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ABSTRACT

A study is carried out for the two dimensional laminar flow of conducting fluid in presence of magnetic field. The governing non-linear equations
of motion are transformed in to dimensionaless form. A solution is obtained by homotopy perturbation method and it is valid for moderately large
Reynolds numbers for injection at the wall. Also an efficient algorithm based finite difference scheme is developed to solve the reduced coupled
ordinary differential equations with necessary boundary conditions. The effects of Reynolds number, the magnetic parameter and the pradantle
number on flow velocity and tempratare distribution is analysed by both the methods and results agree well with previous work for special cases. It
is observed that overall effect of magnetic field is same as Hartmann flow. Further the analysis predicts that the heat transfer at the surface of the
disks increases with increase in Reynolds number, magnetic parameter and Prandle number. The shear stress at the wall decreases with increase in
injection, whearas increase with increase in magnetic parameter. The study of such phenomenon is beneficial in the industry for thermal control in
polymeric processing.

Keywords: Navier-Stokes equations; Laminor flow; Incompressible flow; Non-linear differential equations; Homotopy Perturbation method; Finite
Difference Method

1. INTRODUCTION

The flow of a conducting fluid between two porous disks is of practical
importance in lubrication theory, such type of flows have lot of impor-
tance and applications in mechanical and manufacturing process, mag-
netic and storage devices (disk drives), gas engines, crystal growth pro-
cess and bio-mechanics. MHD effects are used for power generators,
light-ion-beam confinements and space crafts. Many authors contributed
their efforts to understand these types of problems. The problem was
first studied by Batchelor (Batchelor (1967)), who extended the study of
Von Karman (Karman (2021)) for a flow over a single disk.Study about
flow between rotating disks is done by many authors in 1960s(Lance and
Rogers (1962), Root and Lewellen (1966)). The similar type of study
with slight modification in the model in which one disk is rotating and
one disk is stationary is done by Mellor (Mellor et al. (1968)). In 1979
Wang (Wang and Watson (1979)) and his associates further developed
these models with suction or injection by considering the porous disks
with rotation. The first MHD analysis about these type of models done
by Srivastava and his associates in 1961(Srivastava and Sharma (1961)).
Later many authors contributed the better analysis in MHD in this type
models(Stephenson (1969), Chandrasekhara and Rudriah (1971a), Chan-
drasekhara and Rudriah (1971b)). Further the problem was analysed by
Stewartson (Stewartson (1953)) who found perturbation solution.

A recent study of this kind of problems are done by Si Xinhui(Xinhui
et al. (2012)) in 2012, authors used homotopy analysis method for lam-
inar flow and heat transfer of viscous fluid between contracting rotating
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disks. In 2019 Naresh kumar and his associates (Raju et al. (2019)) stud-
ied the heat and mass transfer analysis of MHD couple stress fluid flow
through contracting or expanding porous pipes. P Sibanda (Sibanda and
Makinde (2012)) and his associates investigate the hydromagnetic steady
flow and heat transfer characteristics of an incompressible viscous electri-
cally conducting fluid past a rotating disk in a porous medium with ohmic
heating, Hall current and viscous dissipation . Many authors studied this
type of models under different conditions and these articles can be found
in (Raju et al. (2019), Nazir and Mahmood (2011), Osalusi et al. (2007),
Gu et al. (2020), Abed et al. (2020), Tufail et al. (2020), Gadamsetty
et al. (2020)).

Solving these type of models through existing mathematical tools
are also really challenging for the researcher, due to non-linear nature
of the equations obtaining analytical solution is not possible in most of
the cases, hence the most of the researchers have used numerical meth-
ods to solve this type of problems (Bujurke et al. (1995), Sampath and
Pai (2019b), Sampath and Pai (2019a)), but numerical methods having
their own demerits and most of the time getting solution to this kind of
problems is a tedious job to the researchers. However, this class of prob-
lems are efficiently solved through semi analytical methods. One such
method is homotopy perturbation method (HPM). HPM first proposed by
Ji-Huan He in 1998 ( He. (2006)). HPM is the combination of traditional
perturbation method and homotopy in topology. Many authors used this
method to solve different class of problems (Gupta et al. (2013), Abbas-
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bandy (2007),Ganji and Sadighi (2006), Rafei and Ganji (2006), Rafei
et al. (2007), Siddiqui and Irum (2008) ).

By observing the above literature about this type of study, we got
motivated to study the characteristic of MHD flow and heat transfer of
laminar flow between porous disks through HPM. The main advantage is
that it yields a very rapid convergence of the series solution, only with the
few iterations. For simple domains the HPM has advantages over pure nu-
merical results. A single computer program gives the solution for a large
range of expansion quantity. The steady state solutions of the Navier-
Stokes equations are usually obtained by numerical schemes like finite
difference or finite element scheme. The numerical methods are difficult
to implement due to non-linearity of the equations, so semi-analytical
methods are useful in analysing such problems but in the present study
both the methods are implemented efficiently in analysing the problem.

2. PROBLEM FORMULATION

The problem of the steady laminar flow of an in-compressible viscous
fluid between parallel circular non-conducting disks in the presence of a
uniform strong magnetic field is investigated for small Reynolds number.
The flow under consideration is entirely due to either uniform suction or
injection at the disks as shown bellow figure

Fig. 1 Geometry of the problem

The governing equations of motion are

Ur
∂Ur

∂r
+
Uz

h

∂Ur

∂η
= −1

ρ

∂p

∂r
+ ν

[
∂2Ur

∂r2
+

1

r

∂ur

∂r
− Ur

r

+
1

h2

∂2Ur

∂η2

]
− µ2σH2

0

ρ
Ur

(1)

Ur
∂Uz

∂r
+
Uz

h

∂Uz

∂η
= − 1

ρh

∂p

∂η
+ ν

[
∂2Uz

∂r2
+

1

r

∂Uz

∂r
+

1

h2

∂2Uz

∂η2

]
(2)

∂Ur

∂r
+
Ur

r
+

1

h

∂Uz

∂η
= 0 (3)

The induced magnetic field is assumed to be small and it can be cal-
culated, assuming the velocity Ur known, from the Maxwell-Ampere’s
equation:

∂2hr

∂η2
+ αµσh

∂Ur

∂η
= 0 (4)

The boundary condition on hr , if the disks are non-conducting, is

hr = 0 at the disks (5)

The boundary conditions on Ur and Uz are the no-slip conditions:

Ur(r,±h) = 0 (6)

and
Uz(r,±h) = ∓U0 = constant (7)

The equation for the temperature field, neglecting the viscous dissipation,
can be written as
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The boundary conditions for the temperature field can be written as
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(9)

Using the transformation
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Equations (1) and (2), using Eq. (9) and Eq. (10), becomes
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Since the right hand side of Eq. (12) is a function of η only, it follows
that:

∂2p

∂r∂η
= 0. (16)

Hence, Eq.(11), using Eq. (13), becomes
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Equation (14) is true for all r, if

f ′′′(η) +R(f(η)f ′′(η) − 1

2
f ′(η)2) −M2f ′(η) = A (18)

θ′′(η) +RPrf(η)θ′(η) = 0 (19)

The boundary conditions on f(η) and θ(η) are

f(±1) = ±1, f ′(±1) = 0 (20)

θ(−1) = 0, θ(1) = 1. (21)

3. METHOD OF SOLUTION

We adopt two methods to solve the problems considered.
Method-I: Homotopy Perturbation Solution:
To describe the HPM solution for the system of non-linear differential
equations, we consider

D1[f(η)] − f1(η) = 0 (22)

D2[θ(η)] − f2(η) = 0 (23)

whereD1 andD2 denotes the operator, f(η) and θ(η) are unknown func-
tions, η denote the independent variable and f1, f2 are known functions.
D1 and D2 can be written as

D1 = L1 +N1
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D2 = L2 +N2

whereL1 andL2 are simple linear part,N1 andN2 are remaining part of
the Eqs. (22) and (23) respectively. The proper selection of L1, L2, N1,
andN2 form the governing equations one can get the homotopy equation
for Eq. ( 22) and Eq. (23 ) as follows

H1(Φ1(η, q; q)) = (1 − q)
[
L1(Φ1, q) − L1(v0(η))

]
+q
[
D1(Φ1, q) − f1(η)

]
= 0

(24)

H2(Φ2(η, q; q)) = (1 − q)
[
L2(Φ1, q) − L2(v0(η))

]
+q
[
D2(Φ2, q) − f2(η)

]
= 0

(25)

where v0(η) is the initial guess to the Eq. (22) and Eq. (23 ).
We assume the solution of Eq. (24) and Eq. (25) as follows

Φ1(η, q) =

∞∑
n=0

qnfn(η) (26)

Φ2(η, q) =

∞∑
n=0

qnθn(η) (27)

The solution to the considered problems is Eq. (26) and Eq. (27) at q = 1.
The slow convergence of the above series Eqs. (26) and (27) at q = 1
requires large number of terms for obtaining an almost exact solution. As
we proceed for higher approximations, the computations becomes cum-
bersome and is difficult to calculate the terms manually. So Mathematica
software is used to get higher order terms.
By proper selection of linear and non-linear part and applying HPM to
solve the consider equations one can get the zeroth and first order solu-
tion as follows
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Method-II: Finite Difference Solutions:
The equations mentioned above Eqs. (18, 19 ) subjected Eqs. (20 , 21
) were solved numerically by FDM to confirm the results obtained by
us. Using standard finite difference method, i.e stepping from ηj−1 to
ηj , a Crank-Nicolson’s scheme was used. These tridiagnal systems are
easily solved to update the values on each grid point. Calculations were
performed by dividing the interval into 104 sub intervals to find the asso-
ciated parameters. These system of equations were solved using Mathe-
matica.

4. RESULT AND DISCUSSION

The intention of the authors in this study is to analyse the flow and heat
transfer characteristics associated with laminar flow between porous disks
in the presence of a uniform magnetic field through semi-numerical tech-
nique. In this section we illustrate the numerical and semi-numerical
findings in graphical and tabular forms with the interpretations and dis-
cussion. To develop better understanding of the conducting fluid be-
tween two parallel porous disks and thermal characteristics, we choose
to present the shear stress , velocity and temperature across the disks for
a range of the Reynolds number R, the magnetic parameter M and the
Prandl number Pr. The results presented using homotopy perturbation
series method by considering 20 terms in the series and also compared
the results obtained by HPM with the classical FDM, by dividing the in-
terval in to 10000 sub-intervals. The algebra becomes cumbersome after
certain steps we implement these two methods in mathematica software
by writing elegant code.

Figures 2 to 7 represent the dimensionless axial and redial veloc-
ity for various values of parameters from various angle . Figures 2 to 4
presents the dimensionless axial velocity, from Fig.2 it is clear that the
axial velocity takes its dimensionless value 1, at the upper disk and −1,
at the lower disk with a point of inflection on the central plane z = 0. The
axial velocity f(η) increases throughout from −1 to 1 for a given value
of R . Figures 4 to 7 represents the behavior of the radial velocity for
various values of parameters. The radial velocity profiles are in parabolic
nature for all the values of the parameters. The radial velocity increases
in the central plane and near the boundary it fall with an increase in the
values of R.

Figures 8 to 14 represents the variation of the temperature for dif-
ferent values of the parameters R, M and Pr. Figs. 8 to 10 shows the
variation of θ(η) with R with fixed values of M and Pr. It is observed
from these figures that the temperature is increases in the upper half of
the plane and decreases in lower region with increase in R. In Figs. 10 to
12, we fix the values of R , M and plotted θ(η) with the variation in Pr.
In Figs. 13 to 14, we fix R , Pr and plotted temperature profiles with
the variation in magnetic parameter for these two cases. Also we observe
the similar situation with slight change in position due to increase in the
conductivity in the fluid.

Table 1 and Table 2 show the heat transfer rate (θ′(−1)) and the
shear stress(f ′′(−1)) respectively. In this section we compared the re-
sults obtained by the HPM with the classical FDM technique and tabu-
lated the values and the results are in good agreement. From Table 1 it is
clear that the heat transfer rate decreases with increase in R. As we in-
crease the magnetic parameter, heat transfer rate also increases, however
as we increase the Prandtl number heat transfer rate decreases. From the
Table 1 it is clear that the shear stress decreases as we increase R and
increases with increasing the magnetic parameter.

Fig. 2 Variation of axial velocity with R, when M = 0.2
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Fig. 3 Variation of axial velocity with R, when M = 0.4

Fig. 4 Variation of axial velocity with R, when M = 0.6

Fig. 5 Variation of radial velocity with R, when M = 0.2

Fig. 6 Variation of radial velocity with R, when M = 0.4

Fig. 7 Variation of radial velocity with R, when M = 0.6

Fig. 8 Temperature variation with R, when M = 0.1, P r = 0.4

Fig. 9 Temperature variation with R, when M = 0.2, P r = 0.4

Fig. 10 Temperature variation with R, when M = 0.3, P r = 0.4
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Fig. 11 Temperature variation with Pr, when M = 1.5, R = 5

Fig. 12 Temperature variation with Pr, when M = 1.5, R = 10

Fig. 13 Temperature variation with M , when Pr = 0.4, R = 5

Fig. 14 VTemperature variation with M , when Pr = 0.4, R = 10

Table 1 Values of Nusselt number (θ′(−1)).

R Pr M HPM FDM M HPM FDM
1 0.1 0.2 0.48019 0.480151 0.6 0.48022 0.48018
2 0.46081 0.460777 0.46087 0.46083
3 0.44190 0.441873 0.44198 0.44194
4 0.42350 0.423479 0.42360 0.42357
5 0.40565 0.405625 0.40575 0.40573
6 0.38834 0.38833 0.38846 0.38844
7 0.37160 0.37159 0.37172 0.37171
8 0.35538 0. 35541 0.35552 0.35555
9 0.33933 0.339802 0.33958 0.33993

10 0.32072 0.32474 0.32176 0.32488
1 0.1 0.4 0.48021 0.48016 0.8 0.48025 0.48020
2 0.46083 0.46079 0.46091 0.46088
3 0.44193 0.44190 0.44204 0.44201
4 0.42354 0.42351 0.42368 0.42365
5 0.40569 0.40567 0.40584 0.40582
6 0.38839 0.38837 0.38856 0.38854
7 0.37165 0.37164 0.37183 0.37182
8 0.35543 0.35546 0.35564 0.35565
9 0.33942 0.33985 0.33980 0.34005

10 0.32110 0.32480 0.32271 0.322499
1 0.2 0.2 0.46100 0.46097 0.6 0.46106 0.46102
2 0.42406 0.42404 0.42416 0.42414
3 0.38924 0.38923 0.38938 0.38936
4 0.35657 0.35656 0.35674 0.35673
5 0.32604 0.32604 0.32622 0.32623
6 0.29761 0.29762 0.29781 0.29781
7 0.27122 0.27123 0.27142 0.27143
8 0.24671 0.24681 0.24694 0.24701
9 0.22331 0.22426 0.22380 0.22446

10 0.19564 0.20349 0.19810 0.20368
1 0.2 0.4 0.46102 0.46099 0.8 0.46111 0.46107
2 0.42410 0.42407 0.42425 0.42423
3 0.38929 0.38928 0.38950 0.38949
4 0.35663 0.35662 0.35688 0.35688
5 0.32611 0.32611 0.32638 0.32637
6 0.29769 0.29769 0.29797 0.29798
7 0.27129 0.27131 0.27159 0.27160
8 0.24680 0.24689 0.24713 0.24718
9 0.22349 0.22434 0.22421 0.22462

10 0.19656 0.203569 0.20024 0.20385
1 0.3 0.2 0.44242 0.44238 0.6 0.44250 0.44247
2 0.38967 0.38966 0.38982 0.38980
3 0.34174 0.34174 0.34193 0.34192
4 0.29851 0.29852 0.29873 0.29874
5 0.25978 0.25979 0.26001 0.26003
6 0.22529 0.22531 0.22552 0.22554
7 0.19474 0.19477 0.19498 0.19500
8 0.16771 0.16787 0.16799 0.16809
9 0.14281 0.144278 0.14356 0.14448

10 0.11171 0.12368 0.11620 0.12387
1 0.3 0.4 0.44244 0.44241 0.8 0.44257 0.44254
2 0.38973 0.38971 0.38994 0.38993
3 0.34181 0.34181 0.34210 0.34210
4 0.29859 0.29859 0.29892 0.29893
5 0.25987 0.25988 0.26021 0.26021
6 0.22538 0.22540 0.22573 0.22574
7 0.19483 0.19486 0.19518 0.19520
8 0.16782 0.16795 0.16822 0.16828
9 0.14309 0.144356 0.14419 0.14466

10 0.11340 0.12375 0.11998 0.12403
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1 0.4 0.2 0.42442 0.42440 0.6 0.42453 0.42450
2 0.35756 0.35756 0.35775 0.35774
3 0.29911 0.29912 0.29934 0.29933
4 0.24857 0.24858 0.24882 0.24883
5 0.20532 0.20533 0.20557 0.20560
6 0.16865 0.16867 0.16890 0.16891
7 0.13782 0.13785 0.13805 0.13808
8 0.11191 0.11214 0.11222 0.11235
9 0.08865 0.09084 0.08980 0.09102

10 0.05570 0.07330 0.06341 0.07346
1 0.4 0.4 0.42446 0.42444 0.8 0.42462 0.42456
2 0.35763 0.35762 0.35790 0.35790
3 0.29919 0.29920 0.29954 0.29954
4 0.24866 0.24867 0.24904 0.24906
5 0.20541 0.20543 0.20580 0.20581
6 0.16874 0.16877 0.16911 0.16913
7 0.13791 0.13794 0.13826 0.13828
8 0.11203 0.11222 0.11248 0.11253
9 0.08908 0.09091 0.09075 0.09118

10 0.05863 0.07336 0.069780 0.07360

Table 2 Values of shear stressf ′′(−1).

R M HPM FDM M HPM FDM
1 0.2 2.78136 2.78070 0.4 2.80313 2.80240
2 2.60927 2.60908 2.6289 2.62842
3 2.48025 2.48001 2.49785 2.49767
4 2.38413 2.38376 2.39986 2.39937
5 2.31251 2.31218 2.32658 2.32640
6 2.25887 2.25870 2.27149 2.27128
7 2.21892 2.21776 2.23028 2.22946
8 2.19812 2.18666 2.20813 2.19713
9 2.28767 2.16253 2.29358 2.17198

10 3.22869 2.14334 3.20662 2.15209
1 0.6 2.83913 2.83860 0.8 2.88895 2.88840
2 2.66142 2.66092 2.70650 2.70622
3 2.52702 2.52646 2.56754 2.56737
4 2.42597 2.42564 2.46229 2.46220
5 2.34996 2.34994 2.38252 2.38200
6 2.29248 2.29211 2.32176 2.32139
7 2.24916 2.24821 2.27549 2.27473
8 2.22454 2.21438 2.24702 2.23831
9 2.30119 2.18768 2.30792 2.20946

10 3.15457 2.1633 3.05463 2.18648

5. CONCLUSIONS

The present study has revealed the effects of governing parameters on
the flow in presence of magnetic field and thermal effects. The resulting
equations with associate boundary conditions are solved by HPM and fi-
nite difference method.
The following conclusions are emerging out of the study:
1) The shear stress and heat transfer rate decreases by increasing in injec-
tion.
2) The heat transfer rate decreases with increase in Pr.
3) The shear stress increases with increase in magnetic parameter.
4)The radial velocity increases near central plane with increase in Reynolds
number, where as it decreases with increase in magnetic field and they are
parabolic in nature.

NOMENCLATURE

z, r axial and radial coordinates
Ur radial component of velocity
Uz axial component of velocity
2h distance between tow disk
U0 injection velocity
η dimensionaless axial cooradinate, z

h

ρ density
ν coefficient of kinemetic viscosity
µ magnetic permiability
H0 impressed magnetic field
Hr induced magnetic field
M Hartmann number
R Reynolds number
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