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ABSTRACT 
The present study focuses on the effects of viscous dissipation and axial heat conduction on the asymptotic behavior of the laminar forced convection 
in a circular duct for a Herschel-Bulkley fluid with variable wall heat flux. Analytical asymptotic solutions are presented for the case of axial variations 
of the wall heat flux, with finite non-vanishing values at infinity along the flow direction. The asymptotic bulk and mixing Nusselt numbers and the 
asymptotic bulk and mixing temperature distributions are evaluated analytically in the case of axially variable wall heat flux for which polynomial and 
logarithmic functions are considered as examples. It is shown that the asymptotic bulk Nusselt number depends on the dimensionless radius of the plug 
flow region a, on the power-law exponent n, on the Peclet number Pe and the asymptotic Brinkman number 𝐵𝐵𝐵𝐵∞. The effects of yield stress, Peclet 
number, and Brinkman number on the asymptotic bulk Nusselt number are discussed.   
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1. INTRODUCTION 
The forced convection of yield shear stress non-Newtonian fluids in 
pipes and channels is studied in many works considering the numerous 
industrial applications related to the physics of this type of flows. The 
interactions between hydrodynamics, heat transfer and fluid rheology 
generate very diverse configurations and studies usually limit their field 
of investigation by restricting the ranges of parameter variations. Among 
the restrictions generally introduced on 'heat transfer', there are those 
relating to the type of boundary conditions which generally assume either 
a uniform temperature or heat flux to the walls, or those which neglects 
axial conduction or viscous dissipation in the energy balance, or finally 
conditions on the thermally established nature of the flow.  

Therefore, many solutions are obtained in the case of constant wall 
temperature or wall heat flux (see for Newtonian fluid (Aydin 2005, 
Aydin and Avci 2006, Haji-Sheikh 2009, Haji-Sheikh et al. 2009, 
Magyari and Barletta 2007, Mandapati 2016)), power-law fluid (Jambal 
et al. 2005), Bingham fluid (Min et al. 1997), and Herschel-Bulkley fluid 
(Sayed-Ahmed and Kishk 2008, Ditchfield et al. 2006, Da Silva 2014), 
although the temperature or the heat flux at the walls are variable in 
several practical situations (Sabry 2017). 

For fully developed velocity profile laminar flow, several 
experiments have pointed out that the Nusselt number tends to become 
invariant along the flow direction under certain boundary conditions, not 
only in cases where the wall temperature or the wall heat flux is uniform 
but also for situations where the wall heat flux varies exponentially 
among others. Barletta and Zanchini (1996) and Barletta (1997) 
determined sufficient conditions for the existence of a fully thermally 
developed region in the cases where the wall of a pipe is subjected to 
various non-uniform axial distributions of wall heat flux, for Newtonian 
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fluids (Barletta and Zanchini (1996-a)) and power-law fluids (Barletta 
and Zanchini (1996-b), Barletta (1997)). 

A common practical case in which exponentially varying heat 
fluxes are encountered is the simple co-current or counter current heat 
exchanger. Gräber (1968, 1969, 1970) studied the forced convection of a 
Newtonian fluid flowing in smooth tubes, between two parallel plates, 
along a flat plate, in annular spaces or along tubular bundles with wall 
heat flux distributions exponential or polynomial, which give a fully 
developed heat transfer coefficient, for laminar and turbulent flow with 
a linear pressure drop. He has shown (Gräber, 1969), by using similarity 
considerations, that in parallel flow along flat plate the fully developed 
temperature distribution based on thermal boundary layer thickness can 
only be expected for laminar flow and distribution of heat flux obeying 
the power law 𝑞𝑞𝑤𝑤~𝑥𝑥𝑚𝑚.  

The asymptotic temperature field and the asymptotic value of the 
Nusselt number are evaluated experimentally by Piva and Pagliarini 
(1994) in the case of exponential wall heat flux. The fully developed 
thermally region is studied analytically with both negligible viscous 
dissipation and axial conduction effects with exponential (Piva, 1995) 
and sinusoidal wall heat flux distribution (Barletta and Zanchini, 1995). 
The same work was carried out by Barletta and Zanchini (1999) and 
Zanchini (1997) for sinusoidal and other wall heat flux axial distributions 
and with viscous dissipation. The effect of axial conduction was 
examined analytically by Barletta et al. (1995, 2000) with exponential 
and sinusoidal wall heat flux. 

Sabry (2017) gave a general analytic solution, which is valid for 
arbitrary wall boundary conditions and negligible viscous dissipation. 
The boundary conditions are developed in series (example for wall heat 
flux : 𝑞𝑞𝑤𝑤(𝑥𝑥) = ∑ 𝑞𝑞𝑤𝑤,𝑖𝑖𝑥𝑥𝑖𝑖𝑁𝑁

𝑖𝑖=0  where the 𝑞𝑞𝑤𝑤,𝑖𝑖 are constant). For a straight 
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circular duct, this analysis has allowed analytical derivation of a simple 
relation giving thermal entrance length over tube diameter as a function 
of Peclet number. 

In order to increase the heat transfer, various ways can be explored 
by introducing modifications to characteristics such as the nature of the 
fluid, the flow regime, the shapes of the walls or even by combinations 
of each of these properties. Thus, Yang et al. (2018) studied numerically 
turbulent convective heat transfer in an elliptical pipe. They obtained an 
empirical correlation between Nusselt number, Reynolds number and 
Prandtl number in the fully developed fluid section of the elliptical tube. 
Zhang et al. (2019) presented a numerical study of periodically fully 
developed flow and heat transfer in channels with periodic semi-circular 
tube. They showed that the Nusselt number progressively increases with 
decreasing tube spacing at the same Reynolds number. Another  
possibility that has been the subject of several works is the use of 
magnetic properties for nanofluids as has been studied by Singh et al. 
(2016), Pandey and Kumar (2017, 2018), Mishra et al. (2018, 2019), 
Nagaraju et al. (2019). Singh (2019) considered the micropolar fluid 
model to adequately describe the heat transfer to fluid with suspended 
particles. 

In the present work, we consider the effect of non-Newtonian yield 
stress behavior on the rate of heat transfer. Khatyr et al. (2003) gave 
analytical solutions for fully developed laminar forced convection in 
circular ducts for a Bingham plastic with viscous dissipation and 
negligible axial heat conduction in the fluid with various axial 
distributions of wall heat flux. In Refs. (Khatyr et al. 2010, 2016), the 
authors gave analytical solutions for fully developed laminar forced 
convection in circular ducts for a Herschel-Bulkley fluid in a horizontal 
duct with neglected axial conduction and with various axial distributions 
of wall heat flux for which polynomial, exponential and logarithmic 
functions was considered as examples.  

Khatyr et al. (2017) studied analytically the fully developed and 
the thermally developing regimes of a Herschel-Bulkley fluid by taking 
into account the viscous dissipation and the axial conduction with 
variable wall heat flux distributions which tends to infinity or zero when 
x→+∞.  For the case where the distribution of wall heat flux tends to 
infinity for large values of axial coordinate x (for example, exponential 
function), they concluded that the effect of viscous dissipation becomes 
negligible when the effect of axial conduction is important in the 
thermally developed region. They show that appreciable differences 
between the asymptotic values of the mixing Nusselt number Nu* and the 
bulk Nusselt number Nu exist for values of the Peclet number less than 
40. Recently, Sankad and Patil (2018) analyzed the heat transfer effect 
on a peristaltic flow of a Herschel-Buckley fluid, with the peristaltic wall 
coated with a porous lining. They noticed that the temperature profile, 
heat transfer coefficient and the rate of temperature decrease with 
increase in the Darcy number. 

To the best of our knowledge, there are no results concerning the 
existence of a thermally developed flow for the case where the variable 
wall heat flux tends to a non-vanishing constant value at infinity, for 
forced convection to non-Newtonian yield stress fluids by taking into 
account viscous dissipation and axial conduction effects. So, this paper 
aims to complete the previous works by studying analytically the fully 
developed laminar forced convection in circular ducts for a Herschel-
Bulkely fluid with viscous dissipation and axial heat conduction while 
considering more general axial variations of the wall heat flux, with finite 
non-vanishing values at infinity along the flow direction. 

The fully developed values of 𝑁𝑁𝑁𝑁 (usual Nusselt number employed 
in the literature which is defined by taking the bulk temperature as 
reference temperature) and 𝑁𝑁𝑁𝑁∗ (obtained by taking the mixing 
temperature as reference temperature (defined in Ref. (Barletta and 
Zanchini 1995))) are determined. These quantities coincide when         
𝑃𝑃𝑃𝑃 → ∞, but are different for finite values of 𝑃𝑃𝑃𝑃. Both the asymptotic 
Nusselt number and the asymptotic profile temperature are yields for a 
thermally developed region. This region has been studied in the case 
where the wall heat flux 𝑞𝑞𝑤𝑤(𝑥𝑥) does not vanish when 𝑥𝑥 → +∞ while 

1
𝑞𝑞𝑤𝑤(𝑥𝑥)

𝑑𝑑𝑞𝑞𝑤𝑤(𝑥𝑥)
𝑑𝑑𝑥𝑥

 tend to zero when 𝑥𝑥 → +∞ to ensure the existence of the 
thermally developed flow region. The effects of the dimensionless radius, 
the plug core, the power-law exponent, the Peclet number and the 
Brinkman number are presented and compared with those obtained in 
previous works. 

This paper is organized as follows: in section 2 the considered fully 
developed velocity profile and the energy equation are presented. In 
section 3, the asymptotic temperature field and the asymptotic Nusselt 
number are determined in the case of an axial distribution of wall heat 
flux given by polynomial functions, logarithmic functions, rational 
functions where the degree of the numerator is greater than or equal to 
the degree of the denominator ...etc. Section 4 is devoted to the discussion 
of viscous dissipation and axial heat conduction effects on convective 
laminar heat transfer of hydrodynamically and thermally fully developed 
flow for non-Newtonian fluids. The main conclusions are summarized in 
section 5. 

2. ANALYSIS 
Let us consider a Herschel-Bulkley fluid of constant physical properties 
flowing in a circular duct of radius 𝐵𝐵0, submitted to a variable axial wall 
heat flux 𝑞𝑞𝑤𝑤(𝑥𝑥). The flow is supposed to be steady, laminar, fully 
developed and axisymmetric.  

The fully developed velocity profile for a laminar pipe flow of a 
Herschel-Bulkley fluid is given as follows (Nouar et al. 1994) 
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where 𝜔𝜔 = 1 − 2 �𝑎𝑎(1−𝑎𝑎)

𝑚𝑚+2
+ (1−𝑎𝑎)2

𝑚𝑚+3
�, 𝑚𝑚 = 1/𝑛𝑛 is the inverse of exponent 

index 𝑛𝑛 (with 𝑛𝑛 > 0; for 𝑛𝑛 = 1: Bingham fluid), 𝑎𝑎 = 𝐵𝐵𝑐𝑐/𝐵𝐵0 is the 
dimensionless radius of the plug flow region (with 0 ≤ 𝑎𝑎 ≤ 1), 𝐵𝐵 the 
radial coordinate, 𝐵𝐵𝑐𝑐 the yield radius and 𝑁𝑁𝑚𝑚 the mean velocity value. 

The energy equation and associated boundary conditions are given 
by (Bejan 1984) 
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𝜕𝜕𝑟𝑟
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= 0  ;    𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
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𝜆𝜆

                 (3) 

 
𝑇𝑇(𝐵𝐵, 𝑥𝑥 = 0) = 𝑇𝑇0(𝐵𝐵)                  (4) 
 
where 𝜌𝜌, 𝜆𝜆, 𝐾𝐾 and 𝑐𝑐𝑝𝑝 are the density of fluid, thermal conductivity, the 
consistency index, and the specific heat at constant pressure, respectively 
and 𝑥𝑥 is the axial coordinate. 

The condition that leads to an asymptotic thermally developed 
region in the case of the forced convection problem considered above is 
defined by (Bejan 1984, Barletta and Zanchini 1995) as follow 

 
lim
𝑥𝑥→+∞

𝜕𝜕𝑤𝑤(𝑥𝑥)−𝜕𝜕(𝑟𝑟,𝑥𝑥)
𝜕𝜕𝑤𝑤(𝑥𝑥)−𝜕𝜕𝑏𝑏(𝑥𝑥) = lim

𝑥𝑥→+∞
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� = Θ∞(𝐵𝐵/𝐵𝐵0)               (5) 
 
lim
𝑥𝑥→+∞

𝜕𝜕𝑤𝑤(𝑥𝑥)−𝜕𝜕(𝑟𝑟,𝑥𝑥)
𝜕𝜕𝑤𝑤(𝑥𝑥)−𝜕𝜕𝑚𝑚(𝑥𝑥) = lim

𝑥𝑥→+∞
Θ∗ � 𝑟𝑟

𝑟𝑟0
, 𝑥𝑥
2𝑟𝑟0𝑃𝑃𝑃𝑃

� = Θ∞∗ (𝐵𝐵/𝐵𝐵0)               (6) 
 
where 𝑇𝑇𝑤𝑤(𝑥𝑥), 𝑇𝑇𝑏𝑏(𝑥𝑥) and 𝑇𝑇𝑚𝑚(𝑥𝑥) are the wall temperature, the bulk 
temperature and the mixing temperature, respectively,                             
𝑃𝑃𝑃𝑃 = 2𝐵𝐵0𝑁𝑁𝑚𝑚𝜌𝜌𝑐𝑐𝑝𝑝/𝜆𝜆 is the Peclet number, Θ∞(𝐵𝐵/𝐵𝐵0) and 𝛩𝛩∞∗ (𝐵𝐵/𝐵𝐵0) are the 
asymptotic dimensionless temperature which are continuous and 
differentiable functions of 𝐵𝐵. 
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The bulk value of temperature field is defined as 
 

𝑇𝑇𝑏𝑏(𝑥𝑥) = 2
𝑢𝑢𝑚𝑚𝑟𝑟02
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0                   (7) 

 
The mixing value of temperature field is defined as 
 
𝑇𝑇𝑚𝑚(𝑥𝑥) = 2

𝑢𝑢𝑚𝑚𝑟𝑟02
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0 = 𝑇𝑇𝑏𝑏(𝑥𝑥) − 4
𝑟𝑟0𝑃𝑃𝑃𝑃

∫ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
𝐵𝐵𝑟𝑟𝐵𝐵𝑟𝑟0

0

                     (8) 
 
where 𝛼𝛼 is the thermal diffusivity of the fluid. 

If condition (5) and (6) holds, the asymptotic values of the Nusselt 
number 𝑁𝑁𝑁𝑁∞ and 𝑁𝑁𝑁𝑁∞∗  exists (Bejan 1984, Barletta and Zanchini 1995) 
and are given by 
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Using the proof presented by Barletta (1997), it is easy to check 

that the boundary value problem, expressed by Eqs. (2)-(4), has a unique 
solution, and both the asymptotic behaviour of the temperature field and 
the Nusselt number are independent of the temperature distribution in the 
inlet section. 

Introducing the dimensionless quantities (Barletta 1997) 
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Eqs. (2) and (3) can be rewritten in the dimensionless form 
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where 𝐵𝐵𝐵𝐵(𝑋𝑋) is a local Brinkman number defined as 
 
𝐵𝐵𝐵𝐵(𝑋𝑋) = 𝐾𝐾𝑢𝑢𝑚𝑚𝑛𝑛+1

(2𝑟𝑟0)𝑛𝑛𝑞𝑞𝑤𝑤(𝜕𝜕)
                (14) 

 
Integrating Eq. (12) over the interval 0 ≤ 𝑅𝑅 ≤ 1 and employing 

Eq. (13) yields 
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= 23−𝑛𝑛
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where 𝜃𝜃𝑚𝑚(𝑋𝑋) is the mixing value of the dimensionless temperature 
𝜃𝜃(𝑅𝑅,𝑋𝑋). 

3. ASYMPTOTIC BEHAVIOUR OF THE 
TEMPERATURE FIELD 

In this work, the asymptotic temperature field and the asymptotic Nusselt 
number are analyzed in the case of an axial distribution of wall heat flux 
which yield a thermally developed region, such as 
 
   lim

𝜕𝜕→+∞
𝐵𝐵𝐵𝐵(𝑋𝑋) = 𝐵𝐵𝐵𝐵∞              (16) 

 
and, if 𝐵𝐵𝐵𝐵∞ = 0, lim

𝜕𝜕→+∞
1
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𝑑𝑑𝜕𝜕

= 0              (17) 

 
where 𝐵𝐵𝐵𝐵∞  is the asymptotic Brinkman number, and is a real number. 

Conditions (16) and (17) are checked by uniform wall heat flux 
distributions, and when 𝑞𝑞𝑤𝑤(𝑋𝑋) is given by polynomial functions, 
logarithmic functions, rational functions where the degree of the 
numerator is greater than or equal to the degree of the denominator 
among others. Under these conditions, there exists an asymptotic fully 
developed region for the temperature field and the solution of the Eqs. 
(12) and (13), for large values of X, is expressed by  

 
𝜃𝜃(𝑅𝑅,𝑋𝑋) = 𝜃𝜃𝑚𝑚(𝑋𝑋) + 𝑓𝑓(𝜕𝜕)

𝐵𝐵𝑟𝑟(𝜕𝜕)
                (18) 

 
where 𝑖𝑖(𝑅𝑅) is a continuous and differentiable function of 𝑅𝑅.  

Substituting Eq. (18) in Eqs. (12) and (13), and using Eqs. (15), 
(16) and (17), one obtains  

 
𝑑𝑑
𝑑𝑑𝜕𝜕
�𝑅𝑅 𝑑𝑑𝑓𝑓

𝑑𝑑𝜕𝜕
� = 1

4
�23−𝑛𝑛 + 8

(1−𝑎𝑎)𝑛𝑛+1 �
𝑚𝑚+1
𝜔𝜔
�
𝑛𝑛
𝐵𝐵𝐵𝐵∞�𝑅𝑅𝑈𝑈 +

𝐵𝐵𝐵𝐵∞ �
𝑎𝑎

(1−𝑎𝑎)𝑛𝑛+1 �
𝑚𝑚+1
𝜔𝜔
�
𝑛𝑛
𝑅𝑅 𝑑𝑑𝑅𝑅
𝑑𝑑𝜕𝜕
− 𝑅𝑅 �𝑑𝑑𝑅𝑅

𝑑𝑑𝜕𝜕
�
𝑛𝑛−1

�𝑑𝑑𝑅𝑅
𝑑𝑑𝜕𝜕
�
2
�             (19) 

 
𝑑𝑑𝑓𝑓
𝑑𝑑𝜕𝜕
�
𝜕𝜕=0

= 0 , 𝑑𝑑𝑓𝑓
𝑑𝑑𝜕𝜕
�
𝜕𝜕=1

= 1
2𝑛𝑛

              (20) 
 

The integration of Eq. (19) taking into account the continuity of 
𝑖𝑖(𝑅𝑅) at 𝑅𝑅 = 𝑎𝑎 and the vanishing bulk value of 𝑖𝑖(𝑅𝑅) gives the expression 
of 𝑖𝑖(𝑅𝑅) (see Appendix), and using Eqs. (6), (11), and (18), gives the 
following asymptotic mixing temperature field  

 
Θ∞∗ (𝑅𝑅) = 𝑓𝑓(1)−𝑓𝑓(𝜕𝜕)

𝑓𝑓(1)
                 (21) 

 
Where 𝑖𝑖(1) is the expression of 𝑖𝑖(𝑅𝑅) at the wall 𝑅𝑅 = 1 obtained 
analytically and given in Appendix. 
 

By using Eqs. (5), (8), (11), (15) and (18), the asymptotic bulk 
temperature field is given as  

 
Θ∞(𝑅𝑅) = 𝑓𝑓(1)−𝑓𝑓(𝜕𝜕)

𝑓𝑓(1)− 1
𝑃𝑃𝑃𝑃2

�23−𝑛𝑛+ 8
(1−𝑎𝑎)𝑛𝑛+1

�𝑚𝑚+1
𝜔𝜔

�
𝑛𝑛
𝐵𝐵𝑟𝑟∞�

              (22) 

 
Taking into account Eqs. (9), (10), (20), (21) and (22), the 

asymptotic value of the mixing and bulk Nusselt number yield 
 

𝑁𝑁𝑁𝑁∞∗ = −2 𝑑𝑑Θ∞∗

𝑑𝑑𝜕𝜕
�
𝜕𝜕=1

= 21−𝑛𝑛

𝑓𝑓(1)
                (23) 

 
𝑁𝑁𝑁𝑁∞ = −2 𝑑𝑑Θ∞

𝑑𝑑𝜕𝜕
�
𝜕𝜕=1

= 21−𝑛𝑛

𝑓𝑓(1)− 1
𝑃𝑃𝑃𝑃2

�23−𝑛𝑛+ 8
(1−𝑎𝑎)𝑛𝑛+1

�𝑚𝑚+1
𝜔𝜔

�
𝑛𝑛
𝐵𝐵𝑟𝑟∞�

             (24) 

 
Equation (24) shows that for large value of 𝑃𝑃𝑃𝑃 i.e for 𝑃𝑃𝑃𝑃 → ∞, the 

asymptotic value of the mixing and bulk Nusselt numbers are equal 
𝑁𝑁𝑁𝑁∞ = 𝑁𝑁𝑁𝑁∞∗ , and therefore that the effect of axial conduction is 
negligible. We also notice that for a given Peclet number, there is a value 
of the Brinkman number which produces a singularity in both the 
asymptotic 𝑁𝑁𝑁𝑁∞ and Θ∞(𝑅𝑅). This means that the bulk fluid motion may 
increase heat transfer.  

4. RESULTS AND DISCUSSION 
This section is devoted to the discussion of the results of the asymptotic 
behaviour of the temperature field and the Nusselt number. The 
asymptotic bulk and mixing Nusselt numbers and the asymptotic bulk 
and mixing temperature distributions of the Herschel-Bulkley fluids 
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flowing in circular ducts are calculated by considering the effects of 
viscous dissipation and fluid axial heat conduction. 

Equation (23) shows that 𝑁𝑁𝑁𝑁∞∗  is independent of the Peclet number 
(see Table 1). Equation (24) shows that the asymptotic value of the bulk 
Nusselt number depends only on the core radius 𝑎𝑎, the power-law index 
𝑛𝑛, the Peclet number 𝑃𝑃𝑃𝑃, and the asymptotic value 𝐵𝐵𝐵𝐵∞ of the Brinkman 
number. The values of 𝑁𝑁𝑁𝑁 and 𝑁𝑁𝑁𝑁∗ as function of 𝐵𝐵𝐵𝐵∞, 𝑎𝑎, 𝑃𝑃𝑃𝑃 and 𝑛𝑛 are 
reported in Table 1.  

Concerning the asymptotic bulk Nusselt number 𝑁𝑁𝑁𝑁∞, when the 
axial heat conduction is taken into account (for example : 𝑃𝑃𝑃𝑃 = 10) , 
𝑁𝑁𝑁𝑁∞ increases when the core radius increases and viscous dissipation is 
negligible (𝐵𝐵𝐵𝐵∞ = 0), but it decreases in the presence of viscous 
dissipation (see Table 1). For a given core radius value 𝑎𝑎, when the 
viscous dissipation and axial heat conduction coexist, the asymptotic 
Nusselt number increases when 𝑛𝑛 decreases. Furthermore, let us 
emphasize that for 𝑃𝑃𝑃𝑃 = 10, 𝐵𝐵𝐵𝐵∞ = 1 and 𝑛𝑛 = 1/3, 1, the values of 𝑁𝑁𝑁𝑁∞ 
are positive while they are negative for 𝑛𝑛 = 3 (see Table 1), this sign 
reversal is linked to singularities for both the asymptotic Nusselt number 
and the temperature field. 

Equation (23) is valid for a broad range of distributions of non-
uniform wall heat flux which satisfy Eqs. (16) and (17), both for 
Newtonian, power law, Bingham and Herschel-Bulkley fluids. If the 
distribution of heat flux at the wall is such that 𝐵𝐵𝐵𝐵∞ = 0 and 𝑎𝑎 = 0, Eq. 
(23) reduces to 

 
𝑁𝑁𝑁𝑁∞∗ = 8(3𝑛𝑛+1)(5𝑛𝑛+1)

31𝑛𝑛2+12𝑛𝑛+1
                (25) 

 
Equation (25) coincides with the result found by Grigull (1956) for 

a power-law fluid in a circular tube with negligible viscous dissipation 
and uniform wall flux. In particular, in the Newtonian fluid case (𝑛𝑛 = 1, 
𝑎𝑎 = 0) with negligible viscous dissipation (𝐵𝐵𝐵𝐵∞ = 0), we obtain the 
asymptotic value 𝑁𝑁𝑁𝑁∞∗ = 48

11
= 4.3636, which coincides with that found 

in the literature (Zanchini 1997). Moreover, equation 25 recalls the 
known result of the Nusselt number as a decreasing function of the index 
of a power law fluid.  

Table 2 shows that the asymptotic values of 𝑁𝑁𝑁𝑁∞∗  coincide with 
those found by Barletta (1997) in the case of power-law fluids (𝑎𝑎 = 0) 
and with those found in the case of Bingham fluids (𝑛𝑛 = 1) (Khatyr et 
al., 2003) when the axial heat conduction is negligible (𝑃𝑃𝑃𝑃 → ∞) and for 
boundary conditions on the wall heat flux identical to those given by Eqs. 
(16) and (17). We notice that, in the case where the viscous dissipation 
is negligible (𝐵𝐵𝐵𝐵∞ = 0) and (𝑛𝑛 = 1) the mixing Nusselt number 𝑁𝑁𝑁𝑁∞∗  
increases when the core radius 𝑎𝑎 increases. In the case where the viscous 
dissipation is not negligible (𝐵𝐵𝐵𝐵∞ = −1, 1) the situation is opposite and 
the Nusselt number 𝑁𝑁𝑁𝑁∞∗  decreases when the core radius 𝑎𝑎 increases. 
This observation remains valid for the cases 𝑛𝑛 = 1/3 and 𝑛𝑛 =  3. We 
thus note that for the considered boundary conditions, viscous dissipation 
disadvantages heat transfer when the dimension of the core radius 
increases. 

 
Figures 1a-b illustrates the asymptotic behaviour of the 

dimensionless bulk temperature field for various values of the Peclet 
number 𝑃𝑃𝑃𝑃 = 1, 10, 100, 1000, core radius 𝑎𝑎 = 0, 0.4, power-law 
exponent 𝑛𝑛 = 1/3, 3 and for 𝐵𝐵𝐵𝐵∞ = −1. For 𝑛𝑛 = 1/3, we note that the 
gradient of 𝛩𝛩∞(𝑅𝑅) at the wall changes sign when the Peclet number 
increases, and therefore this reflects a change in sign of the asymptotic 
values of 𝑁𝑁𝑁𝑁∞.  

Figures 2a-b illustrates the asymptotic behaviour of the 
dimensionless bulk temperature field for various values of                   
𝐵𝐵𝐵𝐵∞ = −1, 0, 1, core radius 𝑎𝑎 = 0, 0.4, power-law exponent 𝑛𝑛 = 1/3, 3 
and for the Peclet number 𝑃𝑃𝑃𝑃 = 10. 

This figure shows that 𝛩𝛩∞(𝑅𝑅) varies significantly with Peclet 
number Pe, power-law index n, core radius a and asymptotic Brinkman 

number 𝐵𝐵𝐵𝐵∞. It can be seen from these figures that the effect of the axial 
heat conduction becomes negligible for large values of Peclet number 
(see Figs. 1a-b). For low Peclet number, the axial heat conduction is more 
significant.  

Indeed, Eqs. (23) and (24) shows that for given values of 𝑛𝑛, 𝑎𝑎 and 
𝑃𝑃𝑃𝑃, there is a value of the Brinkman number, which produces a 
singularity in the asymptotic value of 𝑁𝑁𝑁𝑁∗ and 𝑁𝑁𝑁𝑁. This value is given 
by: 
 
𝐵𝐵𝐵𝐵∞

(𝑠𝑠) = 𝐴𝐴
𝐵𝐵

                 (26) 

 
where 
 

𝐵𝐵 = 1
(1−𝑎𝑎)𝑛𝑛+1 �

𝑚𝑚+1
𝜔𝜔
�
𝑛𝑛
�− 8

𝑃𝑃𝑃𝑃2
+ 𝜔𝜔2

2
− 1

4
+ (1−𝑎𝑎)2

(𝑚𝑚+2)(𝑚𝑚+3)
�(𝑚𝑚 + 1) � 𝑎𝑎2

𝑚𝑚+2
+

2𝑎𝑎(1−𝑎𝑎)
𝑚𝑚+4

+ (𝑚𝑚+2)(1−𝑎𝑎)2

(𝑚𝑚+3)(𝑚𝑚+5)
� + 3𝑎𝑎+𝑚𝑚

1−𝑎𝑎
+ 6(1−𝑎𝑎)(𝑚𝑚+4+𝑎𝑎)

(𝑚𝑚+4)(𝑚𝑚+5)
��  

 
and  
𝐴𝐴 = −22−𝑛𝑛 �− 2

𝑃𝑃𝑃𝑃2
+ 𝜔𝜔

8
− 1

16
+ (1−𝑎𝑎)2

(𝑚𝑚+2)(𝑚𝑚+3)
�−𝜔𝜔

2
+

(𝑚𝑚+1)
2

� 2𝑎𝑎
(𝑚𝑚+4)(2𝑚𝑚+5) + 1−𝑎𝑎

(𝑚𝑚+3)(𝑚𝑚+5)� + 3𝑎𝑎+𝑚𝑚
4(1−𝑎𝑎) + 3(1−𝑎𝑎)(𝑚𝑚+4+𝑎𝑎)

2(𝑚𝑚+4)(𝑚𝑚+5) −
1

(1−𝑎𝑎)𝑚𝑚+3 𝐶𝐶(𝑎𝑎,𝑛𝑛)��  
 
where  
 
If 𝒎𝒎 ∈ ℕ∗ : 
 
𝐶𝐶(𝑎𝑎,𝑛𝑛) = (−1)𝑚𝑚+3𝑎𝑎𝑚𝑚+3 �𝑎𝑎

2−1
4

+ (1−𝑎𝑎)2

(𝑚𝑚+2)(𝑚𝑚+3)
�1 + (−1)𝑚𝑚+3ln (𝑎𝑎)

(1−𝑎𝑎)𝑚𝑚+3 �� +

∑ (𝑚𝑚+3)!(−1)𝑘𝑘𝑎𝑎𝑘𝑘

𝑘𝑘!(𝑚𝑚+3−𝑘𝑘)!(𝑚𝑚+3−𝑘𝑘)
�−𝜔𝜔

2
+ 2+(𝑚𝑚+3−𝑘𝑘)𝑎𝑎𝑚𝑚+5−𝑘𝑘

2(𝑚𝑚+5−𝑘𝑘) −𝑚𝑚+2
𝑘𝑘=0

1
(1−𝑎𝑎)𝑚𝑚+1 �

(−1)𝑚𝑚+3𝑎𝑎𝑚𝑚+3

(𝑚𝑚+2)(𝑚𝑚+3)
+ ∑ (𝑚𝑚+1)!(−1)𝑝𝑝𝑎𝑎𝑝𝑝

𝑝𝑝!(𝑚𝑚+1−𝑝𝑝)!
1−𝑎𝑎2𝑚𝑚+6−𝑘𝑘−𝑝𝑝

2𝑚𝑚+6−𝑘𝑘−𝑝𝑝
𝑚𝑚+1
𝑝𝑝=0 ��  

 
If 𝒎𝒎 ∈ ℚ∗ : 
 
𝐶𝐶(𝑎𝑎,𝑛𝑛) = ∑ 𝑃𝑃(𝑚𝑚+3−𝑘𝑘)(−1)𝑘𝑘𝑎𝑎𝑘𝑘

𝑘𝑘!(𝑚𝑚+3−𝑘𝑘)2 �−𝜔𝜔
2

+ 2+(𝑚𝑚+3−𝑘𝑘)𝑎𝑎𝑚𝑚+5−𝑘𝑘

2(𝑚𝑚+5−𝑘𝑘) −∞
𝑘𝑘=0

1
(1−𝑎𝑎)𝑚𝑚+1 ∑

𝑃𝑃(𝑚𝑚+1−𝑝𝑝)(−1)𝑝𝑝𝑎𝑎𝑝𝑝

𝑝𝑝!(𝑚𝑚+1−𝑝𝑝)
1−𝑎𝑎2𝑚𝑚+6−𝑘𝑘−𝑝𝑝

2𝑚𝑚+6−𝑘𝑘−𝑝𝑝
∞
𝑝𝑝=0 �  

 
If 𝑎𝑎 = 0 (i.e., in the case power-law fluid) and 𝑃𝑃𝑃𝑃 → ∞ (negligible axial 
heat conduction), then Eq. (26) reduce to (Barletta 1997) : 
 
𝐵𝐵𝐵𝐵∞

(𝑠𝑠) = −2−𝑛𝑛 � 𝑛𝑛
3𝑛𝑛+1

�
𝑛𝑛 31𝑛𝑛2+12𝑛𝑛+1

(3𝑛𝑛+1)(5𝑛𝑛+1)                 (27) 
 

Figure 3 represents the evolution of 𝐵𝐵𝐵𝐵∞
(𝑠𝑠) versus n for various 

values of 𝑃𝑃𝑃𝑃 and 𝑎𝑎. This figure show that the values of 𝐵𝐵𝐵𝐵∞
(𝑠𝑠) change sign 

in the vicinity of the value 𝑃𝑃𝑃𝑃 = 5.  
Figures 4 represent the evolution of the asymptotic behaviour of 

the Nusselt number versus 𝐵𝐵𝐵𝐵∞ for various values of a and Pe. However, 
if 𝐵𝐵𝐵𝐵∞ > 𝐵𝐵𝐵𝐵∞

(𝑠𝑠) the value of 𝑁𝑁𝑁𝑁∞ is decreasing function of 𝑎𝑎, whereas for 
𝐵𝐵𝐵𝐵∞ < 𝐵𝐵𝐵𝐵∞

(𝑠𝑠) the asymptotic value of 𝑁𝑁𝑁𝑁∞ is an increasing function of 𝑎𝑎. 
These figures show that the asymptotic Nusselt number 𝑁𝑁𝑁𝑁∞ is 
dependent of Brinkman number 𝐵𝐵𝐵𝐵∞ in the case of wall heat flux 
conditions satisfying Eqs. (16) and (17). This result is the opposite to the 
case of an imposed uniform wall temperature for which the asymptotic 
Nusselt number 𝑁𝑁𝑁𝑁∞ is independent of Brinkman number when the axial 
heat conduction is taken into account as noted by Jambal et al. (2005) for 
power-law fluids.  
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Table 1 Values of Nu and Nu*  (in brackets) as a function of  𝐵𝐵𝐵𝐵∞ and Pe, for various values of a and n. 

 𝑩𝑩𝑩𝑩∞  -1 0 1 
  𝒏𝒏 = 𝟏𝟏/𝟑𝟑 -27.2593 

(-11.3299) 
6.3325 

(5.0526) 
2.8367 

(2.0657) 
 𝑷𝑷𝑷𝑷 = 𝟏𝟏𝟏𝟏 𝒏𝒏 = 𝟏𝟏 -2.0374 

(-1.2973) 
5.2863 

(4.3636) 
1.1505 

(0.8136) 
  𝒏𝒏 = 𝟑𝟑 0.0035 

(-0.0272) 
4.8338 

(4.0506) 
-0.0035 
(0.0268) 

  𝒏𝒏 = 𝟏𝟏/𝟑𝟑 -11.3965 
(-11.3299) 

5.0629 
(5.0526) 

2.0713 
(2.0657) 

𝒂𝒂 = 𝟏𝟏 𝑷𝑷𝑷𝑷 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝒏𝒏 = 𝟏𝟏 -1.3020 
(-1.2973) 

4.3713 
(4.3636) 

0.8159 
(0.8135) 

  𝒏𝒏 = 𝟑𝟑 -0.0298 
(-0.0272) 

4.0572 
(4.0506) 

0.0293 
(0.0268) 

  𝒏𝒏 = 𝟏𝟏/𝟑𝟑 -11.3306 
(-11.3299) 

5.0527 
(5.0526) 

2.0658 
(2.0657) 

 𝑷𝑷𝑷𝑷 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝒏𝒏 = 𝟏𝟏 -1.2973 
(-1.2973) 

4.3637 
(4.3636) 

0.8136 
(0.8136) 

  𝒏𝒏 = 𝟑𝟑 -0.0272 
(-0.0272) 

4.0507 
(4.0506) 

0.0268 
(0.0268) 

  𝒏𝒏 = 𝟏𝟏/𝟑𝟑 -4.3721 
(-2.7765) 

7.3752 
(5.6951) 

2.0004 
(1.4058) 

 𝑷𝑷𝑷𝑷 = 𝟏𝟏𝟏𝟏 𝒏𝒏 = 𝟏𝟏 -0.7896 
(-0.5264) 

6.0764 
(4.8883) 

0.6267 
(0.4331) 

  𝒏𝒏 = 𝟑𝟑 0.0014 
(-0.0106) 

5.4174 
(4.4525) 

-0.0014 
(0.0105) 

  𝒏𝒏 = 𝟏𝟏/𝟑𝟑 -2.7867 
(-2.7765) 

5.7081 
(5.6951) 

1.4100 
(1.4058) 

𝒂𝒂 = 𝟏𝟏.𝟒𝟒 𝑷𝑷𝑷𝑷 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝒏𝒏 = 𝟏𝟏 -0.5281 
(-0.5264) 

4.8979 
(4.8883) 

0.4344 
(0.4331) 

  𝒏𝒏 = 𝟑𝟑 -0.0116 
(-0.0106) 

4.4605 
(4.4525) 

0.0115 
(0.0105) 

  𝒏𝒏 = 𝟏𝟏/𝟑𝟑 -2.7766 
(-2.7765) 

5.6952 
(5.6951) 

1.4058 
(1.4058) 

 𝑷𝑷𝑷𝑷 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 n = 1 -0.5264 
(-0.5264) 

4.8884 
(4.8883) 

0.4331 
(0.4331) 

  n = 3 -0.0106 
(-0.0106) 

4.4526 
(4.4525) 

0.0106 
(0.0105) 

  𝒏𝒏 = 𝟏𝟏/𝟑𝟑 -0.7197 
(-0.4873) 

9.6508 
(6.9629) 

0.6263 
(0.4275) 

 𝑷𝑷𝑷𝑷 = 𝟏𝟏𝟏𝟏 𝒏𝒏 = 𝟏𝟏 -0.1040 
(-0.0706) 

8.5869 
(6.3915) 

0.1015 
(0.0691) 

  𝒏𝒏 = 𝟑𝟑 0.00005 
(-0.0004) 

3.2437 
(2.8712) 

-0.00005 
(0.0004) 

  𝒏𝒏 = 𝟏𝟏/𝟑𝟑 -0.4889 
(-0.4873) 

6.9824 
(6.9629) 

0.4289 
(0.4275) 

𝒂𝒂 = 𝟏𝟏.𝟖𝟖 𝑷𝑷𝑷𝑷 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝒏𝒏 = 𝟏𝟏 -0.0709 
(-0.0706) 

6.4079 
(6.3915) 

0.0693 
(0.0691) 

  𝒏𝒏 = 𝟑𝟑 -0.0004 
(-0.0004) 

2.8745 
(2.8712) 

0.0004 
(0.0004) 

  𝒏𝒏 = 𝟏𝟏/𝟑𝟑 -0.4874 
(-0.4873) 

6.9631 
(6.9629) 

0.4275 
(0.4275) 

 𝑷𝑷𝑷𝑷 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝒏𝒏 = 𝟏𝟏 -0.0706 
(-0.0706) 

6.3917 
(6.3915) 

0.0691 
(0.0691) 

  𝒏𝒏 = 𝟑𝟑 -0.0004 
(-0.0004) 

2.8712 
(2.8712) 

0.0004 
(0.0004) 
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Table 2 Values of 𝑁𝑁𝑁𝑁∞∗  as function 𝐵𝐵𝐵𝐵∞, for various values of a, n, and 𝑃𝑃𝑃𝑃 → ∞. 

 
𝒂𝒂 

𝒏𝒏 = 𝟏𝟏/𝟑𝟑 𝒏𝒏 = 𝟏𝟏 (Khatyr et al. 2003) 𝒏𝒏 = 𝟑𝟑 
Br∞ = -1 Br∞ = 0 Br∞ = 1 Br∞ = -1 Br∞ = 0 Br∞ = 1 Br∞ = -1 Br∞ = 0 Br∞ = 1 

0 -11.3299 5.0526 2.0657 -1.2973 4.3636 0.8136 -0.0272 4.0526 0.0268 
0.2 -5.3409 5.3223 1.7762 -0.8749 4.5528 0.6320 -0.0191 4.1584 0.0189 
0.4 -2.7765 5.6951 1.4058 -0.5264 4.8883 0.4331 -0.0106 4.4367 0.0105 
0.6 -1.3618 6.2133 0.9468 -0.2545 5.4543 0.2328 -0.0037 5.0005 0.0037 
0.8 -0.4864 7.1702 0.4283 -0.0706 6.3916 0.0691 -0.0004 6.0064 0,0004  

Barletta (1997) 
𝒂𝒂 = 𝟏𝟏 

 

-11.3299 
 

5.0526 
 

2.0657 
 

-1.2973 
 

4.3636 
 

0.8136 
 

-0.0272 
 

4.0526 
 

0.0268 

 
 

 

 

 
(a) : a = 0 

 

 
(b) : a = 0.4 

Fig. 1 Evolution of Θ∞(𝑅𝑅) for various values of Pe, n, a and for       
Br∞ = −1 

 

 

 
(a) : 𝒂𝒂 = 𝟏𝟏 

 

 
(b) : 𝒂𝒂 = 𝟏𝟏.𝟒𝟒 

Fig. 2 Evolution of Θ∞(𝑅𝑅) for various values of Br∞, 𝑛𝑛, 𝑎𝑎 and for      
𝑃𝑃𝑃𝑃 = 10 
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(a) 𝑷𝑷𝑷𝑷 = 𝟒𝟒 

 
 

(b) 𝑷𝑷𝑷𝑷 = 𝟓𝟓 

 
 

(c) 𝑷𝑷𝑷𝑷 = 𝟔𝟔 

 
 

(d) 𝑷𝑷𝑷𝑷 = 𝟏𝟏𝟏𝟏  
 
Fig. 3 Variation of 𝐵𝐵𝐵𝐵∞

(𝑠𝑠) versus the core radius a for various values of 
Pe 

 
 

 
 

 
 

(a) : 𝑷𝑷𝑷𝑷 = 𝟏𝟏𝟏𝟏 
 

 
 

 
 

(b) : 𝑷𝑷𝑷𝑷 → ∞ 
 
Fig. 4 Variation of 𝑁𝑁𝑁𝑁∞ versus 𝐵𝐵𝐵𝐵∞ for different values of 𝑎𝑎 and 𝑃𝑃𝑃𝑃 
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A comparison between 𝑁𝑁𝑁𝑁∞∗  and 𝑁𝑁𝑁𝑁∞ is illustrated in Figs. 5a-b in 
the cases where 𝑎𝑎 = 0 and 𝑎𝑎 = 0.4, 𝑛𝑛 = 1/3 and 𝐵𝐵𝐵𝐵∞ = 1. We note that 
appreciable differences between Nu* and Nu exist only for 𝑃𝑃𝑃𝑃 ≤ 20 and 
that the 𝑁𝑁𝑁𝑁∞ changes sign in the vicinity of 𝑃𝑃𝑃𝑃 = 5. We can conclude 
that for low Peclet number, the effect of axial heat conduction and of 
viscous dissipation are significant. 
 

 
(a) 𝒂𝒂 = 𝟏𝟏 

 
(b) 𝒂𝒂 = 𝟏𝟏.𝟒𝟒 

Fig. 5 Variation of 𝑁𝑁𝑁𝑁∞ and 𝑁𝑁𝑁𝑁∞∗  versus Pe for 𝐵𝐵𝐵𝐵∞ = 1, 𝑛𝑛 = 1/3 
and for : (a) 𝑎𝑎 = 0, (b) 𝑎𝑎 = 0.4 

5. CONCLUSION 
Forced laminar convection in a circular tube with a fully developed 
velocity profile and a prescribed axial distribution of wall heat flux has 
been considered. Both the effect of axial conduction in the fluid and the 
viscous dissipation has been taken into account.  

It has been supposed that when 𝑥𝑥 → +∞, the wall heat flux 
distribution 𝑞𝑞𝑤𝑤(𝑥𝑥) is finite and non-vanishing, while 1

𝑞𝑞𝑤𝑤(𝑥𝑥)
𝑑𝑑𝑞𝑞𝑤𝑤(𝑥𝑥)
𝑑𝑑𝑥𝑥

 tends 
to zero. The fully developed values of both 𝑁𝑁𝑁𝑁∞ and 𝑁𝑁𝑁𝑁∞∗  have been 
evaluated analytically as a function of the asymptotic Brinkman number 
𝐵𝐵𝐵𝐵∞, the power-law index n, the core radius a and the Peclet number Pe. 

The obtained analytical solutions have been favorably compared to 
the previous studies' solutions. It has been shown that the effect of 
viscous dissipation and axial heat conduction are significant in the 
thermally developed region. In addition, the value of 𝐵𝐵𝐵𝐵∞ which 
produces a singularity as function of 𝑎𝑎, 𝑛𝑛 and 𝑃𝑃𝑃𝑃 (Eq. 26) was presented. 

NOMENCLATURE 
a ratio of yield shear stress to wall shear stress 
𝐵𝐵𝐵𝐵(𝑋𝑋) local Brinkman number 
𝑐𝑐𝑝𝑝 specific heat at constant pressure (J.kg-1.K-1) 
K consistency index (Pa.s) 
n power-law exponent 
𝑁𝑁𝑁𝑁 bulk Nusselt number, 2𝐵𝐵0𝑞𝑞𝑤𝑤/[𝜆𝜆(𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑏𝑏)] 

𝑁𝑁𝑁𝑁∗ mixing Nusselt number, 2𝐵𝐵0𝑞𝑞𝑤𝑤/[𝜆𝜆(𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑚𝑚)] 
m inverse of exponent index n 
Pe Peclet number, 2𝐵𝐵0𝑁𝑁𝑚𝑚𝜌𝜌𝑐𝑐𝑝𝑝/𝜆𝜆 
𝑞𝑞𝑤𝑤 wall heat flux (W.m-1) 
r radial coordinate (m) 
𝐵𝐵0 radius of the tube (m) 
𝐵𝐵𝑐𝑐  the yield radius (m) 
R dimensionless radial coordinate 
T temperature (K) 
𝑇𝑇0 inlet temperature distribution (K) 
u velocity component in the axial direction (m.s-1) 
𝑁𝑁𝑚𝑚 mean axial velocity (m.s-1) 
U dimensionless axial velocity 
x axial coordinate (m) 
X dimensionless axial coordinate 
 
Greeks Symbols  
𝛼𝛼 thermal diffusivity of fluid (m2.s-1) 
𝜆𝜆 thermal conductivity of fluid (W.m-1.K-1) 
𝜌𝜌 fluid density (kg.m-3) 
𝜃𝜃 dimensionless temperature 
Θ dimensionless bulk temperature 
Θ∗ dimensionless mixing temperature 
 
Subscripts 
b bulk quantity 
m mixing quantity 
w wall condition 
∞ quantity evaluated for 𝑋𝑋 → +∞ 
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APPENDIX 

The integration of Eq. (19) taking into account the continuity of 𝑖𝑖(𝑅𝑅) at 
𝑅𝑅 = 𝑎𝑎 and the vanishing bulk value of 𝑖𝑖(𝑅𝑅) gives : 
 
If 𝒎𝒎 ∈ ℕ∗: 
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2(1−𝑎𝑎)𝑛𝑛+1 �
𝑚𝑚+1
𝜔𝜔
�
𝑛𝑛
𝐵𝐵𝐵𝐵∞�𝑅𝑅2 −

𝑎𝑎
(𝑚𝑚+2)(1−𝑎𝑎)𝑛𝑛 �

𝑚𝑚+1
𝜔𝜔
�
𝑛𝑛
𝐵𝐵𝐵𝐵∞ �

𝜕𝜕−𝑎𝑎
1−𝑎𝑎

�
𝑚𝑚+2

−
                               

(1−𝑎𝑎)2

𝑚𝑚+3
��2

1−𝑛𝑛

𝑚𝑚+2
+ 1

(1−𝑎𝑎)𝑛𝑛+1 �
𝑚𝑚+1
𝜔𝜔
�
𝑛𝑛
𝐵𝐵𝐵𝐵∞� �

𝜕𝜕−𝑎𝑎
1−𝑎𝑎

�
𝑚𝑚+3

−          
21−𝑛𝑛

(𝑚𝑚+2)(1−𝑎𝑎)𝑚𝑚+3 �∑ �(𝑚𝑚+3)!(−1)𝑘𝑘𝑎𝑎𝑘𝑘

𝑘𝑘!(𝑚𝑚+3−𝑘𝑘)!
𝜕𝜕𝑚𝑚+3−𝑘𝑘

𝑚𝑚+3−𝑘𝑘
�𝑚𝑚+2

𝑘𝑘=0 +                

(−1)𝑚𝑚+3𝑎𝑎𝑚𝑚+3ln (𝑅𝑅))]} + 𝐶𝐶1                    𝑖𝑖𝑖𝑖    𝑎𝑎 ≤ 𝑅𝑅 ≤ 1
1
𝜔𝜔
� 1
2𝑛𝑛+1

+ 1
2(1−𝑎𝑎)𝑛𝑛+1

�𝑚𝑚+1
𝜔𝜔
�
𝑛𝑛
𝐵𝐵𝐵𝐵∞�𝑅𝑅2 +                               

21−𝑛𝑛

𝜔𝜔
𝑎𝑎𝑚𝑚+3

(𝑚𝑚+2)(𝑚𝑚+3)(1−𝑎𝑎)𝑚𝑚+1 �∑ � (𝑚𝑚+3)!(−1)𝑘𝑘

𝑘𝑘!(𝑚𝑚+3−𝑘𝑘)!(𝑚𝑚+3−𝑘𝑘)
�𝑚𝑚+2

𝑘𝑘=0 +

(−1)𝑚𝑚+3ln (𝑎𝑎)] + 𝐶𝐶1                                   𝑖𝑖𝑖𝑖   0 ≤ 𝑅𝑅 ≤ 𝑎𝑎

   

 
Where 
 

𝐶𝐶1 = 1
(𝑚𝑚+2)(𝑚𝑚+3)𝜔𝜔2 �2(𝑚𝑚 + 1)(1 −

𝑎𝑎)2 � 1
(1−𝑎𝑎)𝑛𝑛+1 �

𝑚𝑚+1
𝜔𝜔
�
𝑛𝑛
𝐵𝐵𝐵𝐵∞ �

𝑎𝑎2

2(𝑚𝑚+2) + 𝑎𝑎(1−𝑎𝑎)
𝑚𝑚+4

+ (𝑚𝑚+2)(1−𝑎𝑎)2

2(𝑚𝑚+3)(𝑚𝑚+5)� +
1
2𝑛𝑛
� 2𝑎𝑎

(𝑚𝑚+4)(2𝑚𝑚+5) + 1−𝑎𝑎
(𝑚𝑚+3)(𝑚𝑚+5)�� − � 1

2𝑛𝑛
+

1
(1−𝑎𝑎)𝑛𝑛+1 �

𝑚𝑚+1
𝜔𝜔
�
𝑛𝑛
𝐵𝐵𝐵𝐵∞� �

(𝑚𝑚+2)(𝑚𝑚+3)
4

− (1 − 𝑎𝑎) �3𝑎𝑎 + 𝑚𝑚 +

6(1−𝑎𝑎)2(𝑚𝑚+4+𝑎𝑎)
(𝑚𝑚+4)(𝑚𝑚+5) �� − 22−𝑛𝑛

(1−𝑎𝑎)𝑚𝑚+1 �(−1)𝑚𝑚+3𝑎𝑎𝑚𝑚+3 �𝑎𝑎
2−1
4

+ (1−𝑎𝑎)2

(𝑚𝑚+2)(𝑚𝑚+3)
�1 +

(−1)𝑚𝑚+3ln (𝑎𝑎)
(1−𝑎𝑎)𝑚𝑚+3 �� + ∑ (𝑚𝑚+3)!(−1)𝑘𝑘𝑎𝑎𝑘𝑘

𝑘𝑘!(𝑚𝑚+3−𝑘𝑘)!(𝑚𝑚+3−𝑘𝑘)
�2+(𝑚𝑚+3−𝑘𝑘)𝑎𝑎𝑚𝑚+5−𝑘𝑘

2(𝑚𝑚+5−𝑘𝑘)
−𝑚𝑚+2

𝑘𝑘=0

1
(1−𝑎𝑎)𝑚𝑚+1 �

(−1)𝑚𝑚+3𝑎𝑎𝑚𝑚+3

(𝑚𝑚+2)(𝑚𝑚+3)
+ ∑ �(𝑚𝑚+1)!(−1)𝑝𝑝𝑎𝑎𝑝𝑝

𝑝𝑝!(𝑚𝑚+1−𝑝𝑝)!
1−𝑎𝑎2𝑚𝑚+6−𝑘𝑘−𝑝𝑝

2𝑚𝑚+6−𝑘𝑘−𝑝𝑝
�𝑚𝑚+1

𝑝𝑝=0 ����     

 
 
𝑖𝑖(1) = 1

2𝑛𝑛+1𝜔𝜔
+ 𝐵𝐵𝑟𝑟∞

2
1

(1−𝑎𝑎)𝑛𝑛+1 �
𝑚𝑚+1
𝜔𝜔
�
𝑛𝑛
− 21−𝑛𝑛

𝜔𝜔
(1−𝑎𝑎)2

(𝑚𝑚+2)(𝑚𝑚+3) �1 −
1

(1−𝑎𝑎)𝑚𝑚+3 ∑
(𝑚𝑚+3)!(−1)𝑘𝑘𝑎𝑎𝑘𝑘

𝑘𝑘!(𝑚𝑚+3−𝑘𝑘)!(𝑚𝑚+3−𝑘𝑘)
𝑚𝑚+2
𝑘𝑘=0 � + 𝐶𝐶1  

 
 
and If 𝒎𝒎 ∈ ℚ∗: 
 

𝑖𝑖(𝑅𝑅) =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

1
𝜔𝜔
�� 1

2𝑛𝑛+1
+ 1

2(1−𝑎𝑎)𝑛𝑛+1 �
𝑚𝑚+1
𝜔𝜔
�
𝑛𝑛
𝐵𝐵𝐵𝐵∞�𝑅𝑅2 −

𝑎𝑎
(𝑚𝑚+2)(1−𝑎𝑎)𝑛𝑛 �

𝑚𝑚+1
𝜔𝜔
�
𝑛𝑛
𝐵𝐵𝐵𝐵∞ �

𝜕𝜕−𝑎𝑎
1−𝑎𝑎

�
𝑚𝑚+2

−
              

(1−𝑎𝑎)2

𝑚𝑚+3
��2

1−𝑛𝑛

𝑚𝑚+2
+ 1

(1−𝑎𝑎)𝑛𝑛+1 �
𝑚𝑚+1
𝜔𝜔
�
𝑛𝑛
𝐵𝐵𝐵𝐵∞� �

𝜕𝜕−𝑎𝑎
1−𝑎𝑎

�
𝑚𝑚+3

−
21−𝑛𝑛

(𝑚𝑚+2)(1−𝑎𝑎)𝑚𝑚+3 ∑ �𝑃𝑃(𝑚𝑚+3−𝑘𝑘)(−1)𝑘𝑘𝑎𝑎𝑘𝑘

𝑘𝑘!(𝑚𝑚+3−𝑘𝑘)2
𝑅𝑅𝑚𝑚+3−𝑘𝑘�∞

𝑘𝑘=0 ��      

+𝐶𝐶1                                                          𝑖𝑖𝑖𝑖      𝑎𝑎 ≤ 𝑅𝑅 ≤ 1
1
𝜔𝜔
� 1
2𝑛𝑛+1

+ 1
2(1−𝑎𝑎)𝑛𝑛+1 �

𝑚𝑚+1
𝜔𝜔
�
𝑛𝑛
𝐵𝐵𝐵𝐵∞� 𝑅𝑅2 +     

21−𝑛𝑛

𝜔𝜔
𝑎𝑎𝑚𝑚+3

(𝑚𝑚+2)(𝑚𝑚+3)(1−𝑎𝑎)𝑚𝑚+1 ∑
𝑃𝑃(𝑚𝑚+3−𝑘𝑘)(−1)𝑘𝑘

𝑘𝑘!(𝑚𝑚+3−𝑘𝑘)2
∞
𝑘𝑘=0

+𝐶𝐶1                                        𝑖𝑖𝑖𝑖      𝑎𝑎 ≤ 𝑅𝑅 ≤ 1

             

    

 
where 
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𝐶𝐶1 = 1
(𝑚𝑚+2)(𝑚𝑚+3)𝜔𝜔2 �2(𝑚𝑚 + 1)(1 −

𝑎𝑎)2 � 1
(1−𝑎𝑎)𝑛𝑛+1 �

𝑚𝑚+1
𝜔𝜔
�
𝑛𝑛
𝐵𝐵𝐵𝐵∞ �

𝑎𝑎2

2(𝑚𝑚+2) + 𝑎𝑎(1−𝑎𝑎)
𝑚𝑚+4

+ (𝑚𝑚+2)(1−𝑎𝑎)2

2(𝑚𝑚+3)(𝑚𝑚+5)� +
1
2𝑛𝑛
� 2𝑎𝑎

(𝑚𝑚+4)(2𝑚𝑚+5) + 1−𝑎𝑎
(𝑚𝑚+3)(𝑚𝑚+5)�� − � 1

2𝑛𝑛
+

1
(1−𝑎𝑎)𝑛𝑛+1 �

𝑚𝑚+1
𝜔𝜔
�
𝑛𝑛
𝐵𝐵𝐵𝐵∞� �

(𝑚𝑚+2)(𝑚𝑚+3)
4

− (1 − 𝑎𝑎) �3𝑎𝑎 + 𝑚𝑚 +
6(1−𝑎𝑎)2(𝑚𝑚+4−𝑎𝑎)

(𝑚𝑚+4)(𝑚𝑚+5) �� −
22−𝑛𝑛

(1−𝑎𝑎)𝑚𝑚+1 �∑
𝑃𝑃(𝑚𝑚+3−𝑘𝑘)(−1)𝑘𝑘𝑎𝑎𝑘𝑘

𝑘𝑘!(𝑚𝑚+3−𝑘𝑘)2
�2+(𝑚𝑚+3−𝑘𝑘)𝑎𝑎𝑚𝑚+5−𝑘𝑘

2(𝑚𝑚+5−𝑘𝑘)
−∞

𝑘𝑘=0

1
(1−𝑎𝑎)𝑚𝑚+1 ∑ �𝑃𝑃(𝑚𝑚+1−𝑝𝑝)(−1)𝑝𝑝𝑎𝑎𝑝𝑝

𝑝𝑝!(𝑚𝑚+1−𝑝𝑝)
1−𝑎𝑎2𝑚𝑚+6−𝑘𝑘−𝑝𝑝

2𝑚𝑚+6−𝑘𝑘−𝑝𝑝
�∞

𝑝𝑝=0 ���  
 

𝑖𝑖(1) = 1
2𝑛𝑛+1𝜔𝜔

+ 𝐵𝐵𝑟𝑟∞
2

1
(1−𝑎𝑎)𝑛𝑛+1 �

𝑚𝑚+1
𝜔𝜔
�
𝑛𝑛
− 21−𝑛𝑛

𝜔𝜔
(1−𝑎𝑎)2

(𝑚𝑚+2)(𝑚𝑚+3) �1 −
1

(1−𝑎𝑎)𝑚𝑚+3 ∑
𝑃𝑃(𝑚𝑚+3−𝑘𝑘)(−1)𝑘𝑘𝑎𝑎𝑘𝑘

𝑘𝑘!(𝑚𝑚+3−𝑘𝑘)2
∞
𝑘𝑘=0 � + 𝐶𝐶1  

where 
 
∀𝑚𝑚,     𝑖𝑖𝑖𝑖   𝑘𝑘 = 0     𝑡𝑡ℎ𝑃𝑃𝑛𝑛   𝑃𝑃(𝑚𝑚) = 𝑚𝑚                                                             

𝑖𝑖𝑖𝑖   𝑘𝑘 ≥ 1     𝑡𝑡ℎ𝑃𝑃𝑛𝑛   𝑃𝑃(𝑚𝑚 − 𝑘𝑘) = (𝑚𝑚 − 𝑘𝑘)𝑃𝑃(𝑚𝑚 − (𝑘𝑘 − 1))  

 

 

 


