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ABSTRACT. Air pollution and road traffic noise are two important environmental nuisances that
could be harmful to the health and well-being of urban populations. In Mexico City, as in many
North American cities, there has been an upsurge in bicycle ridership. However, Mexico City is
also well known for having high levels of noise and air pollution. The purpose of this study is
threefold: 1) evaluate cyclists’ exposure to air pollution (nitrogen dioxide) and road traffic noise;
2) identify local factors that increase or reduce cyclists’ exposure, in paying particular attention
to the type of road and bicycle path or lane used; and 3) evaluate the influence of real-time traffic
density on cyclists’ exposure. A total of 19 bicycle trips made in central Mexico City
neighbourhoods were analyzed, representing nearly 11 hours and 137 km. The results of the
Bayesian models show that type of road and bicycle infrastructure taken by the cyclist, and
proximity to a main artery all have significant impacts on exposure levels. Finally, the variables
introduced to control for the traffic encountered by cyclists had a significant positive effect on
noise exposure, and a positive but not significant effect on nitrogen dioxide exposure.

RÉSUMÉ. La pollution de l’air et le bruit routier sont deux nuisances environnementales
importantes pouvant affecter la santé et le bien-être des populations urbaines. Au même titre que
d’autres villes nord-américaines, Mexico assiste à une recrudescence du vélo. Toutefois, Mexico
est aussi bien connue pour ses niveaux élevés de bruit et de pollution atmosphérique. Cette étude
vise trois objectifs : 1) évaluer l’exposition des cyclistes à la pollution atmosphérique (dioxyde
d’azote) et au bruit routier ; 2) identifier les facteurs locaux qui concourent à augmenter ou
réduire l’exposition des cyclistes, en accordant une attention particulière aux types de route et de
voie cyclable empruntée ; et 3) évaluer l’influence de la densité du trafic en temps réel sur
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l’exposition des cyclistes. Au total, 19 trajets à vélo réalisés dans les quartiers centraux deMexico
sont analysés, représentant près de 11 heures et 137 km de collecte. Les résultats des modèles
bayésiens montrent que le type de voie routière et cyclable empruntée par le cycliste et la
proximité d’une artère principale ont tous des impacts significatifs sur les niveaux d’exposition.
Aussi, les variables introduites pour contrôler le trafic rencontré par les cyclistes ont eu un effet
positif et significatif sur l’exposition au bruit, et un effet positif, mais non significatif sur
l’exposition au dioxyde d’azote.
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1. Introduction

Cycling is an increasingly popular means of transportation in many North American
and European cities (Buehler and Pucher, 2012; Pucher et al., 2011). This trend is also
being seen in many cities in the South, especially in Latin America (Ríos Flores et al.,
2015; Rosas-Satizábal and Rodriguez-Valencia, 2019; Tucker and Manaugh, 2018).
This is the case in Mexico City, where the number of utility cyclists has considerably
risen in recent years. According to the most recent origin-destination study (Ciudad de
México, 2017), the modal share of cycling in Mexico accounts for 2.2% of all weekday
travel in the metropolitan area (1.6% in Mexico City). In 2016, 158,524 bicycle trips
were made every day in Mexico City (Ciudad de México, 2017): that is, three times the
number of the year before. This huge increase is the direct result of Mexico City’s
bicycle mobility strategy (Gobierno del Distrito Federal, 2011, 2017), which is intended
to promote bicycle ridership within a dynamic of intermodality. In 2010, therefore, the
city developed a public bike sharing system called Ecobici, featuring a fleet that has
continued to grow ever since. In 2018, the system consisted of 480 stations and 6,800
bicycles spread over 38 km2. In the past decade, Mexico City has built cycling
infrastructures comprised of both off- and on-street bicycle paths and bike lanes. The
length of the cycling paths has expanded from only 72 kilometres in 2008 to 170
kilometres in 2016. There are also two very large parking areas (each offering more than
400 spaces for bicycles), 2,057 bike docking points, including 1,293 in public transit
stations, and 29 repair stations (Ciudad deMéxico, 2017). It has been widely shown that
cycling infrastructure increases the proportion of cyclists while augmenting their safety
(Dill and Carr, 2003; Pucher et al., 2011; Teschke et al., 2012). Awareness-raising
activities also help to promote bicycle ridership in the city. Since 2007, every Sunday,
cyclists have been able to enjoy a route of about 50 kilometres along the city’s main
arteries that is exclusively devoted to them. In 2010, themed night trips on certain
holidays were also added. Finally, free training in bicycle mechanics and traffic
regulations is offered to adults and children wishing to acquire the knowledge to allow
them to safely cycle to work or school. These factors combined with Mexico City’s
recurrent car traffic congestion problems (Leo et al., 2017), are helping to make utility
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cycling more and more attractive in the city, even though the use of cars still largely
predominates.

The individual and collective benefits of urban cycling are now well-known and
widely documented in the literature (Bigazzi and Figliozzi, 2014; Fishman et al., 2015;
Rojas-Rueda et al., 2011). For individuals, cycling increases physical activity levels,
thus improving cardiovascular health while reducing the risks of chronic illnesses and
some types of cancer, as well as of overweight and obesity (Bassett et al., 2008; Oja
et al., 1998; Woodcock et al., 2009). Collectively speaking, this translates into a
reduction in healthcare costs, as well as in road congestion, noise, and greenhouse gas
emissions (Hatzopoulou et al., 2013; Rojas-Rueda et al., 2011).

Despite these positive spin-offs, urban cycling is also associated with health risks,
due to potentially high levels of exposure to air pollution, noise, and road traffic. In a
recent systematic review, Cepeda et al. (2017) concluded that motorists and public
transit commuters have higher levels of exposure than cyclists and pedestrians.
However, because of their higher levels of ventilation, cyclists inhale more pollutants.
For example, a recent study conducted in Montreal (Canada) showed that inhaled doses
of the nitrogen dioxide (NO2) pollutant are 3.79 higher for cyclists than for motorists
during rush hour (Apparicio et al., 2018). Nevertheless, several studies have
demonstrated that the benefits of urban cycling would appear to largely surpass the risks
(De Hartog et al., 2010; Rojas-Rueda et al., 2011). Moreover, the air pollution risks in
extreme air pollution concentrations may outweigh the benefits of physical activity in
fewer than 1% of cities across the globe (Tainio et al., 2016).

Because of the benefits and risks associated with urban cycling, it is not surprising
that many studies have analyzed cyclists’ exposure to air pollution and, more rarely,
noise in a number of cities around the world. However, a recent systematic review on
exposure to road traffic-generated air and noise pollution have shown that there has been
little analysis of cities in the South (Khan et al., 2018): out of 57 articles selected,
European and North American cities are by far overrepresented, compared with cities in
the South, which only include four case studies (Macau and Beijing in China, Seoul in
Korea, and Delhi in India).

The aim of this article is thus to contribute to our understanding of cyclists’ exposure
to noise and air pollution in cities in the South by exploring the case of Mexico City.
More specifically, the present study has three objectives. The first is to simultaneously
evaluate cyclists’ exposure to noise and to NO2 pollutant during trips made in central
city neighbourhoods, something that few studies have done to date (Apparicio et al.,
2016; Apparicio et al., 2018; Boogaard et al., 2009; Gelb and Apparicio, 2020).
The second objective is to identify local factors that increase or reduce cyclists’
exposure, in paying particular attention to the type of road and bicycle path or lane used,
proximity to main arteries, and travel speed and slope. After controlling for these
factors, the third objective is to evaluate the influence of real-time traffic density on
cyclists’ exposure.
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2. Materials and methods

2.1. Study design and routes

The study area is the main city in the Mexican metropolitan region, Mexico City, a
metropolis of 8.9 million inhabitants. Several of its geophysical and meteorological
characteristics foster high levels of pollution. On the one hand, the city is situated at
2,240 metres above sea level and is surrounded by a chain of mountains, “favoring the
transformation of primary pollutants into ozone and other oxidants” (Vallejo et al.,
2004). Added to this is the lack of rain during the long winter dry season (from
November to March), which does not encourage the cleansing of fine particles from the
air (Ouyang et al., 2015).

Bicycle trips were made from February 27 toMarch 3, 2017 (Figure 1) in five districts
of Mexico City (Miguel Hidalgo, Cuauhtémoc, Álvaro Obregón, Benito Juárez and
Coyoacán). Only one person (a professor of urban studies)made the trips. Hewas assisted
by an urban studies student who followed him on a bicycle for safety reasons. The two
participants cycled together and followed the routes on their cellphones using Google
MyMaps. This study has been approved by the Institutional Review Board (Ethical
Review Board of Institut national de la recherche scientifique) (Project No CER-15-391).

The routes were previously defined using Google MyMaps by a professor of urban
planning and represent hypothetical links between various residential neighbourhoods
and several main destinations in the city. The destinations selected are either important
employment centres (e.g. Polanco, an office and business district), major shopping
destinations (e.g. the historical centre), or centres of higher education (e.g. Universidad
Nacional Autónoma de México’s main campus – CU). Moreover, when designing the
routes, we were careful to select a variety of roads, streets, and bicycle paths and lanes.

After cleaning up the data (elimination of trips due to a defective device), 19 trips
were retained, representing nearly 11 hours and 137 km (Figure 2). Note that each trip

Figure 1. Days and times of data collection
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was cycled once. On average, a trip was about half an hour and seven kilometres long,
with a speed of 13.11 km/h (Table 1).

The GPS tracks were map-matched to the OpenStreetMap (OSM) street network
data (Contributors OpenStreetMap, 2017) by using the OSRM API (Luxen and Vetter,
2011). The results of the map-matching for each trip were then validated by using the
videos that we took and modified as needed in QGIS. This validation step is necessary
because the GPS localization is sometimes not accurate enough to decide whether the
point belongs to a road or a bicycle lane just alongside. The map-matching process is
described more in depth in a previous article (Apparicio et al., 2019). Note that only the
location of GPS points was changed during the map-matching process, time and speed
reported by the GPS watches were not modified. Overall, the modifications were minor.
The traces were cut as 1-min segments (temporal resolution of the sensors) and all the
measurements were assigned to these segments by using timestamp.

Figure 2. Sample routes
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The use of the OSM street network data offers twomain advantages. First, it contains
two keys for identifying the types of roads or streets (key:highway) and types of bicycle
paths or lanes (key:cycleway). Second, because the OSM data is available for most cities
around the world, it facilitates comparisons between cities regarding the impact on air
pollution and noise exposure of the type of road and bicycle path or lane taken by the
cyclist (Apparicio and Gelb, 2020; Gelb and Apparicio, 2019, 2020). The tags used to
describe the OSM features are standardized and their detailed description is available in
the OSM’s documentation online. Despite this standardization effort, one can expect
some differences between cities considering the presence of specific infrastructure and
the characteristics of the local community of contributors (Hall et al., 2001; Mooney and
Corcoran, 2012). In this study, according to the first OSM key, several types of roads
were taken by the cyclist: trunk (i.e. most important roads; e.g. avenida Revolución),
primary (e.g. avenida Insurgentes Sur; paseo de la Reforma), secondary (e.g. avenida
Horacio), and tertiary (e.g. avenida Michoacán) roads; residential and pedestrian
(e.g. within Chapultepec park) streets; and cycleways (Figure 3). During the routes, the
cycleways taken were primarily on-street bicycle paths and, secondarily, off-street
bicycle paths and bike lanes (Figure 4).

2.2. Measurements of individual exposure

2.2.1. Exposure to air pollution (NO2) and noise

We realized a mobile data collection using four types of devices: 1) an
Aeroqual Series 500 Portable Air Quality Sensor (Auckland, New Zealand), 2) a

Table 1. Summary statistics for the 19 trips

Route length (in km) Route duration
(in minutes)

Speed (km/h)

Minimum 5.421 22.55 11.02

first quartile 5.961 27.77 12.26

Median 6.612 29.88 13.48

Third quartile 8.587 38.73 13.78

Maximum 10.477 51.18 14.62

Mean 7.177 32.94 13.11

Standard
deviation

1.759 7.80 1.12

Sum 136.354 625.77 –
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Brüel & Kjaer Personal Noise Dose Meter (Type 4448 – class 2, Narum, Denmark),
3) a Garmin GPS watch (910 XT, Olathe, KA, USA), and 4) a Garmin Virb action
camera (Olathe, KA, USA).

The Aeroqual devices have two sensors – nitrogen dioxide (NO2) and temperature
and humidity sensors – that record the average NO2 value (mg/m

3), the temperature in
degrees Celsius, and the percentage of humidity every minute. According to the
Aeroqual supplier’s product information, the NO2 sensor has the following
characteristics: range (0-1 ppm), minimum detection (0.005 ppm), accuracy of factory
calibration (< ± 0.02 ppm 0-0.2 ppm; < ± 10% 0.2-1 ppm), and resolution
(0.001 ppm). The NO2 sensors used were pre-calibrated by the supplier before the
data collection. As recommended by the manufacturer, we let them run during 24 h the
day before the data collection, and 1 h (warmup) every morning before starting the trips.
The device was fixed to a harness on the right shoulder of the participant, as close as
possible to the breathing area. As pointed out by several authors (Gelb and Apparicio,
2020; Morawska et al., 2018; Snyder et al., 2013), the use of these low-cost portable air
quality devices is particularly interesting for mobile data collection. This explains why
Aeroqual Series 500 monitors have largely been used in numerous studies on individual
exposure or air pollution mapping, e.g. (Apparicio et al., 2016; Apparicio et al., 2018;
Delgado-Saborit, 2012; Deville Cavellin et al., 2016; Gelb and Apparicio, 2020; Minet
et al., 2017). In urban areas, vehicular exhaust along transportation networks is the
primary source of ambient pollution, including nitrogen oxides (NOx) (Crouse et al.,
2009). Exposure to high concentrations of transport-related air pollutants, such as
nitrogen dioxide, can lead to increase in respiratory difficulties and asthma (Costa et al.,
2014; Khaniabadi et al., 2017).

Figure 3. Types of roads, streets, and bicycle paths and lanes taken during
the routes
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The Brüel & Kjaer devices record the average decibel levels (dB(A)) per minute
(Laeq,1 min.) with the following characteristics: exchange rate (3 dB), sound level range
(certified 65-140 dB, reliable down to 58 dB), accuracy (±2 dB). That means a
difference of 3 dB(A) corresponds to a doubling of noise intensity. As recommended by
the manufacturer, the personal Noise DoseMeter (Type 4448) was calibrated once a day
using the Sound Calibrator Type 4231 (calibration accuracy ±0.2 dB). A temporal
resolution of 1 min for both the Aeroqual monitor and the Brüel & Kjaer Noise Dose
Meter is sufficiently detailed considering that with a mean speed of 15 km/h, a cyclist

Figure 4. Examples of bicycle paths in Mexico City
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can ride only 250 m. The Garmin watch’s data logging was set every second to obtain a
GPS trace and the cyclist’s speed that were as accurate as possible. The clocks of all
devices (air pollution monitors, noise dose meters, and GPS watches) were
synchronized every morning during the data collection.

2.2.2. Exposure to road traffic

The Garmin Virb action camera was attached to the bicycle’s handlebars, thereby
enabling to obtain the cycling trip video. We were then able to estimate, in a relatively
accurate manner, the traffic encountered along the route. We were looking for the
numbers of moving cars and heavy vehicles (trucks and buses), the numbers of stopped
cars and heavy vehicles with their engines running. We used our internally developed
software to perform the counting (Apparicio et al., 2021). This application is quite
simple and allows the user to watch a video and click on it when particular events occur.
By holding a predefined key, the user can separate events into categories (in this case,
moving car, stopped car, moving truck, or stopped truck). The time and location on the
screen of events are recorded and saved in JSON files. To validate the process, two
students counted the vehicles for each video, and we then compared their results. For
each minute of a trip, two indicators are reported: the overall counting concordance
(Equation (2)) and the category-wise concordance (Equation (3)). These indicators can
be read as the percentage of concordance between users. For example, with two
participants, Ctotal represents the number of vehicles counted by the two participants
per minute, and Cdiff is the absolute difference between the two counts per minute:

OCC ¼ Ctotal � Cdif f

Ctotal
;  with

Ctotal ¼
PI

i¼1

PN
n¼1 Cni and Cdif f ¼

PN
n¼1 Cni � Cni2j j for each pair in N:

ð1Þ

The same principle can then be applied in considering the different categories; Cdiffcat is
then the absolute difference for each category between the two counts per minute:

Cwx ¼ Ctitotal � Ctidif f
Ctitotal

;  with

Ctotal ¼
PI

i¼1

PN
n¼1 Cni and Cdif f ¼

PN
n¼1

PT
t¼1 Cntii � Cnti2j j for each pair in N:

ð2Þ

withCnti representing the number of events of type t counted at minute n by participant i,
for N minutes, T types of event and I participants. For each trip, the average of these two
indicators could then be computed. This average was also weighted by the number of events
encountered per minute in order to give greater importance to minutes with more events.
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2.3. Statistical analyses

All statistical analyses were conducted using R for statistical computing software
version 3.6.1 (Team R Core, 2017). First, summary statistics are reported to describe the
measures of exposure to noise (dB(A)) and air pollution (NO2) per minute. Next, three
Bayesian models were developed using the brms package (Bürkner, 2017, 2018), in
which the dependent variables are the level of noise exposure and the level of NO2

exposure, and the observations are the one-minute segments (N = 630).

The models proposed here are largely based on recent studies (Apparicio and Gelb,
2020; Gelb and Apparicio, 2019, 2020): GAMMAR models (generalized additive
mixed models with an autoregressive term) (Wood et al., 2016) with a student
distribution for the dependent variable. Consequently, four types of terms were
introduced into each model: random effects terms, non-linear terms (i.e. splines), an
autoregressive term, and fixed linear terms. Moreover, the independent variables
introduced into the model can be grouped into six categories (Table 2).

Firstly, the road traffic noise and air pollution could vary according to day of the
week, time of day, and location (Apparicio et al., 2016; Dons et al., 2012). Hence, the
day of the week was introduced into the three models as a random effect, and the time of
day (number of minutes passed since 08:00) as a non-linear term (i.e. spline) (Apparicio
and Gelb, 2020; Gelb and Apparicio, 2019, 2020). A moving average term (MA = 3)
was used to control the temporal autocorrelation because consecutive observations are
more likely to be similar than observations selected randomly. As done previously
(Apparicio and Gelb, 2020; Gelb and Apparicio, 2019, 2020), geographic coordinates
were also introduced as non-linear terms (i.e., bivariate spline) to control the spatial
autocorrelation. It should be noted that these three terms are introduced in the model to
control for various forms of pseudo-replication (temporal and spatial autocorrelation).
Consequently, they will not be analyzed in detail.

Secondly, continuous variables – i.e. fixed linear terms – are related to weather
conditions: temperature (in Celsius) and humidity (%) measured by the Aeroqual
sensor. Thirdly, speed (km/h) and slope (%) are introduced. Slope was obtained from
SRTM (Shuttle Radar Topography Mission) elevation data version 4.1 (Jarvis et al.,
2008; Reuter et al., 2007) and was calculated as the difference between the starting and
ending points of the segment.

Fourthly, we looked at the time spent (in minutes) on the different types of roads,
bicycle paths or bike lanes (see Figure 3). It is worth noting that if the cyclist used a bike
lane, we calculated both the time spent on the bike lane as well as the time spent on the
type of road with the bike lane. Fifthly, bicycle paths were used (totally or partially) for
more than one quarter of the 630 one-minute segments (167, 26.5%). Since a bicycle
path’s (on- or off-street) proximity to the closest section of road can have a significant
impact on the levels of exposure and inhalation, we constructed several dummy
variables to evaluate the impact of these major types of roads within a distance of
25 metres: highway (n = 23, 13.8%), trunk (n = 72, 43.3%), primary road (n = 74,
44.3%), and secondary road (n = 94, 56.3%).
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Table 2. Summary statistics for the 19 trips

Statistic Min Q1 Q2 Mean Q3 Max SD

Temperature (C) 15.55 21.23 25.28 23.95 27.25 31.17 4.23

Humidity (%) 17.32 20.96 26.03 31.39 39.12 58.00 12.67

Km/h 0.00 8.52 12.77 12.35 16.75 24.02 5.52

Slope (%) -15.76 -0.92 0.00 0.01 1.15 17.86 2.95

Intersections crossed
(n)

0.00 1.00 2.00 2.40 3.00 10.0 1.75

Total cars encountered
(n)

0.00 17.00 32.00 36.25 51.00 166.00 24.98

Total heavy vehicles
encountered (n)

0.00 1.00 2.00 3.22 5.00 27.00 3.31

Moving cars encoun-
tered (n)

0.00 10.00 21.00 26.54 37.00 153.00 21.89

Moving heavy vehi-
cles encountered (n)

0.00 0.00 1.00 2.01 3.00 20.00 2.32

Trunk road (min.) 0.00 0.00 0.00 0.04 0.00 1.00 0.18

Primary road (min.) 0.00 0.00 0.00 0.26 0.57 1.00 0.42

Secondary road (min.) 0.00 0.00 0.00 0.14 0.00 1.00 0.40

Tertiary road (min.) 0.00 0.00 0.00 0.11 0.00 1.00 0.30

Residential street
(min.)

0.00 0.00 0.00 0.21 0.16 1.00 0.39

Pedestrian path or
footway (min.)

0.00 0.00 0.00 0.01 0.00 1.00 0.09

Cycleway (min.) 0.00 0.00 0.00 0.23 0.20 1.00 0.41

Bike lane (min.) 0.00 0.00 0.00 0.04 0.00 1.00 0.18
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Sixthly, we controlled the impact of the real-time traffic density. For the NO2

exposure model, we used the number of cars and heavy vehicles (trucks and buses),
moving or stopped, encountered per one-minute segment. For the noise exposure
model, we only introduced the number of moving cars and moving heavy vehicles. The
above two measures were obtained by analyzing the videos as described in the previous
section. Priors used for the Bayesian models (Gelman, 2006; Gustafson et al., 2006) are
reported at Table S1 (supplementary material).

To meet the third objective – evaluate the influence of real-time traffic density on
cyclists’ exposure – , two different models were estimated. For each pollutant (NO2 and
noise exposure), a first model is built with the control variables (i.e. day of the week,
time of day, location, weather conditions, slope and speed) and the predictors related to
the type of road and bicycle path taken by the cyclist. In a second model, the predictors
related to real-time traffic density are added.

2.4. Spatial Data Processing and Analysis

Figure 5 summarizes the spatial data processing and analysis based entirely on open-
source solutions (Python, Java, OpenStreetMap, OSRM et R). Briefly, the data from the
different sensors is structured and imported into an SQLite database (SpatiaLite) by
using a Python script (step 1). Next, all the datasets are merged by using the time stamp.
This results in a point shapefile representing the seconds of each trip and containing the
values of nitrogen dioxide, road traffic noise (dB(A)), temperature, humidity and the
link to the image extracted from the video (step 2). These data are then map-matched on
the OpenStreetMap network by using the OSMR API and the validation of that process
is carried out using the images extracted from the videos (step 3). As mentioned before,
the real-time traffic density indicators are built in Vifeco (a Java Application) and
exported into JSON files with two attributes: categories of vehicles (moving or stopped
cars/heavy vehicles) and the time elapsed since the beginning of the video (step 4). The
final geographic files are obtained by merging the map-matched data, OpenStreetMap
data and the real-time road traffic data (step 5). Finally, these shapefiles are imported
and analyzed in R with the Rgdal and brms packages.

3. Results

3.1. Univariate statistics: Levels of air pollution and road traffic noise exposure

The noise levels measured during the trips vary substantially, ranging from 61.4 to
90.5 dB(A) (LAeq,1 min) (Table 3). The World Health Organization (WHO) group
identified two priority health outcome lines of evidence for road traffic noise (World
Health Organization, 2018). The first threshold value of 53.3 dB for the average road
traffic noise exposure during the day (Lden) corresponds to an absolute risk of 10% for
the prevalence of a highly annoyed population. The second one of 59.3 dB (Lden)
corresponds to an increase of 5% of the relative risk for the incidence of ischemic heart
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disease. In addition, the Secretariat of the Environment and Natural Resources of
Mexico recommends that noise should not exceed 65 dB(A) (LAeq 24h) during the day
(Secretaría de Medio Ambiente y Recursos Naturales, 2013). The levels of noise
measured in Mexico City are therefore relatively high, with mean and median values
above the 70 dB(A) threshold. In looking at the values of the percentiles, we see that, for
95% of the times that the cyclist spent on the trips, the noise values exceeded the
guideline value of the Secretariat of the Environment of Mexico (P5 = 65.32).

Figure 5. Spatial data processing and analysis
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NO2 pollution varies from 54 to 394mg/m3, with mean and median values of 219
and 223mg/m3 respectively (Table 3). The pollution levels found are mostly higher than
200mg/m3, the WHO short-term (1-hour) NO2 guideline value (World Health
Organization, 2006). Moreover, for close to 10% of the times spent on the bike, the
participant was even exposed to values that exceeded 300mg/m3 (P90 = 294.4;
P95 = 327.8). These results must be interpreted with caution. They are raw data coming

Table 3. Descriptive statistics for the exposure variables per minute

Statistic LAeq, 1 min(dB(A)) NO2 (mg/m
3)

Meana 74.8 218.60

Standard deviationa 8.8 62.91

Percentiles

1 63.2 97.6

5 65.3 114.2

10 66.5 131.7

25 69.2 170.2

50 71.9 222.7

75 75.1 261.9

90 77.9 294.4

95 79.7 327.8

99 82.8 365.6

ACF with

k = 1 0.45 0.94

k = 2 0.16 0.87

K = 3 0.15 0.85

Moran I 0.28 (d = 250) 0.61 (d = 300)

Note: to calculate Moran’s I statistic, we used a binary matrix and defined as neighbors of the
segment i all the segments in a buffer of length d around i with d ranging from 50 to 500m with a
step of 50m. Only the highest values are here reported. aMean and SD of dB values are computed
using the seewave package (Sueur et al., 2008). These values are raw data and must be interpreted
with care, especially the NO2 values which probably overestimate the real individual exposure
because the Aeroqual NO2 sensor is known for its cross-sensitivity to ozone (O3).
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from a low-cost sensor and could overestimate real exposure, especially because the
Aeroqual NO2 sensor is known for its cross-sensitivity to ozone (O3) (Lin et al., 2015).

The NO2 and noise exposure are characterized by strong temporal and spatial
autocorrelations (see ACF and Moran I values, Table 3). This justifies introducing a
moving average and a spline on the geographic coordinates in the three models. As
found previously (Apparicio et al., 2016; Gelb and Apparicio, 2020), there is no
correlation between the two measures of exposure (Pearson’s correlation coefficient =
0.003, P = 0.86).

3.2. Univariate statistics: Levels of air pollution and road traffic noise exposure

In order to introduce real-time traffic density into the Bayesian models as
independent variables, it is appropriate to verify the agreement between the two
evaluators who assessed the vehicle counts. To this end, univariate statistics for the two
aforementioned concordance indicators are reported in Table 4. With a minimum value
of 85.5%, it is clear that the concordance between the two participants is very strong.
Consequently, our indicators of real-time traffic density are reliable.

3.3. Bayesian models: Factors associated with exposure

3.3.1. Assessment of the models

The results of the four Bayesian models are reported in Tables 5 and 6. Before
entering into a detailed analysis of the four models, it should be noted that the
temperature was excluded due to excessive collinearity with humidity (R2 =� 0.974).
All models0 parameters converged (Rhat = 1.0) and all the trace plots display important
mixing (four chains) (Figures S1, S2 and S3, supplementary material). The posterior
predictive checks demonstrate that the three models are well fitted (Figure S4,
supplementary material). Also, the autocorrelation function (ACF) values calculated on
the residuals suggest that there is no temporal dependency in the four models (Table S2,
supplementary material).

Table 4. Concordance between the counts

Overall counting concordance Category wise concordance

Minimum 91.32 85.47

Maximum 96.38 91.24

Median 94.86 90.66

Standard deviation 1.14 2.26
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Table 5. Results of the Bayesian models for the noise exposure

Model A1 Model B1

Est. 95% CI Est. 95% CI

Fixed effects

(Intercept) 73.34 [69.24 77.18] 71.62 [67.92 75.45]

Humidity (%) 0.07 [�0.04 0.18] 0.06 [�0.05 0.16]

Speed (km/h) 0.07 [�0.05 0.07] 0.04 [�0.02 0.09]

Slope (%) 0.04 [�0.04 0.12] 0.03 [�0.05 0.11]

Intersections crossed 0.04 [�0.14 0.22] 0.05 [�0.12 0.22]

Trunk road Ref Ref

Primary road �1.95 [�3.81 0.10] �2.12 [�3.94 �0.29]

Secondary road �4.64 [�6.53 �2.71] �4.33 [�6.24 �2.44]

Tertiary road �4.34 [�6.39 �2.29] �4.28 [�6.25 �2.29]

Residential street �6.29 [�8.23 �4.38] �5.51 [�7.39 �3.64]

Pedestrian path or
Footway

�10.27 [�14.08 �6.40] �9.40 [�13.22 �5.60]

Cycleway �4.87 [�6.90 �2.80] �4.21 [�6.22 �2.22]

Cycle track or bike lane �1.32 [�3.36 �0.74] �1.21 [�3.20 �0.79]

Major road within a distance of 25 metres of the cycleway

Motorway (dummy) 1.49 [�0.11 3.09] 0.96 [�0.57 2.50]

Trunk (dummy) 1.90 [0.38 3.38] 1.80 [0.39 3.22]

Primary road (dummy) 0.72 [�0.38 1.82] 0.34 [�0.70 1.40]

Secondary road (dummy) 0.75 [�0.39 1.88] 0.22 [�0.88 1.34]

Moving cars � 10 0.35 [0.18 0.52]

Moving heavy vehicles
� 10

2.67 [1.21 4.14]
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The values of Bayes marginal and conditional R-squared are very similar for the
noise exposure models (Table 5), but very different for the NO2 exposure models
(Table 6). This implies that the day of the week introduced as a random effect only plays
an important role in the NO2 exposure models. As a result, the intercepts of the random
effects vary significantly according to the day of the week for the NO2 exposure models,
but they are not significant for the noise exposure models. This means that the noise
levels measured are broadly similar for the four days of collection. Of course, this
observation only applies to our data collection week and it cannot be generalized to the
whole year. However, these results demonstrate the relevance of introducing the day of
the week as a random effect in order to obtain unbiased coefficients for the fixed effects
predictors.

Table 5 – (continued)

Model A1 Model B1

Est. 95% CI Est. 95% CI

Random effects
(intercept)

Monday 0.15 [�0.73 1.47] 0.17 [�0.70 1.48]

Tuesday 0.03 [�1.00 1.19] �0.02 [�1.06 1.07]

Thursday 0.02 [�0.94 1.07] �0.09 [�1.14 0.86]

Friday �0.01 [�1.09 1.13] 0.07 [�0.91 1.27]

Moving average

MA[1] 0.42 [0.33 0.50] 0.40 [0.31 0.48]

MA[2] 0.04 [�0.05 0.13] 0.05 [�0.05 0.14]

MA[3] 0.02 [�0.08 0.12] 0.03 [�0.07 0.12]

Bayes marginal
R-squared

0.352 [0.306 0.396] 0.398 [0.356 0.437]

Bayes conditional
R-squared

0.351 [0.305 0.394] 0.397 [0.356 0.335]

Waic 3453.3 3396.0

looic 3453.5 3396.3

Estimate and 95% CI adjusted for the time of day (spline on the number of minutes passed since
08:00) and location (bivariate spline on the geographic coordinates).
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Table 6. Results of the Bayesian models for the NO2 exposure

Model A1 Model B1

Est. 95% CI Est. 95% CI

Fixed effects

(Intercept) 240.41 [180.00 300.14] 241.57 [179.35 300.96]

Humidity (%) �0.66 [�2.38 1.05] �0.64 [�2.34 1.11]

Speed (km/h) 0.19 [�0.10 0.47] 0.16 [�0.13 0.45]

Slope (%) 0.23 [�0.14 0.60] 0.23 [�0.14 0.60]

Intersections crossed �0.10 [�0.95 0.75] �0.13 [�1.00 0.74]

Trunk road Ref Ref

Primary road �12.17 [�1.77 �0.46] �11.41 [�20.92 �1.75]

Secondary road �13.64 [�3.64 �2.32] �13.40 [�23.04 �3.74]

Tertiary road �11.45 [�5.67 �2.88] �11.39 [�21.52 �0.98]

Residential street �10.97 [�5.35 �4.02] �11.35 [�21.16 �1.68]

Pedestrian path or
Footway

�26.90 [�4.84 �2.76] �27.18 [�44.34 �9.68]

Cycleway �11.26 [�4.84 �3.19] �11.42 [�21.48 �1.40]

Cycle track or bike lane �3.81 [�1.74 �0.03] �4.22 [�15.98 7.31]

Major road within a distance of 25 metres of the cycleway

Motorway (dummy) 6.78 [�0.30 13.74] 6.93 [0.07 13.88]

Trunk (dummy) 9.38 [2.15 16.48] 9.59 [2.45 16.78]

Primary road (dummy) 2.89 [�2.43 8.33] 3.14 [�2.18 8.51]

Secondary road (dummy) �0.55 [�5.98 4.84] �0.38 [�5.69 4.94]

Total cars � 10 �0.47 [�1.24 0.31]

Total heavy vehicles
� 10

0.31 [�4.68 5.33]
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As mentioned before, to meet the third objective – to evaluate the influence of real-
time traffic density on cyclists’ exposure –, two different models were estimated: a first
model with predictors related to the type of road and bicycle path taken by the cyclist
(Models A, Tables 5 and 6), and a second model in which were added the predictors
related to real-time traffic density (Models B, Tables 5 and 6). For the noise exposure
prediction, the goodness of fit (Bayes conditional R-squared, Waic, looic) between
model A and model B indicates that the introduction of the real-time traffic density
predictors significantly improves the model. However, this finding does not apply to the
NO2 exposure prediction since the differences between the fit statistics are very weak.

Table 6 – (continued)

Model A1 Model B1

Est. 95% CI Est. 95% CI

Random effects
(intercept)

Monday 31.91 [6.27 61.65] 31.68 [6.06 61.44]

Tuesday 33.30 [9.40 61.23] 33.02 [9.42 60.74]

Thursday �9.57 [�30.66 14.31] �9.55 [�30.47 13.72]

Friday �17.28 [�40.81 6.71] �17.57 [�41.34 5.93]

Moving average

MA[1] 0.82 [0.73 0.91] 0.82 [0.73 0.91]

MA[2] 0.40 [0.30 0.50] 0.40 [0.30 0.50]

MA[3] 0.11 [0.03 0.20] 0.12 [0.04 0.20]

Bayes marginal
R-squared

0.841 [0.809 0.865] 0.842 [0.809 0.866]

Bayes conditional
R-squared

0.888 [0.880 0.895] 0.888 [0.879 0.895]

Waic 5659.0 5662.0

looic 5659.7 5662.9

Estimate and 95% CI adjusted for the time of day (spline on the number of minutes passed since
08:00) and location (bivariate spline on the geographic coordinates).
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3.3.2. Analysis of the fixed linear terms

At the outset, it is worth noting the coefficients obtained for both models (A and B)
are very similar (Tables 5 and 6). For reasons of parsimony, we will then present only
those of the final models (B). With respect to the control variables, humidity, speed,
slope and number of intersections crossed have a not significant effect on noise and NO2

exposure in any model (Tables 5 and 6).

Unsurprisingly, exposure to road traffic noise and nitrogen dioxide are strongly
associated with the type of road or bicycle infrastructure taken by the cyclist. Compared
with the time spent travelling on a trunk road (reference category), taking other types of
roads significantly reduces the cyclist’s exposure to noise and air pollution. For noise,
the levels of exposure are especially lower on pedestrian paths or footways, residential
streets and cycleways (�9.4, �5.5, �4.2 dB(A) for noise and �27.2, �11.4,
�11.4 mg/m3 for NO2 respectively). In contrast, taking a cycle track or a shared lane has
a low impact on reducing the exposure to road traffic noise (�1.2 dB(A)) and NO2

(�4.2 mg/m3).

The type of road nearby the cycleway (i.e., off-street or on-street bicycle path) within
a 25-metre radius also had significant impacts on the exposure. For example, the
presence of a section of motorway or trunk road near the bicycle path significantly
increased exposure to noise (0.96 and 1.8 dB(A)) and NO2 (6.93 and 9.59 mg/m3). On
the other hand, presences within 25 metres of a primary or secondary road were not
significantly associated with higher levels of exposure.

Finally, the real-time traffic density coefficients are significant for the noise exposure
(Model B, Table 5), but not for the NO2 exposure. Indeed, per 10 heavy vehicles
encountered each minute by the cyclist, we found an increase of 2.67 dB(A) in road
traffic noise exposure versus 0.35 dB(A) increase for 10 moving cars.

4. Discussion

4.1. Limitations of the study

Although the size of the data set was large enough to enable us to perform rigorous
statistical analyses (n = 630), it is important to remember that it only included
137 kilometres and 11 hours of data collection. Some recent studies with similar
approaches have used fairly sizeable data sets: for example, 422 km and 22 hours of
collection in Montreal (Apparicio et al., 2016), 964 and 64 hours in Paris (Gelb and
Apparicio, 2020) and, 27 hours in eleven Dutch cities (Boogaard et al., 2009). In our
case, because it was quite a long and onerous task for the two participants to count the
vehicles on the videos, we chose to conduct a study on a rather limited sample. Since the
contribution of the traffic indicators has proven to be conclusive, it would therefore be
appropriate to apply this to larger samples and for other cities as well. To estimate the
traffic encountered along the route, we only used one camera attached to the bicycle’s
handlebars. In future works, it could be relevant to use a second camera to count vehicles
behind the cyclist.
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4.2. The effects of real-time traffic measures

We found that variables introduced to control for the traffic encountered by cyclists
had a significant positive effect on noise exposure, and a positive but not significant
effect on NO2 exposure. This can be explained in particular by the fact that noise is an
immediate pollutant, which is dispersed in the air directly after being generated.
Conversely, air pollution can accumulate over time, so that the importance of real-time
traffic variables is more relative. In other words, what is important from the point of
view of NO2 exposure on a road is not the number of vehicles encountered within one
minute, but rather the number of vehicles that have already travelled on that road since
the beginning of the day. That explains the road type has clearly a significant important
on exposure to NO2. It would be very interesting to complement these results by
including annual average daily traffic flows, as that variable could more effectively
capture this notion of pollution accumulation.

5. Conclusion

The analysis of the collected data has revealed that the levels of exposure to road
traffic noise and NO2 are especially high for cyclists in Mexico City. The type of road or
bicycle infrastructure taken by the cyclist has both significant impacts on exposure to
noise and air pollution. Taking residential streets and cycle paths away from major
rather than major roads significantly reduces the cyclist’s exposure to noise and air
pollution. This is good news for two reasons. First, when possible, the cyclists could
significantly reduce their noise exposure by modifying their routes. Second, the bicycle
infrastructure planners could have a significant impact on cyclists’ exposure by
implementing new cycling routes in a less noisy or air-polluted urban environment. The
inclusion of real-time traffic indicators constructed by using videos taken by an action
camera fixed onto the cyclist’s handlebars has thus proven to be a good way of
modelling levels of exposure. So it would be worth repeating this exercise in other urban
contexts and for other air pollutants (e.g. particulate matters – PM2.5). This would lead a
better understand the complex relationships between traffic, noise exposure, and
exposure and inhalation of air pollutants.
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