝑒 → ∞ and if the curvature 
parameter 𝜂𝜂 = 0, then Eq. (16) along with Eq. (14) and (15) reduced to 
the equations of vertical plate with no variable viscosity effect. 

2.10  Dimensionless Boundary Conditions 
 
𝑓𝑓(𝜁𝜁, 0) = 0      𝜃𝜃(𝜁𝜁, 0) = 1     Φ(𝜁𝜁, 0) = 1                                        (17) 

𝑓𝑓′(𝜁𝜁,∞) = 𝜁𝜁2    𝜃𝜃(𝜁𝜁,∞) = 0    Φ(𝜁𝜁,∞) = 0                                     (18) 

Velocity components 𝑢𝑢 and 𝑣𝑣 along with the local Nusselt number 
𝑁𝑁𝑢𝑢𝜕𝜕 and local Sherwood number 𝑆𝑆ℎ𝜕𝜕, in terms of dimensionless 
variables have the formulas: 
 
𝑢𝑢 = 𝑈𝑈∞

𝜁𝜁2
𝑓𝑓′                                                                                             (19) 

𝑣𝑣 = −𝜕𝜕𝑜𝑜
𝜕𝜕
𝛼𝛼
𝜕𝜕
𝑃𝑃𝑃𝑃𝜕𝜕

1 2⁄ 1
𝜁𝜁
�1
2
�1 + 𝑎𝑎(1 − 𝜁𝜁)�𝑓𝑓 − 1

2
�1 − 𝑎𝑎(1 − 𝜁𝜁)�𝜂𝜂𝑓𝑓′ −

1
2
𝑎𝑎𝜁𝜁(1 − 𝜁𝜁) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜁𝜁
�                                                                                    (20) 

𝑁𝑁𝑢𝑢𝜕𝜕
𝜕𝜕𝑒𝑒𝜕𝜕

1 2⁄ 𝜁𝜁−1
= −𝜃𝜃′(𝜁𝜁, 0)                                                                            (21) 

𝑆𝑆ℎ𝜕𝜕
𝜕𝜕𝑒𝑒𝜕𝜕

1 2⁄ 𝜁𝜁−1
= −Φ′(𝜁𝜁, 0)                                                                           (22) 

Finally, the presence of 𝜕𝜕 𝜕𝜕𝜁𝜁⁄  in the above equations makes them 
non-similar. Furthermore, the primes denote partial differentiation with 
respect to 𝜂𝜂. 

3. METHOD OF SOLUTION 
In Eq. (18) 𝜂𝜂 → ∞ is replaced by a sufficiently large value (i.e. 𝜂𝜂 =
𝜂𝜂𝑚𝑚𝑅𝑅𝜕𝜕) where Eq. (18) for velocity is satisfied. The domain of interest 
(𝜁𝜁, 𝜂𝜂) is divided into equal spaced mesh in the 𝜁𝜁 direction where Δ𝜁𝜁 =
0.1 and another equal spaced mesh in the 𝜂𝜂 direction where Δ𝜂𝜂 = 0.02 . 
The whole partial derivatives are approximated by the central difference 
formula. When 𝜁𝜁 = 0 and  𝜁𝜁 = 1 the governing equations are converted 
to similar form. The equations are non-linear, therefore, two iteration 
loops based on the method of successive substitutions are considered. 
The value of 𝜁𝜁 is fixed in each inner iteration loop. Then on the 𝜂𝜂 domain 
each of Eqs. (13) to (15) is solved as a linear second order boundary-
value problem of ordinary differential equation. The inner iteration is 
continued till the solution is converges. The value of 𝜁𝜁 is advanced from 
0.1 to 0.9 (mixed convection region) in the outer iteration loop. The 
derivatives with respect to 𝜁𝜁 are updated after every outer iteration loop. 
For more details see Mohammad (2015). 

4. RESULTS AND DISCUSSION 
In order to validate the numerical results to be presented in the later 
sections, a comparison with previously published work on special case 
of the problem are conducted. The comparison of local Nusselt number 
for natural convection for 𝜂𝜂 values ranged from 0.125 to 5 are shown in 

Table 1. Zero curvature is related to a vertical flat plate case. The 
comparison show a good agreement with the previously published work. 

To conserve space the effects of the parameters under consideration 
and mixed convection parameter 𝜁𝜁 on the velocity, temperature and 
concentration profiles will be described only. It was noticed that the 
increase in the value of the power law index 𝑎𝑎 causes a decrease in the 
fluid velocity and the temperature and concentration gradients increases 
(i.e. decrease in the temperature and concentration boundary layer 
thicknesses). This reflect on the increasing in the convective heat and 
mass transfer rates as illustrated in Figure 2 and Figure 3 respectively. At 
a given value of 𝑎𝑎, as the value of the non-similarity parameter increases 
from 0 to 1, the local Nusselt and Sherwood numbers decreases until it 
reaches a minimum value at certain 𝜁𝜁 value and then increases. The 
reason of that is the definition of the local Nusselt and Sherwood numbers 
and does not mean that their values for combined convection is less than 
for natural and forced convection. 
 
Table 1. Comparison of local Nusselt number for natural convection for 
a vertical cylinder. (Darcy’s law, constant viscosity, n=N=M=Γ= 0, 
Le=1) 

𝝀𝝀 Present 
work 

Chen & 
Horng, (1999) 

Kumari et al., 
(1985) see Chen 
& Horng, (1999) 

0.125 0.4929 0.4942 0.4977 
0.25 0.5455 0.544 0.5472 

0.375 0.5995 0.5939 0.5971 
0.5 0.6537 0.6439 0.6479 
0.75 0.761 0.7612 0.7509 

1 0.8663 0.8669 0.8538 
1.25 0.9693 0.9705 0.9562 
1.5 1.07 1.0721 1.0576 
2 1.2657 1.2703 1.2571 

2.5 1.4542 1.4625 1.4519 
3 1.6367 1.6498 1.6424 

3.5 1.8373 1.833 1.829 
4 2.016 2.0126 2.012 

4.5 2.181 2.1891 2.1918 
5 2.346 2.3673 2.3688 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As the inertia effect parameter Γ increases the velocity of the fluid 

decreases near the cylinder surface and increase far away for natural 
convection (𝜁𝜁 = 0). However, for mixed convection (𝜁𝜁 = 0.5) its 
decreases only. Furthermore, the temperature and concentration 
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Fig. 2 Effects of power law index on the local Nusselt 
number for the entire regime of mixed convection. 
(𝜃𝜃𝑒𝑒 = 10, 𝐿𝐿𝑃𝑃 = 5,𝑁𝑁 = 2, Γ = 𝑀𝑀 = 𝜂𝜂 = 1) 
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gradients decreases with the increasing of the value of Γ. Figure 4 and 
Figure 5 illustrates respectively the variation of local Nusselt and  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Sherwood numbers with non-similarity parameter 𝜁𝜁 for different values 
of inertia effect parameter. The local Nusselt and Sherwood numbers 

decreases as the inertia effect parameter increases. However, this effect 
is small for large values of non-similarity parameter. The reason of this 
behavior is that, because of porous medium inertia effect additional 
resistance against the flow is introduced. This in turn decreasing the 
enthalpy of the flow streams. The model of the problem does not take 
into account the no-slip velocity boundary condition, therefore, the 
inertia of the porous medium has a little effect for the forced convection 
limit (𝜁𝜁 = 1). 

When the value of the curvature parameter 𝜂𝜂 increases the velocity 
of the fluid increases and the temperature and concentration gradients 
decreases. Furthermore, larger values of the curvature parameter leads to 
higher local Nusselt and Sherwood numbers as depicted in Figure 6 and 
Figure 7 respectively. This denotes that a more slender cylinder, 
corresponding to a large value of (𝑥𝑥 𝑟𝑟𝑜𝑜⁄ ) would result in a higher heat 
and mass transfer rates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Numerical results showed that increasing of the square of the 

Hartmann number 𝑀𝑀 causes reduction in the fluid velocity and 
temperature and concentration gradients. The resistance of the magnetic 
force that named as Lorentz force is the reason for the reduction in 
velocity of the fluid. Due to the above reasons as 𝑀𝑀 increases the heat 
and mass transfer decreases as shown in Figure 8 and Figure 9. Also, it 
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Fig. 3 Effects of power law index on the local Sherwood 
number for the entire regime of mixed convection. (𝜃𝜃𝑒𝑒 =
10, 𝐿𝐿𝑃𝑃 = 5,𝑁𝑁 = 2, Γ = 𝑀𝑀 = 𝜂𝜂 = 1) 
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Fig. 4 Effect of inertia effect parameter on the local 
Nusselt Number for the entire regime of mixed convection. 
(𝜃𝜃𝑒𝑒 = 10, 𝐿𝐿𝑃𝑃 = 5,𝑁𝑁 = 2,𝑎𝑎 = 0.5,𝑀𝑀 = 𝜂𝜂 = 1) 
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Fig. 5 Effect of inertia effect parameter on the local 
Sherwood Number for the entire regime of mixed 
convection. (𝜃𝜃𝑒𝑒 = 10, 𝐿𝐿𝑃𝑃 = 5,𝑁𝑁 = 2,𝑎𝑎 = 0.5,𝑀𝑀 = 𝜂𝜂 = 1) 
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Fig. 6 Effect of curvature parameter on the local Nusselt 
number for the entire regime of mixed convection. (𝜃𝜃𝑒𝑒 =
10, 𝐿𝐿𝑃𝑃 = 5,𝑁𝑁 = 2,𝑎𝑎 = 0.5,𝑀𝑀 = Γ = 1) 
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Fig. 7 Effect of curvature parameter on the local Sherwood 
number for the entire regime of mixed convection. (𝜃𝜃𝑒𝑒 =
10, 𝐿𝐿𝑃𝑃 = 5,𝑁𝑁 = 2,𝑎𝑎 = 0.5,𝑀𝑀 = Γ = 1) 



Frontiers in Heat and Mass Transfer (FHMT), 14, 7 (2020)
DOI: 10.5098/hmt.14.7

Global Digital Central
ISSN: 2151-8629

 
   

6 

is noticed from the aforementioned figures that for forced convection 
dominated regime, the increase in the value of 𝑀𝑀 do not lead to 
appreciable decrease in the local Nusselt and Sherwood numbers.    

The effect of 𝑁𝑁 (the buoyancy ratio parameter) on velocity profile, 
temperature profile and concentration profile can be explained as 
follows. As 𝑁𝑁 increases it was noticed that the velocity increases near the 
cylinder surface for natural and mixed convection and decreases far away 
from the cylinder surface for natural convection. Also, it is observed that 
for natural and mixed convection the temperature and concentration 
decreases as 𝑁𝑁 increases. For forced convection the temperature and 
concentration are not affected by the increase in the value of 𝑁𝑁. 
Furthermore, as the mixed convection parameter increased from 0 to 1 
the temperature and concentration increased and then decreased. The 
increase in the velocity of the fluid due to the increase in the value of 
buoyancy ratio parameter will cause increase in the heat and mass 
transfer from the surface as shown in Figure 10 and Figure 11. The 
behavior of the curves of local Nusselt and Sherwood numbers follow 
the temperature and concentration profiles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The effect of 𝐿𝐿𝑃𝑃 (Lewis number) on the velocity, temperature and 

concentration profiles can be summarized as follows. Increasing the 
value of 𝐿𝐿𝑃𝑃 leads to decrease in the velocity of the fluid. Due to increase 
in the thermal diffusivity the thermal buoyancy forces increases and 

therefore the temperature of the fluid increases. On the contrary due to 
the decrease in the mass diffusivity, the concentration buoyancy forces 
decreases and thus the concentration of the fluid decreases. From Figure 
12 it can be seen that the increase in 𝐿𝐿𝑃𝑃 leads to decrease in the local 
Nusselt number. On the other hand, Figure 13 indicates that the increase 
in 𝐿𝐿𝑃𝑃 leads to increase in the local Sherwood number. 

The effect of variable viscosity on the velocity profile, temperature 
profile and concentration profile are presented respectively in Figures 14, 
15 and 16. For mixed convection for gases (𝜃𝜃𝑒𝑒 positive) the velocity 
decreases as 𝜃𝜃𝑒𝑒 decreases (𝜃𝜃𝑒𝑒 → 0) and for liquids (𝜃𝜃𝑒𝑒 negative) the 
velocity increases as  𝜃𝜃𝑒𝑒 decreases (𝜃𝜃𝑒𝑒 → 0) as shown in Figure 14. 
Figure 15 presents that for mixed convection for gases and liquids the 
temperature decreases as 𝜃𝜃𝑒𝑒 decreases (𝜃𝜃𝑒𝑒 → 0). From Figure 16 we can 
see that for mixed convection for gases there are a slightly increase in the 
concentration due to the decrease in the 𝜃𝜃𝑒𝑒. For liquids there are a slightly 
decrease in the concentration due to the decrease in the 𝜃𝜃𝑒𝑒. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17 depicts the variation of local Nusselt number with the 

mixed convection parameter for variable viscosity. For liquids and gases 
the local Nusselt number increases as the value of  𝜃𝜃𝑒𝑒 → 0. Figure 18 
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Fig. 8 Effects of the square of the Hartmann number on 
the Nusselt number for the entire regime of mixed 
convection. (𝜃𝜃𝑒𝑒 = 10, 𝐿𝐿𝑃𝑃 = 5,𝑁𝑁 = 2,𝑎𝑎 = 0.5, Γ = 𝜂𝜂 = 1) 
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Fig. 9 Effects of the square of the Hartmann number on 
the Sherwood number for the entire regime of mixed 
convection. (𝜃𝜃𝑒𝑒 = 10, 𝐿𝐿𝑃𝑃 = 5,𝑁𝑁 = 2,𝑎𝑎 = 0.5, Γ = 𝜂𝜂 = 1) 
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Fig. 10 Effects of buoyancy ratio on the local Nusselt number 
 for the entire regime of mixed convection. (𝜃𝜃𝑒𝑒 = 10, 𝐿𝐿𝑃𝑃 = 5, 
𝑎𝑎 = 0.5, Γ = 𝑀𝑀 = 𝜂𝜂 = 1). 
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Fig. 11 Effects of buoyancy ratio on the local Sherwood 
number for the entire regime of mixed convection. 
(𝜃𝜃𝑒𝑒 = 10, 𝐿𝐿𝑃𝑃 = 5, 𝑎𝑎 = 0.5, Γ = 𝑀𝑀 = 𝜂𝜂 = 1). 
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show that, for gases the local Sherwood number decreases as the value 
of 𝜃𝜃𝑒𝑒 decreases, while for liquids the value of local Sherwood number 
increases as the value of 𝜃𝜃𝑒𝑒  decreases. 
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Fig. 13 Effects of Lewis number on the local Sherwood 
number for the entire regime of mixed convection.(𝜃𝜃𝑒𝑒 = 10, 
𝑁𝑁 = 2, 𝑎𝑎 = 0.5, Γ = 𝑀𝑀 = 𝜂𝜂 = 1). 
 

Fig. 14 Effects of variable viscosity and mixed convection 
parameter on the velocity profile. (𝑎𝑎 = 0.5, 𝐿𝐿𝑃𝑃 = 5,𝑁𝑁 =
2 Γ = 𝑀𝑀 = 𝜂𝜂 = 1) 
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Fig. 15 Effects of variable viscosity and mixed convection 
parameter on the temperature profile. (𝑎𝑎 = 0.5, 𝐿𝐿𝑃𝑃 = 5,𝑁𝑁 =
2, Γ = 𝑀𝑀 = 𝜂𝜂 = 1) 
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Fig. 17 Effects of variable viscosity on the local Nusselt 
number for the entire regime of mixed convection. (𝑎𝑎 =
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Fig. 16 Effects of variable viscosity and mixed convection 
parameter on the concentration profile. (𝑎𝑎 = 0.5, 𝐿𝐿𝑃𝑃 =
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Fig. 12 Effects of Lewis number on the local Nusselt number 
for the entire regime of mixed convection.(𝜃𝜃𝑒𝑒 = 10, 𝑁𝑁 = 2, 
𝑎𝑎 = 0.5, Γ = 𝑀𝑀 = 𝜂𝜂 = 1). 
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5. CONCLUSIONS 
This paper study the effects of variable viscosity on laminar, steady, 
hydromagnetic coupled heat and mass transfer by combined convection 
flow adjacent to a vertical cylinder embedded in a non-Darcy porous 
medium. The governing non-linear partial differential equations and their 
boundary conditions are transformed into a non-similar form by using a 
suitable dimensionless variables. The system of non-similar equations 
are solved numerically using a finite difference method. The present 
results of local Nusselt number are compared with previously published 
work on special case of the problem. The comparison is found to be in 
good agreement. 

The study indicates that, increasing the values of power law index 
𝑎𝑎, curvature parameter 𝜂𝜂 and buoyancy ratio 𝑁𝑁 leads to increase in the 
rates of heat and mass transfer. The rates of heat and mass transfer 
decreases as the inertia effect parameter Γ and the square of the Hartmann 
number 𝑀𝑀 increases. As the value of the Lewis number 𝐿𝐿𝑃𝑃 increases the 
rate of heat transfer decreases while the rate of mass transfer increases. 
For gases and liquids the heat transfer enhanced with lower values of 
viscosity. The mass transfer decreases for gases and increases for liquids 
with lower values of viscosity. 
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NOMENCLATURE 

𝑎𝑎  Constant, equation 5  
𝐴𝐴,𝐵𝐵  Constants, equation 10 
𝑐𝑐  Constant, equations 2and 3 
𝐶𝐶  Concentration (𝑘𝑘𝑔𝑔.𝑚𝑚−3)  
𝑑𝑑  Particle diameter (𝑚𝑚)  
𝐷𝐷  Mass Diffusivity (𝑚𝑚2. 𝑠𝑠−1)  
𝑓𝑓  Dimensionless stream function. 
𝑔𝑔  Gravitational acceleration ( 𝑚𝑚. 𝑠𝑠−2) 
𝑖𝑖  Index of mesh points in the 𝜁𝜁-direction. 

𝑗𝑗  Index of mesh points in the 𝜂𝜂-direction. 
𝐾𝐾  Permeability of the porous medium (𝑚𝑚2)  
𝐿𝐿𝑃𝑃  Lewis number 
𝑀𝑀  Square of the Hartmann number 
𝑎𝑎  Constant, equation 10 
𝑁𝑁  Buoyancy ratio 
𝑁𝑁𝑢𝑢𝜕𝜕  Local Nusselt number 
𝑃𝑃  Pressure of the fluid ( 𝑁𝑁.𝑚𝑚−2) 
𝑃𝑃𝑃𝑃𝜕𝜕  Local Peclet number 
𝑟𝑟  Radial coordinate ( 𝑚𝑚) 
𝑟𝑟𝑜𝑜  Cylinder radius ( 𝑚𝑚) 
𝑅𝑅  Thermal property of the fluid 
𝑅𝑅𝑎𝑎𝜕𝜕  Local Rayleigh number 
𝑆𝑆ℎ𝜕𝜕  Local Sherwood number 
𝑇𝑇  Temperature ( 𝐾𝐾) 
𝑇𝑇𝑒𝑒   Constant 
𝑢𝑢  Velocity component in the 𝑥𝑥-direction ( 𝑚𝑚. 𝑠𝑠−1) 
𝑈𝑈  Velocity ( 𝑚𝑚. 𝑠𝑠−1) 
𝑣𝑣  Velocity component in the 𝑟𝑟-direction ( 𝑚𝑚. 𝑠𝑠−1) 
𝑥𝑥  Axial coordinate ( 𝑚𝑚) 
 
Greek 
symbols 
 

 

𝛼𝛼  Thermal diffusivity ( 𝑚𝑚2. 𝑠𝑠−1) 
𝛽𝛽𝐶𝐶   Coefficient of concentration expansion    

(𝑚𝑚3.𝑘𝑘𝑔𝑔−1) 
𝛽𝛽𝑜𝑜  Magnetic induction ( 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉. 𝑠𝑠.𝑚𝑚−2) 
𝛽𝛽𝑇𝑇  Coefficient of thermal expansion ( 𝐾𝐾−1) 
Δ𝜁𝜁,Δ𝜂𝜂  Subintervals in the 𝜁𝜁 and 𝜂𝜂 directions 
𝜁𝜁  Non-similarity parameter 
𝜂𝜂  Pseudosimilarity variable 
𝜌𝜌  Density of the fluid ( 𝑘𝑘𝑔𝑔.𝑚𝑚−3) 
𝜇𝜇  Dynamic viscosity of the fluid  

(𝑘𝑘𝑔𝑔. 𝑠𝑠−1.𝑚𝑚−1) 
𝜙𝜙  Porosity of the porous medium. 
𝜎𝜎  Electrical conductivity of the fluid  

(𝑉𝑉ℎ𝑚𝑚−1.𝑚𝑚−1) 
𝛼𝛼  Kinematic viscosity of the fluid ( 𝑚𝑚2. 𝑠𝑠−1) 
𝜓𝜓  Stream function 
𝜃𝜃  Dimensionless temperature 
𝜃𝜃𝑒𝑒   Parameter defines the variable viscosity 

effect 
Φ  Dimensionless concentration 
Γ  Inertia effect parameter 
𝜂𝜂  Curvature parameter 
 
Subscripts 
 

 

𝑚𝑚𝑎𝑎𝑥𝑥  Sufficiently large value 
𝑤𝑤  Condition at the cylinder surface 
∞  Free stream conditions 
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