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ABSTRACT

A simple open-loop pulsating heat pipe model is proposed, which allows to analytically determine the start-up behavior by a linear stability analysis.
Two distinct types of instability can occur in such a pulsating heat pipe: oscillatory and non-oscillatory. This paper demonstrates that for bubbles
consisting of non-condensible gas, large temperature gradients along the wall are required to achieve start-up, whereas start-up is fairly easy to
achieve when there is only a single working medium that forms bubbles from its vapor. The study also finds that surface tension as such only
influences start-up indirectly, while contact angle hysteresis dampens out any instabilities.
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Fig. 1 A regular pulsating heat pipe.

1. INTRODUCTION

With recent progress in miniaturization of integrated circuits come in-
creased cooling requirements. This has raised the interest in pulsating
heat pipes (PHPs). PHPs have also been investigated for use for battery
cooling in electric vehicles (Singh et al., 2021). PHPs have the potential
to remove high heat fluxes from small surfaces at low temperature gradi-
ents. In addition, PHPs are easy to manufacture, and they do not require
any moving parts, so they are not prone to mechanical failure. Unfortu-
nately the physics of PHPs is still poorly understood, preventing reliable
prediction of performance and thus commercial use.

A pulsating heat pipe is a tube with multiple bends (Fig. 1). Al-
ternatingly, the bends lie in evaporator or condenser zones. The tube is
filled with a working fluid, which in general is in two-phase state, i.e.
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liquid and gas coexist. The diameter of the tube is sufficiently small that
the two phases cannot pass one another, but form distinct bubbles and
slugs. When heat is added in the evaporator zones, bubbles may expand
due to increased temperature, but mostly due to partial evaporation of
the adjacent liquid slugs. This moves the slugs and other bubbles to-
wards the condenser zones, where heat is removed, and bubbles contract.
When continuously heating the evaporator and cooling the condenser, one
would naïvely expect that the motion of bubbles and slugs goes on until
there is no more liquid in the evaporator sections and no more vapor in
the condenser sections, and then dies down. Instead, it is often observed
that the PHP enters a state of continuous, self-sustained, and irregular
oscillatory motion.

In the literature on PHPs, two foci have developed: On the one hand,
there are many papers that investigate the performance of PHPs experi-
mentally (Quan and Jia, 2009; Ma et al., 2008; Song and Xu, 2009; Qu
et al., 2009; Khandekar et al., 2003; Singh et al., 2021), often with the
goal to correlate performance with design and operational parameters,
such as tube diameter, filling ratio, and orientation with respect to the
field of gravity. Also note recent experimental investigations on PHP
operation in micro-gravity by Taft and Irick (2019). More recently, per-
formance improvements were achieved by deviating from the classical
structure of a PHP and introducing e.g. multiple branches or cross-talk
between sections (Fairley et al., 2015; Shi et al., 2011; Stevens et al.,
2019). Also related are wire-bonded micro heat pipes (Sobhan and Peter-
son, 2019).

On the other hand, the dynamics (i.e. the movement of slugs and
bubbles) of PHPs were often modeled by a set of ordinary differential
equations treating each slug and bubble as a separate, homogeneous en-
tity (so-called lumped model). Subsequently these models were numeri-
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cally simulated in the time domain (Shafii et al., 2001; Kim et al., 2005;
Dilawar and Pattamatta, 2013). The authors are not aware of a model
that yielded satisfactory quantitative results for PHP dynamics in com-
parison to experiments. Bridging this gap between numerical and exper-
imental results proved to be a challenge. Partially, this is due to the now
well-established fact that PHPs display chaotic behavior (Maezawa et al.,
1996; Dobson, 2004; Song and Xu, 2009; Qu et al., 2009). But also the
multitude of physical effects interacting with one another in PHPs, and
the dynamics of many bubbles and slugs moving through several evap-
orators, condensers, and adiabatic sections impede the development of a
sufficient understanding of the working principle of a PHP.

More recently there have been promising efforts to investigate PHP
dynamics with CFD (Pouryoussefi and Zhang, 2016; Bhagat and Desh-
mukh, 2021).

To avoid loosing overview of the problem, this study is confined to
the start-up mechanism of a very reduced example of a PHP, with only
one liquid slug and two bubbles – i.e. there are no large amplitudes, no
non-linearities, no chaotic behavior. The start-up mechanism is a key part
to understanding the dynamics of a PHP, since it allows insight into the
origin of the kinetic and potential energy stored in the continued oscil-
lation of a PHP. The spontaneous onset of motion indicates that a linear
instability might be involved1.

Studies on similarly minimalist setups have been performed, e.g. by
Dilawar and Pattamatta (2013), and also by Dobson (2004), who investi-
gated an open-ended single-bubble PHP experimentally and numerically,
remarkably observing chaos in both the experiment and the model. Also
the groundbreaking categorization of flow regimes in a PHP by Khan-
dekar and Groll (2004) was performed using an extremely reduced setup.

On the start-up behavior, there have been experimental investiga-
tions in the past e.g. by Quan and Jia (2009), and also some numerical
ones like Yang and Luan (2012). This work adds a theoretical study of
the physics behind PHP start-up.

The present paper will first investigate the start-up behavior of a sim-
plistic PHP with bubbles consisting of a non-condensible gas by analyz-
ing its linear stability in the equilibrium state (Section 2). Then succes-
sively more physics and complexity will be added to the model (vapor
bubbles with phase change in Section 3, surface tension effects in Sec-
tion 4), while repeating the linear stability analysis to assess the effects
of the added phenomena on start-up behavior.

This study finds that there are two types of instability that can in
principle cause the onset of motion in PHP model under investigation –
an oscillatory instability, and a non-oscillatory one. Depending on the
temperature gradient along the wall, one of them may exist, but never
both. Another result is that it takes a prohibitively strong wall temper-
ature gradient to support any of said instabilities, if the bubbles consist
of non-condensible gas. When allowing phase change, instabilities be-
come much more likely. Surface tension does not directly influence the
conditions for start-up by linear instability in case the wall consists of a
high-energy material, i.e. if there is no contact angle hysteresis. If there
is contact angle hysteresis, no linear instabilities occur at all.

2. MINIMUM WORKING EXAMPLE OF A PULSATING HEAT
PIPE

This section serves to introduce a simplistic PHP setup (a so-called “min-
imum working example”), and describe it mathematically with a set of
simple ordinary differential equations. To describe the start-up behavior,

1Note that investigating linear stability disregards non-linear triggering (Juniper and Sujith,
2018), i.e. the onset of motion by non-linear instability. In the absence of linear instabilities,
non-linear instabilities require perturbations of finite magnitude. It is safe to assume that a suf-
ficiently large external perturbation, e.g. shaking of the entire PHP, is not always present (as
opposed to infinitesimal perturbations required by linear instabilities). Therefore this mecha-
nism cannot explain the spontaneous start-up of PHPs as reported in the literature. However,
a sufficient perturbation for non-linear triggering might result from the formation of a bubble
within a liquid slug. The investigation of bubble formation and the relevance of non-linear
triggering in PHPs is, however, beyond the scope of this paper.

the model is linearized around the equilibrium point to obtain a charac-
teristic equation. The zeros of the characteristic equation correspond to
eigenvalues. An instability, i.e. onset of motion, occurs if there is at least
one eigenvalue with a positive real part.

The geometry of the minimum working example is shown in Fig. 2.
The object of the study is a U-shaped, open-loop PHP with closed ends.
It has two bubbles of non-condensible ideal gas, and one incompressible
liquid slug between the bubbles. There is an arbitrary wall temperature
distribution. The U-bend does not occur explicitly in the model. This
allows to consider a straightened model with a proper axial coordinate
(Fig. 2).

Such a setup can show oscillatory behavior if the bubbles act as heat
engines, i.e. heat is added after compression and rejected after expansion.
This mechanism was first described by Rayleigh (1878) as the founding
statement of thermo-acoustics. The work output generated by the oscil-
lating bubble is then used to further increase the oscillation amplitude
or to overcome viscous friction. The latter is, however, neglected in the
following. The analysis in the present section serves the purpose of clar-
ifying the circumstances required to add and reject heat with the right
timing, so the Rayleigh criterion is satisfied.

The nomenclature is presented in Fig. 3. The indices 1 and 2 refer
to left and right bubble, respectively. Each bubble is characterized by
respective uniform values of pressure p, volume V , temperature T , ex-
tensive internal energy U and mass m. For the case of non-condensible
bubbles, the mass in both bubbles is the samemg and constant. This con-
straint will be dropped in the following sections. Q̇ denotes heat flow rate
(again, extensive not mass or area specific). For the present section, only
heat transfer from the wall into the bubbles is considered.

x is the axial displacement of the center of mass of the slug from
its neutral position, w the velocity of the slug, and ml its mass. In this
section the mass of the slug remains constant, but also this constraint will
be relaxed in the following sections.

With x, not only the slug position, but also the bubble volumes can
be expressed by the equilibrium length L of each bubble and the cross
sectional area A of the PHP:

Vj = A (L± x) , (1)

where the index j refers to the left (j = 1) and right bubble (j = 2),
respectively. The± expresses that for the left bubble (j = 1), x is added,
whereas it is subtracted in the case of the right bubble (j = 2).

The following governing equations describe the setup:

dx

dt
= w ,

ml
dw

dt
= (p1 − p2)A ,

dUj
dt

= Q̇j − pj
dVj
dt

, (2)

where t is time. In this simplistic model, friction, capillary effects, and
heat transfer in the axial direction are neglected. Heat transfer between
bubbles and wall only depends on temperature difference. Changes in the
surface area available for the heat transfer and changes in the heat trans-
fer coefficient are disregarded, such that the constant K can completely
describe wall-to-bubble heat transfer:

Q̇j = K
(
T̄w,j(x)− Tj

)
. (3)

K will later be varied as a part of a non-dimensional parameter. Tj is
the bubble temperature, and T̄w,j is the average temperature of the wall
section in contact with the respective bubble:

T̄w,j(x) =
1

L± x

∫
∂Vj(x)

Tw(x′)dx′ . (4)
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Fig. 2 The actual PHP is U-shaped, but the model considered in the following is straight. To simulate a U-shaped PHP the temperature profile is
mirrored. To demonstrate the kinematics of the model, this figure shows a snapshot of a perturbed state of the model, i.e. the slug is not
centered.

A
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Fig. 3 Nomenclature: Indices 1 and 2 for left and right bubble, respectively, slug massml, displacement x and slug velocityw. Mean wall temperatures
T̄w1 and T̄w2 of the bubbles are obtained by integration and thus also the mean temperature depends on the integration limits.
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As presented in the lower part of Fig. 3, not only the normalization fac-
tors, but also the integration domains ∂Vi depend on the slug displace-
ment x. Therefore the mean wall temperature T̄w,j also depends on the
slug position (and thus on time t), although the wall temperature profile
itself is constant Tw 6= Tw(t).

Heat transfer between the liquid slug and the wall may be neglected,
since the slug is assumed incompressible and cannot evaporate. Conse-
quently the slug temperature cannot influence the dynamics of the PHP.
The assumptions that there is no phase change and that there are no cap-
illary effects will be dropped in Sections 3 and 4, respectively.

After inserting the definition of heat flow rates – Eqs. (3) – the gov-
erning Eqs. (2) are linearized around the equilibrium state. The equi-
librium state must be chosen as the initial state for the linearization,
because otherwise the setup would not describe the start-up of a PHP,
but some transient state. Since geometry and boundary conditions are
symmetric, the equilibrium should be, too: x = 0, peq ≡ p1 = p2.
Since mass and volume of both bubbles are the same, their temperatures
must also be equal (ideal gas law): T1 = T2. Equilibrium means that
there is no change of state, i.e. in particular the internal energy of the
bubbles may not change. Therefore there may not be any heat trans-
fer in the equilibrium state, requiring the mean wall temperature in each
bubble to be the same as the bubble temperature. Since all tempera-
tures occurring are the same, the equilibrium temperature is defined as
Teq ≡ T1 = T2 = T̄w1 = T̄w2. As the system regarded is a U-shaped
tube, the wall temperature distribution in the straightened model must be
symmetric with respect to the center of the tube (Fig. 2). Therefore the
wall temperature gradients of the two bubbles in equilibrium relate to one
another by

∂T̄w
∂x
≡ ∂T̄w1

∂x
= −∂T̄w2

∂x
. (5)

Ultimately, the linearization results in the following set of equations:

dx′

dt
= w′ ,

dw′

dt
=
(
p′1 − p′2

) A
ml

,

dU ′j
dt

= K

(
±∂T̄w
∂x

x′ − T ′j
)
− peq

dV ′j
dt

, (6)

where the ′ denotes small, first-order perturbations of the respective vari-
able. All other variables are not a function of time anymore.

Now one closes the system with the caloric equation of state U =
mgcvT = mgRT/ (γ − 1), the ideal gas law pV = pA (L± x′) =
mgRT , and the kinematic constraint V ′1 = −V ′2 = Ax′:

dx′

dt
= w′ ,

dw′

dt
=

(γ − 1)Ueq
mlL

(
U ′1
Ueq
− U ′2
Ueq
− 2

x′

L

)
,

dU ′j
dt

= K

(
±∂T̄w
∂x

x′ − Teq
U ′j
Ueq

)
∓ (γ − 1)Ueq

L
w′ . (7)

Non-dimensionalizing with x+ ≡ x′/L, x∗ ≡ x/L, t+ ≡ t/τosc,
w+ ≡ w′τosc/L, U+ ≡ U ′/ (mgcvTeq) = U ′/Ueq , and T ∗ ≡ T/Teq
allows not only a more general statement, but also to reduce the number
of variables:

dx+

dt+
= w+ ,

dw+

dt+
= U+

1 − U
+
2 − 2x+ ,

dU+
j

dt+
=

1

τ+

(
±∂T̄

∗
w

∂x∗
x+ − U+

j

)
∓ (γ − 1)w+ . (8)

τosc ≡
√
mlL2/(mgRTeq) defines the characteristic time scale of the

oscillator in order to avoid non-dimensional parameters in the momen-
tum balance. In physical terms this corresponds to the natural period
of the (adiabatic) gas-spring oscillator of the same dimensions times a
constant factor: τosc = τgas spring

√
2γ/(2π). In addition, the charac-

teristic time scale (the relaxation time) of the heat transfer is defined
as τq ≡ mgcv/K. The ratio of the two time scales yields the non-
dimensional time lag τ+ ≡ τq/τosc. These measures have reduced
the complexity of the system to three non-dimensional constants, one of
which is the gas property γ (ratio of specific heats).

The general solution of this system of linear ordinary differential
equations is the superposition of all non-dimensional eigenvectors ~z+:

x+

w+

U+
1

U+
2

 = ~z+ exp
(
λ+t+

)
. (9)

Of particular interest are unstable solutions, as the existence of an un-
stable solution indicates that the solution will grow to finite values from
an infinitesimal perturbation, which would physically be observable as
the start-up of the PHP. For an unstable system, there must be at least
one eigenvalue λ+ with a positive real part <

(
λ+
)

= σ+ > 0, where
real and imaginary part of the eigenvalue λ+ = σ+ + iω+ correspond
to non-dimensional growth rate σ+ and frequency ω+ of the solution,
respectively (both real-valued). To find the eigenvalues one rewrites the
system of equations as:

d

dt+
~z+ = M~z+ , (10)

with the coefficient matrix M . Then one solves the characteristic equa-
tion:

0 = det
(
M − Iλ+)

⇔ 0 =
(
τ+λ+ + 1

)(
τ+λ+3

+ λ+2
+ 2γτ+λ+ + 2

(
1− ∂T̄ ∗w

∂x∗

))
,

(11)

with the unity matrix I . It is immediately clear, that there is always a
stable real-valued eigenvalue at λ+ = −1/τ+ < 0, corresponding to a
stable, non-oscillatory eigenmode. Looking for instability, one can fo-
cus on the other factor, a polynomial of third order. For now, this study
confines itself to merely finding the stability limit, i.e. the minimum re-
quirements for PHP start-up. Hence, one looks for combinations of γ, τ+,
and ∂T̄ ∗w/∂x∗ that allow σ+ ≡ <

(
λ+
)

= 0 and therefore λ+ = iω+.
Insertion yields:

0 = −iτ+ω+3 − ω+2
+ 2iγτ+ω+ + 2

(
1− ∂T̄ ∗w

∂x∗

)
. (12)

This equation can be split up into real and imaginary part and yields two
conditions that a marginally stable eigenvalue must fulfill:(

ω+2

2
= γ or ω+ = 0

)
and ω+2

2
= 1− ∂T̄ ∗w

∂x∗
, (13)

which translates into

∂T̄ ∗w
∂x∗

= 1−γ at ω+ = ±
√

2γ or ∂T̄ ∗w
∂x∗

= 1 at ω+ = 0 . (14)

Strictly speaking, it is not yet known, whether these two conditions are
actually stability limits. Instead, one or both of them could be a mini-
mum or maximum of the polynomial in λ+ given as the second factor of
Eq. (11).

To check whether the two conditions found really are stability lim-
its, one can investigate the sensitivity, i.e. the derivative of the non-
dimensional growth rate with respect to the non-dimensional wall tem-
perature gradient dσ+/d

(
∂T̄ ∗w/∂x

∗) at the temperature gradient where
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σ+ = 0. Only for zero derivative, both larger and smaller wall temper-
ature gradient have the same stability, i.e. there is no stability limit. If
the derivative is positive, increasing the wall temperature gradient from
its original value at σ+ = 0 results in a transition from stable oscillation
into instability. For negative derivative, decreasing the wall temperature
gradient corresponds to transition into instability. The analysis in Ap-
pendix A shows that:

dσ+

d
∂T̄∗

w
∂x∗

∣∣∣∣
σ+=0 , ω+ 6=0

= − τ+

2γτ+2 + 1
< 0 . (15)

Thus, for an oscillatory eigenvalue, the criterion ∂T̄ ∗w/∂x∗ = 1 − γ is
always a stability limit.

Remarkably, with ω+ = ±
√

2γ, the ratio of the characteristic time
scales τ+ does neither influence stability itself, nor the non-dimensional
frequency of oscillation at marginal stability.

From a physics point of view, this result can be interpreted as fol-
lows: If the wall temperature gradient is negative and sufficiently strong2,

∂T̄ ∗w
∂x∗

< 1− γ < 0 , (16)

heat is added to the bubble during and after compression3. The reason
is that the compressed bubble is only in contact with hot zones of the
wall. The gas temperature of the bubble increases due to compression,
but whenever Eq. (16) is satisfied, the increase of the mean wall tempera-
ture due to displacement to hotter section of the wall is stronger than the
increase of the gas temperature due to compression. Eventually, the pres-
sure increase in the bubble due to compression and heat addition builds
up a restoring force that stops the slug and then pushes it back. Due to
its kinetic energy, the slug overshoots the neutral position and the bubble
expands, such that the corresponding opposite effect happens: Although
the gas temperature decreases, the decrease of the mean wall temperature
dominates and results in cooling after expansion.

To illustrate the effect, Fig. 4 shows the non-dimensional perturba-
tions of volume V +

1 = x+, pressure p+
1 = U+

1 − x+ and heat flux
Q̇+

1 =
(
∂T̄ ∗/∂x∗ x+ − U+

1

)
/τ+ for the left bubble (index j = 1).

Since internal energy increase and decrease from heat transfer has a
delay (relaxation time), heat is added when the pressure is high and re-
jected at low pressure. Similar to a heat engine, this thermodynamic cycle
generates work, which is then stored in the kinetic energy of the slug. In
thermo-acoustics, this is expressed by the Rayleigh criterion (Rayleigh,
1878), which is also shown at the bottom of Fig. 4. The integral of p+

1 Q̇
+
1

over one cycle is positive, therefore the process generates work, i.e. in-
creases its amplitude.

For the non-oscillatory eigenvalue, the sensitivity of the growth rate
with respect to the temperature gradient can similarly be determined:

dσ+

d
∂T̄∗

w
∂x∗

∣∣∣∣
σ+=0 , ω+=0

=
1

γτ+
> 0 , (17)

i.e. if the wall temperature gradient is positive and sufficiently large4,

∂T̄ ∗w
∂x∗

> 1 , (18)

one bubble grows more and more at the cost of the other5. To understand
the physics behind this effect, consider the quasi-steady case T̄w ≈ T ,

2Remember that the wall temperature gradient was defined as the one of the left bubble
(index j = 1). Therefore a negative gradient means that the wall temperature decreases
towards the slug, similar to the exemplary wall temperature profile indicated in Fig. 3

3Note that the maxima of the heat flux are always slightly after the corresponding zeros of
pressure.

4Opposite profile to the one depicted in Fig. 3: hot in the center, cold at the ends.
5Note that for a PHP with bubbles consisting of non-condensible gas, the smaller bubble

does not completely collapse. The only way to achieve a full collapse would be reaching
T = 0K, whereas a vapor bubble could collapse by complete condensation. The effects
that eventually prevent the collapse of a non-condensible gas bubble are however of non-linear
nature and cannot be described in this framework.

Fig. 4 Non-dimensional volume V +
1 , pressure p+

1 , heat flux Q̇+
1 , and

Rayleigh index p+
1 Q̇

+
1 of the left bubble (index j = 1). Data

generated from the case γ = 4/3, ∂T̄ ∗/∂x∗ = −0.35 < 1 − γ
(slightly oscillatory unstable), τ+ = 0.3.

τ+ = 1
4

1
3

1
2 1

2

Fig. 5 Non-dimensional pole map of a pulsating heat pipe under variation
of τ+ and ∂T ∗/∂x∗. For τ+ = 1: Red: ∂T̄ ∗w/∂x∗ ≤ 1−γ, blue
∂T̄ ∗w/∂x

∗ ≥ 1, black: stable.

i.e. heat transfer is sufficiently fast that the bubble temperature is always
equal to the mean wall temperature. Upon compression and the corre-
sponding displacement, the bubble is exposed to a section of the wall
with lower temperature such that its temperature decreases. If the wall
temperature gradient is sufficiently strong a pressure decrease may result
despite the volume reduction of the same bubble. The other bubble suf-
fers the inverse effect: pressure increases despite volume expansion. The
pressure difference moves the slug such that compression and expansion
of the bubbles are accelerated once they started.

Both instabilities, oscillatory and non-oscillatory, are in principle in
favor of the start-up of the PHP, since they create motion.

The above results can be put into context by numerically solving
the characteristic equation and varying the three parameters. Figure 5
displays what happens to the eigenvalues when varying ∂T ∗/∂x∗ at γ =
4/3 and τ+ = 1 (colored points). The constant eigenvalue λ+ = −1/τ+

is represented as a black ×. The red entries in the diagram denote eigen-
values computed from a configuration with ∂T̄ ∗w/∂x∗ ≤ 1 − γ (recall
the type: oscillatory unstable eigenmode). There are always two stable
eigenmodes with real-valued eigenvalue, and a pair of unstable, oscilla-
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tory eigenmodes, (i.e. complex valued eigenvalues). When increasing the
temperature gradient to lie within the interval 1 − γ ≤ ∂T̄ ∗w/∂x

∗ ≤ 1,
there are only stable eigenmodes (black entries). Finally, for ∂T̄ ∗w/∂x∗ ≥
1 (blue) there exist the known stable eigenmode with the real eigenvalue
λ+ = −1/τ+ (black×), a pair of stable oscillatory eigenmodes, and one
unstable eigenmode with real eigenvalue.

In gray, Fig. 5 presents corresponding results for four additional val-
ues of τ+: 2, 1/2, 1/3, and 1/4. The pattern evolving confirms that
τ+ does neither influence whether the system is stable or not, nor does
it affect the oscillation frequency at the stability limit for oscillatory in-
stability – the curves for constant τ+ intersect on the imaginary axis.
Physically this means that stability of the simplistic model itself does not
depend on all those quantities that only occur in τ+, e.g. filling ratio and
heat transfer coefficients. This stands in contradiction to experimental
findings, which will be discussed in Section 5.3.

τ+ however has an effect on growth rate and frequency, if the sys-
tem configuration does not perfectly match the stability limit. Figure 6b
shows that for smaller τ+, the eigenvalue pattern displays two excep-
tional points (black circles). Exceptional points are points where two or
more eigenvalues and their corresponding eigenvectors coincide (Heiss,
2004, 2012). Whereas it is apparent from Fig. 6b that the eigenvalues
coincide, it is mathematically tedious to check whether also the eigen-
vectors coincide. Therefore in Appendix B, the method is sketched, but
not all equations are explicitly shown.

When increasing the wall temperature gradient the system initially
has a pair of unstable, oscillatory eigenmodes and two non-oscillatory,
stable ones (the evolution of one real-valued eigenvalue is displayed in
red, the other is represented as black × and always at λ+ = −1/τ+).
Then the pair of oscillatory eigenvalues becomes stable (black), and sub-
sequently encounters the first exceptional point turning it into two real
eigenvalues. One of them then becomes more and more unstable and
moves to the right along the real axis until it reaches stability limit and
becomes unstable again (blue). The other becomes more stable and unites
with the moving one of the two originally stable real-valued eigenvalues
in the second exceptional point, to form again a pair of stable oscillatory
eigenvalues (blue).

Following the evolution of eigenvalues for larger τ+ (Fig. 6a) is less
complicated. There are no exceptional points, therefore the initially un-
stable pair of oscillatory eigenmodes grows stable, whereas one of the
two stable eigenmodes (real eigenvalues) grows unstable without inter-
acting with the oscillatory eigenvalue pair. All patterns have in common
that the real eigenvalue turns unstable after the oscillatory eigenvalue pair
has become stable, leaving a range of wall temperature gradients, where
the system is stable.

Figure 7 summarizes the behavior of the PHP model in a stability
map. The stability limits describe above are marked as red lines. The
gray zone in the top left corner is the parameter range, where there are no
complex eigenvalues at all – neither with stable eigenmodes, nor unstable
ones.

3. PULSATING HEAT PIPE WITH EVAPORATION

Among the assumptions made and the constraints imposed in Section 2,
the first to be relaxed is that the working medium cannot change its phase.
This is the most important step, since practically there are no PHPs with
non-condensible gas bubbles. The simplistic example in Section 2 merely
is the simplest way to reproduce the two characteristic instabilities of the
PHP and served top introduce our way of analysis.

The main difference between the PHP with non-condensible gas
bubbles and the one that allows evaporation and condensation is the way
heat transfer influences the dynamics. In case of non-condensible bub-
bles, the pressure in a bubble can only be changed by compression or heat
addition to the gas. Additional heat can be transferred from the wall into
the slug, but the slug temperature does not influence the PHP dynamics.

When allowing phase change at the interface between bubble and

slug, heat transfer from wall to slug can be used for phase change (Fig. 8).
Since the density of the vapor is orders of magnitude lower than the den-
sity of the liquid, it can be expected that this mechanism – when present
– is the dominant one. This justifies an important assumption that we
can make at this point: that the heat transfer between bubble and wall is
negligible compared to the influence of phase change.

As a linear stability analysis, it regards infinitesimal perturbations
around an equilibrium state. In the equilibrium state, no net heat transfer
into or out of the slug may take place since that would result in a long-
term change in temperature and eventually phase change, i.e. change of
mass. Ultimately relevant for the analysis is therefore merely the per-
turbation of the heat exchange between slug and wall. Because the per-
turbation of the heat flux must first propagate to the phase interface to
become relevant for the PHP dynamics, and because typical slugs are
clearly longer than the tube diameter, the following analysis considers
only the heat flux between wall and slug that takes place in the vicinity of
a phase interface.

In particular once the slug is moving, the hydrodynamic boundary
layer close to the phase interface is very thin (for both advancing and re-
ceding phase interface, see (Srinivasan and Khandekar, 2017; Thulasidas
et al., 1997) for details on the flow pattern), which favors the effect of
phase change even more over direct heat transfer from the wall into the
bubble (Srinivasan and Khandekar, 2017; Thulasidas et al., 1997). Ret-
rospectively, it becomes clear that in Section 2, the direct heat transfer
between bubble and wall was only used, because it is the only relevant
wall heat transfer term under the conditions given.

Assuming that the heat transfer between wall and phase interface is
the only relevant one, brings another advantage: The fact that all heat
transfer takes place at the same axial position eliminates the integration
over the wall temperature, i.e. one uses a local value Tw instead of a
spatial average T̄w.

The governing equations are quite similar to the ones from Section 2:

dx

dt
= w ,

ml
dw

dt
= (p1 − p2)A ,

dUj
dt

= ṁjhv,j − pj
dVj
dt

. (19)

Note that the momentum balance for the liquid slug does not change de-
spite the fact that it is now an open system: Convective momentum trans-
fer cancels with the time derivative of mass.

Instead of the – now negligible – heat transfer term, there is a con-
vection term that transports enthalpy of saturated vapor (hv,j with j =
1, 2) into the bubbles at the respective mass flow rates ṁj . The mass flow
rate of saturated vapor added to a bubble can be computed from the heat
flow rate at the phase interface:

ṁ =
Q̇

∆hlv
, (20)

where ∆hlv is the latent heat of the working medium under equilibrium
conditions. As in Section 2, the heat transfer is modeled with a constant
K, which incorporates heat transfer coefficient as well as reference area6.
The temperature at the phase interface must be saturation temperature
Tsat (see Fig. 8):

ṁ =
K (Tw − Tsat)

∆hlv
. (21)

Note that distinct from e.g. Dobson (2004), this study regards a PHP with
dry walls along the bubbles (no liquid film). Therefore the heat transfer
takes place at the phase interface only and the relevant temperature dif-
ference is the one between the (local, not mean) wall temperature at the

6Note that this time, the reference area to define K is not explicitly given. This will not
be necessary, since similar to Section 2, the resulting non-dimensional parameter τ+ will not
affect the system stability. However, keep in mind that compared to Section 2, the constantK
describes very different mechanisms of heat transfer in the present section.
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(a) Colored eigenvalues for τ+ = 1. (b) Colored eigenvalues for τ+ = 1/3.

Fig. 6 Non-dimensional pole maps of a pulsating heat pipe under variation of τ+ and ∂T ∗/∂x∗. Red: ∂T̄ ∗w/∂x∗ ≤ 1− γ, blue ∂T̄ ∗w/∂x∗ ≥ 1, black:
stable. Arrows mark the evolution of the eigenvalue pattern for increasing wall temperature gradient ∂T ∗/∂x∗

non-oscillatory
instability

stable

oscillatory
instability

Fig. 7 Stability map of the PHP model. The gray area has no os-
cillatory eigenvalues – neither with stable eigenmodes, nor un-
stable ones. Stability limits in red: Oscillatory instability for
∂T̄ ∗/∂x∗ < 1−γ, non-oscillatory instability for ∂T̄ ∗/∂x∗ > 1,
stable in between.

phase interface (Tw(x) instead of T̄w(x))7 and the saturation temperature
(not the vapor temperature in the bubble T1 or T2, which are in general
different from Tsat). For an investigation of start-up, the assumption of
dry walls makes sense, because initially the PHP is in equilibrium state,
and heated walls will dry out eventually, if there is no slug motion. In
addition this avoids the trouble of properly modeling the film thickness.

Clausius-Clapeyron’s relation (for ideal gases) allows to express tem-
perature perturbations T ′sat from the equilibrium state, where Tsat =
Teq:

T ′sat =
∂Tsat
∂p

p′ =
RT 2

eq

∆hlvpeq
p′ =

γ − 1

γ
SteTeq

(
U ′

Ueq
∓ x′

L

)
, (22)

where the ∓ refers to left (j = 1) and right (j = 2) bubble, respectively.
7see Eq. 4 for definition of the average and its dependence from the slug displacement x.

Also the above equation defines the modified Stefan number:

Ste ≡ heq
∆hlv

=
cpTeq
∆hlv

, (23)

with the specific enthalpy heq and isobaric heat capacity cp in a bubble at
equilibrium state.

Now one proceeds with the same strategy as in Section 2. First insert
and linearize in equilibrium state, where x = 0, peq ≡ p1 = p2, Teq ≡
T1 = T2 = Tw1 = Tw2, and ∂Tw/∂x ≡ ∂Tw1/∂x = −∂Tw2/∂x.
Then eliminate p and V as for non-condensible gas case:

dx′

dt
= w′ ,

dw′

dt
=

(γ − 1)Ueq
mlL

(
U ′1
Ueq
− U ′2
Ueq
− 2

x′

L

)
,

dU ′j
dt

= SteK
(
±∂Tw
∂x

x′ − γ − 1

γ
SteTeq

(
U ′j
Ueq
∓ x′

L

))
∓ (γ − 1)Ueq

L
w′ .

(24)

Finally, non-dimensionalize the same way as the non-condensible case:

dx+

dt+
= w+ ,

dw+

dt+
= U+

1 − U
+
2 − 2x+ ,

dU+
j

dt+
=

Ste
τ+

(
±∂T

∗
w

∂x∗
x+ − γ − 1

γ
Ste
(
U+
j ∓ x

+))∓ (γ − 1)w+ ,

(25)

with the characteristic equation:

0 =

(
τ+λ+ + Ste2 γ − 1

γ

)
(
τ+λ+3

+ Ste2 γ − 1

γ
λ+2

+ 2γτ+λ+ − 2 Ste
∂T ∗w
∂x∗

)
, (26)

which is similar to the one for non-condensible gas, but has different
coefficients. Again, one stable eigenvalue is found immediately, so that
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Fig. 8 Geometry and nomenclature.

merely the second factor of the equation is of interest.

∂T ∗w
∂x∗

= (1− γ) Ste at ω+ = ±
√

2γ

or ∂T ∗w
∂x∗

= 0 at ω+ = 0 . (27)

Physically, the criterion for an oscillatory instability

∂T ∗w
∂x∗

< (1− γ) Ste (28)

reflects the same mechanism as in the non-condensing case. The scaling
factor Ste < 1 reflects that the saturation temperature (which is now the
relevant temperature for heat transfer) is less pressure-sensitive than the
bubble temperature. This makes the system more prone to instability.

Compared to the case with non-condensible gas bubbles (Section 2),
the non-oscillatory instability mechanism is modified as follows: The
condition for the existence of the instability is now:

∂T ∗w
∂x∗

> 0 , (29)

i.e., when there is a very small, but positive temperature gradient along
the wall of the left bubble (and a negative one on the wall of the right bub-
ble, for symmetry reasons) and the bubble position is perturbed slightly
to the right, the wall temperature at the left phase interface increases a lit-
tle, whereas the left saturation temperature decreases due to the pressure
reduction from expansion. Now, the liquid at the left phase interface will
start evaporating until pressure is high enough that the saturation tempera-
ture in the bubble is the same as the wall temperature again. The opposite
mechanism takes place in the right bubble. In the end the left bubble has
a higher pressure (due to higher wall temperature at the phase interface)
than the right bubble, which furthers the movement of the bubble to the
right.

Other than for non-condensible gas bubbles, this effect can be sus-
tained until the complete collapse of one bubble, and it does not require
extraordinary circumstances, merely that the slug is placed in a hot zone
of the wall. Although this type of instability can cause a slug to accel-
erate significantly (and contribute to the increase of kinetic energy in the
PHP), it is questionable whether it can be stated that this instability favors
PHP start-up, since it ultimately converges to a more stable state than the
original one.

4. SURFACE TENSION

It is well known that effects related to surface tension play a role in PHP
operation, at least by preventing stratified flow and enforcing the bubble-
slug pattern, which is vital for the working principle of the PHP. There
have been experimental (Srinivasan and Khandekar, 2017) and numerical
(Dilawar and Pattamatta, 2013; Srinivasan and Khandekar, 2017) studies
on the role of surface tension in PHP operation. Therefore this section
shall discuss such effects, based on the minimalist PHP model with phase
change as introduced in Section 3.

The fundamental equations are the same, except that now there is a
distinction between the pressures on either side of the phase interface. p1

and p2 refer to the pressure in the bubbles, i.e. on the vapor side of the
interface. Newly introduced are the pressures on the liquid side pl,1 and
pl,2:

dx

dt
= w ,

ml
dw

dt
= (pl,1 − pl,2)A ,

dUj
dt

= ṁjhv,j − pj
dVj
dt

. (30)

The only equation affected is the momentum balance. One can ex-
press the pressure in the liquid adjacent to bubble j by the Young-Laplace
equation:

pl,j = pj −
4σlv,j cos(Θj)

d
, (31)

where σlv,j is the surface tension of the liquid-vapor interface, and Θj is
the contact angle at the contact line of the three phases, see Fig. 9. Note
that giving an index j to both variables is required to describe their varia-
tion, in particular a temperature dependence and contact angle hysteresis.
For a PHP made of a round tube, d is just its diameter, and therefore con-
stant (omit the index j), however, for other cross-section geometries the
situation can be more complicated. Since it will not influence the core
message of this paper, the following analysis is restricted to a cylindrical
geometry.

4.1. Contact Angle Hysteresis

The term contact angle hysteresis (CAH) refers to the phenomenon that
the contact angle Θa of an advancing contact line (i.e. the liquid covers
more and more of the solid substrate) is greater than the contact angle Θr

of a receding contact line. For a static contact line, the contact angle may
assume any value between the two limiting cases Θr ≤ Θ ≤ Θa. The
contact angles of moving contact lines also depend on the velocity of the
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Fig. 9 Surface tension and contact angle.

contact line, however, the velocity influence is minor (Eral et al., 2013)
and will therefore be neglected in the following analysis.

There is a finite pressure difference that has to be overcome in order
to make a static slug move. Since this mimics the physical behavior of
kinetic dry friction, it will be referred to as frictional pressure difference
in the following.

∆pfric =
4

d
(σlv,r cos (Θr)− σlv,a cos (Θa)) ≥ 0 . (32)

Now rewrite the momentum balance:

ml
dw

dt
=

{
0 if w = 0

A (p1 − p2 − sign (w) ∆pfric) otherwise
. (33)

When defining ∆pfric, the distinction between the two values of surface
tension was kept up, but they were assigned to the direction of contact line
motion σlv,r and σlv,a, instead of σlv,1 and σlv,2, see Fig. 10. This allows
to take into account the temperature difference influencing the surface
tension, while still exploiting the symmetry of the problem.

Θr , Θa, and σlv are assumed to be temperature dependent. The tem-
perature of relevance here is the temperature of the phase interface, which
is saturation temperature Tsat, which again depends on pressure. This
leads to the concept of boiling delay, i.e. superheating the liquid phase
beyond the regular point of evaporation. For at least partially wetting sur-
faces (contact angle Θ < π/2) the pressure in the bubble is greater than
in the adjacent liquid phase. Therefore the equilibrium saturation temper-
ature in the bubble is also greater and defining the reference temperature
for contact angles and surface tension proves to be cumbersome. The fol-
lowing discussion will neglect this effect and instead assume that contact
angles and surface tension depend on the bubble saturation temperature,
i.e. the bubble pressure. This decision does not affect the result, which is
of qualitative nature anyway. Concluding one can state:

σlv,r = σlv (Tsat (p (Ur, x))) = σlv (Ur, x) , (34)

and similarly

σlv,a =σlv (Ua, x) , (35)

Θk =Θk (Uk, x) , (36)

with the index k = r, a for receding and advancing contact line, respec-
tively. Again, one can non-dimensionalize the momentum equation as in
Sections 2 and 3, and obtain a factor for the frictional pressure ∆pfric,
which defines the non-dimensional frictional pressure ∆p∗fric:

∆p∗fric =
τ2
oscA

mlL
∆pfric

= Cσ (σ∗r cos (Θr)− σ∗a cos (Θa)) , (37)

introducing a non-dimensional the surface tension σ∗r/a = σlv,r/a/σlv,eq
with the surface tension σlv,eq at equilibrium temperature, and a non-
dimensional constant:

Cσ ≡
4Aσlv,eqL

mgRTeqd
. (38)

One can linearize the frictional pressure by distinguishing between the
fluctuating (pressure dependent) component ∆p+

fric and the one that is
constant ∆p∗fric.

∆p∗fric = ∆p∗fric + ∆p+
fric

= Cσ (cos (Θr)− cos (Θa))

+ Cσ
γ − 1

γ
Ste

·

(
∂σ∗

∂T ∗
(
p+
r cos (Θr)− p+

a cos (Θa)
)

−
(
p+
r sin (Θr)

∂Θr

∂T ∗
− p+

a sin (Θa)
∂Θa

∂T ∗

))
. (39)

Note that the value of the non-dimensional surface tension is unity in
the central position and that T+

sat = (γ − 1) /γ Ste p+ expresses the
non-dimensional saturation temperature fluctuation (see Section 3). The
pressure fluctuation is again defined as:

p+
r =

{
U+

2 + x+ if w+ < 0

U+
1 − x+ if w+ > 0

, (40)

p+
a =

{
U+

1 − x+ if w+ < 0

U+
2 + x+ if w+ > 0

, (41)

with the case w+ = 0 undefined.
It is impossible to linearize around the static central position in this

case, since the right hand side of the momentum balance does not have
a unique differential for w = 0. It is however possible to linearize by
regarding the different cases individually. Subsequently, introduce the
same non-dimensional variables as before.

dx+

dt+
= w+ ,

dw+

dt+
=


CaU

+
1 − CrU

+
2 − (Cr + Ca)x+ + ∆p∗fric if w+ < 0

0 if w+ = 0

CrU
+
1 − CaU

+
2 − (Cr + Ca)x+ −∆p∗fric if w+ > 0

,

dU+
j

dt+
=

Ste
τ+

(
±∂T

∗
w

∂x∗
x+ − γ − 1

γ
Ste
(
U+
j ∓ x

+))∓ (γ − 1)w+ .

(42)

The following two abbreviations allow convenient presentation:

Ck = 1− Cσ
γ − 1

γ
Ste
(
∂σ∗

∂T ∗
cos (Θk)− ∂Θk

∂T ∗
sin (Θk)

)
. (43)

Although previous studies present some approaches (Carey, 1992; Pomeau
and Vannimenus, 1985; Joanny and de Gennes, 1984), it is very hard
to make a general statement on the temperature dependence of CAH
∂Θr/∂T

∗, ∂Θa/∂T
∗.

For small perturbations around the static central position, ∆p∗fric is
always the dominating term in the momentum balance. One can hence
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Fig. 10 Contact angle hysteresis.

integrate it immediately, which then also allows to integrate the kinematic
constraint.

w+ =


w+

0 + ∆p∗frict
+ if w+ < 0

0 if w+ = 0

w+
0 −∆p∗frict

+ if w+ > 0

, (44)

x+ =


x+

0 + w+
0 t

+ + 1
2
∆p∗frict

+2 if w+ < 0

x+
0 if w+ = 0

x+
0 + w+

0 t
+ − 1

2
∆p∗frict

+2 if w+ > 0

, (45)

where x+
0 = x+

(
t+ = 0

)
and w+

0 = w+
(
t+ = 0

)
are the initial condi-

tions. As expected the movement dies down after a short interval of time
t+end =

∣∣w+
0 /∆p

∗
fric

∣∣.
Regarding the behavior of the system after the initial perturbation

has died down t+ > t+end, the system has been separated into two inde-
pendent systems of first order:

dU+
j

dt+
= −Ste2 1

τ+

γ − 1

γ
U+
j + const. . (46)

Both ODEs are damped, thus one concludes that CAH makes the PHP
model completely stable against infinitesimal perturbations. Theoreti-
cally the most asymmetric stable positions can be determined by p1 −
p2 = ∆pfric. However the temperature dependence of CAH is too unclear
to do this in practice. This study will therefore refrain from investigating
stability in such a position.

The result that PHP start-up is impossible in the presence of CAH
stands in contradiction to experimental results of PHPs actually working
(Quan and Jia, 2009; Song and Xu, 2009; Qu et al., 2009; Khandekar
and Groll, 2004). This discrepancy of course requires further discussion,
which can be found in Section 5.4.

4.2. High Surface Energy Materials and Surfactants

The above analysis suggests that CAH is unfavorable for PHP operation.
It is therefore a worthy approach to design a PHP with the goal to min-
imize or even eliminate CAH. Smith et al. (2014) find experimentally
that the refrigerants R-134a and HFO-1234yf are a lot less prone to con-
tact angle hysteresis than classical fluids (water and acetone were investi-
gated). Whereas this is a highly valuable insight, it would be very tedious
to systematically investigate a broader range of material combinations ex-
perimentally. It follows a small literature survey with the goal to find a
more general lever to reduce the influence of CAH.

In textbooks (Carey, 1992) on the matter, one finds that the con-
tact angle itself is the result of the system minimizing its Helmholtz
free energy by making a compromise between the three types of inter-
faces, which each have a surface tension (solid-liquid σsl, solid-vapor
σsv , liquid-vapor σlv). Young’s law summarizes this compromise (see
Fig. 11):

σsv = σsl + σlv cos (Θ) . (47)

σsv

σlv

σslΘ

Fig. 11 Young’s Law.

This relation is valid as long as σsv ≤ σsl + σlv . Otherwise the contact
angle is zero Θ = 0, corresponding to full wetting.

The qualitative phenomenon of CAH is explained in Carey (1992)
by inhomogeneities of the surface, like stains, heterogeneous materials
(e.g. multiphase alloys and imperfections in the crystal structure), and
wall roughness. All these imperfections represent perturbations of the
surface free energy of the solid, and consequently the theoretical con-
tact angle. Eral et al. (2013) provide an excellent review on the topic.
Among other sources, they cite attempts of a mathematical description of
aforementioned qualitative explanation (most notably Pomeau and Vanni-
menus, 1985; Joanny and de Gennes, 1984). Also models for the velocity
dependence of CAH based on molecular dynamics as well as continuum
assumption can be found here (Eral et al., 2013), none of which however
works without fitting parameters.

In combination these studies allow the conclusion that CAH can
be completely eliminated by finding a material with a sufficiently high
surface free energy that perturbations of the latter do not result in the
solid-vapor surface tension decreasing below the sum of solid-liquid and
liquid-vapor surface tension:

σsv � σsl + σlv , (48)

i.e. what is needed is a solid substrate that is fully wetted by the working
fluid of the PHP. The substrate must be smooth and very clean, the latter
of which is difficult to achieve, since a stain will decrease the free energy
of the system substantially and is therefore a highly favorable state from
a thermodynamic point of view.

Note that what is actually required is a substrate-gas combination
with high surface tension σsv , not necessarily a solid material with a high
surface free energy σs. However the nature of surface tension – resulting
from Lennard-Jones potential, i.e. short-range repelling and long-range
attracting forces between molecules – suggests that the surface tension
between two partners with very different densities (like solid-gas and
liquid-gas) is dominated by the high-density partner. The comparison
of experimental values for the surface tension of water in its vapor (Var-
gaftik et al., 1983) and water in air at 100% relative humidity (Pérez-Díaz
et al., 2012) shows, that in this case the difference for a given temperature
is lower than measurement precision, which confirms the initial idea. Fi-
nally, the determination of surface free energies of solids by the Zisman
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method is based on the approximation that the surface free energy of a
solid is the same as the surface tension between solid and vapor (Carey,
1992; Shafrin and Zisman, 1972).

High surface energy materials (metals, glass) typically have surface
energies σsv > 500 mN/m – as opposed to low surface energy materi-
als, like polymers (also acrylic), which often range between 15 mN/m <
σsv < 40 mN/m (Carey, 1992). To compare, the surface tension of
non-metallic liquids is mostly between 15 mN/m < σsv < 75 mN/m
(Carey, 1992). Material data can be found in (Carey, 1992; Shafrin and
Zisman, 1972; Eustathopoulos et al., 1999; Weirauch and Ownby, 1999).

Also according to Young’s law, σsv � σlv is not a sufficient con-
dition for full wetting, but only an indicator. It is also necessary that the
surface tension between liquid and solid is sufficiently low, which accord-
ing to the data given by Carey (1992) should often be the case with high
surface energy materials. As examples, Carey mentions low-viscosity
silicone oils on metal, or exotic combinations like liquid helium on glass.

An alternative approach would be to add a surfactant to the liquid,
as has been experimentally demonstrated by Srinivasan et al. (2015). A
surfactant accumulates at the phase interfaces on which it has an ener-
getically favorable effect, i.e. it reduces σlv and possibly σsl, whereas it
does not affect σsv . The selection of a surfactant is not trivial because
of its evaporation properties. Too low saturation temperature (compared
to the bulk of the working medium) may have an adverse effect on the
concentration accumulated at the respective phase interfaces. A surfac-
tant with a high saturation temperature could however leave a stain on the
solid surface after the liquid film dries out, effectively reducing σsl.

Assume there is a material combination that completely avoids CAH.
The contact angle will be Θ = 0. In this case the three constants Cr , Ca,
and ∆p∗fric are:

Cr = Ca = 1− Cσ
γ − 1

γ
Ste

∂σ∗

∂T ∗
, (49)

∆p∗fric = 0 . (50)

Therefore the fundamental equations of minimalist PHP model will have
the following non-dimensional, linearized form:

dx+

dt+
= w+ ,

dw+

dt+
=
(
U+

1 − U
+
2 − 2x+)(1− Cσ

γ − 1

γ
Ste

∂σ∗

∂T ∗

)
,

dU+
j

dt+
=

Ste
τ+

(
±∂T

∗
w

∂x∗
x+ − γ − 1

γ
Ste
(
U+
j ∓ x

+))∓ (γ − 1)w+ .

(51)

Since there are no constant terms and linearization is again possible, one
can interpret this result by similar means as in Sections 2 and 3. The
characteristic polynomial is the same as in Section 3, except the factor
Cr = Ca in front of the first order and constant terms:

0 =

(
τ+λ+ + Ste2 γ − 1

γ

) (
τ+λ+3

+ Ste2 γ − 1

γ
λ+2

+

(
2γτ+λ+ − 2 Ste

∂T ∗w
∂x∗

)(
1− Cσ

γ − 1

γ
Ste

∂σ∗

∂T ∗

))
.

(52)

Again, there is the same stable non-oscillatory eigenvalue as in Section 3.
Looking for the stability margin, i.e. λ+ = iω+, one finds that the tem-
perature dependence of the surface tension merely influences the oscilla-
tion frequency of the oscillatory eigenvalue, but leaves the stability limits
untouched:

∂T ∗w
∂x∗

= (1− γ) Ste at ω+ = ±

√
2γ

(
1− Cσ

γ − 1

γ
Ste

∂σ∗

∂T ∗

)
or ∂T ∗w

∂x∗
= 0 at ω+ = 0 . (53)

In hindsight this was to be expected, as surface tension, as well as its tem-
perature dependence, merely poses a modification to the spring constant
of the problem, but not to the actual mechanism of instability. Note that it
is not necessary to investigate the case of Cr ≤ 0, since ∂σ∗/∂T ∗ < 0.

5. DISCUSSION

This section reviews the results presented in the previous sections with
respect to experimental and numerical findings from literature.

5.1. Non-condensible gas PHPs require prohibitively high wall
temperature gradients

As already stated in Section 2, the example with bubbles from a non-
condensible gas merely served to present the layout and working principle
of our PHP model, as well as to introduce linear stability analysis and
the two types of instability that can occur. The authors are not aware
of an experimental PHP with this feature. There are however studies
investigating the presence of non-condensible gases in the PHP working
medium (Quan and Jia, 2009; Jia and Yin, 2007), i.e. bubbles can never be
fully condensed. These studies come to the conclusion that the presence
of non-condensible gases is unfavorable for PHP operation.

The present study can reproduce this trend by comparing the results
for the non-condensible gas (Section 2) and the evaporator / condenser
case (Section 3). One difference between the cases is the relevant wall
temperature. For the non-condensible gas case, this is the mean value
over the entire wall in contact with the bubble:

T̄ ∗w =
1

1± x∗

∫ ±x∗
−1

T ∗w(x̃∗)dx̃∗ , (54)

whereas for the evaporator / condenser case it is the wall temperature T ∗w
at the phase interface in position x∗. Note that whereas the slug position
is denoted by x∗, the axial coordinate for the integration of the wall tem-
perature is x̃∗. The exact relation between the two gradients ∂T̄ ∗w/∂x∗

and ∂T ∗w/∂x∗ therefore depends on the wall temperature profile T ∗w(x̃∗).
For a linear profile of T ∗w(x̃∗), one finds the simple relation:

∂T̄ ∗w
∂x∗

=
1

2

∂T ∗w
∂x∗

. (55)

The other difference is the start-up criterion itself, involving the modified
Stefan number for a phase-change working fluid. For water at Teq =
300 K, the modified Stefan number is Ste = 0.236. Therefore, a temper-
ature difference of −23.6 K is required over the bubble length to initiate
the first oscillatory instability in an evaporator / condenser PHP filled with
water, whereas it takes a much larger temperature difference of −240 K
for the same instability to occur in a PHP with air bubbles. Since this
would result in a freezing water slug (Tw,slug ≤ 300 K + −240 K/2 =
180 K), one would have to increase the equilibrium temperature to Teq =
460 K, resulting in a required temperature difference of −368 K in order
to avoid freezing the slug.

To achieve a non-oscillatory instability with a non-condensing gas
PHP, the model presented requires a temperature difference of +600 K
at an equilibrium temperature of Teq = 300 K, whereas for the evap-
orator / condenser PHP the non-oscillatory instability is present for all
non-negative temperature gradients. The unrealistic numbers for the non-
condensing gas case lead to the conclusion that the model – although
simplistic – confirms that phase change of the working medium is crucial
for PHP operation.

5.2. Number of bubbles and non-oscillatory instability

Shafii et al. (2001) found that their computational model always con-
verges to a number of bubbles equal to the number of evaporator sections.
This can be explained by the non-oscillatory instability found in this pa-
per: It is impossible to conceive a distribution of slugs and bubbles in a
PHP that has more bubbles than evaporator sections and at the same time
does not involve a non-oscillatory instability.
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One can rephrase the argument in physical terms: In its essence the
mechanism of the non-oscillatory instability (given phase change is al-
lowed) is that as long as the wall temperatures at the two ends of a slug
differ, the bubble at the warmer end grows at cost of the other one. There-
fore, a slug in the condenser section is stable: If moved to one side, the
wall temperatures at its ends induce a restoring force, see Fig. 1, assum-
ing a continuous wall temperature distribution. Contrarily, a slug in the
evaporator is unstable, i.e. it will eventually move towards one of the two
adjacent condensers. A slug between evaporator and condenser will con-
tinue its motion towards the condenser, thereby shrinking the bubble on
the condenser side till collapse.

In experimental PHPs, convergence towards one bubble per evap-
orator section is not observed in general (Khandekar and Groll, 2004),
which Shafii et al. (2001) explain by bubble formation in the evaporator
– a physical process that was not taken into account in their model. In or-
der to model the dynamics of a PHP properly, it is necessary to improve
the understanding and models of bubble formation.

5.3. Influence of the filling ratio

The influence of the filling ratio on PHP performance, and in particular on
start-up reliability has been investigated repeatedly in the past (Han et al.,
2016). Results are contradictory. Most studies find the best performance
i.e. highest heat conductivity, of the PHP at a filling ratio around 50%,
there are however strong deviations, e.g. Khandekar et al. (2003) find the
best performance at 10%.

In the models investigated, the filling ratio occurs implicitly in the
constant τ+, since it relates the mass of the slug ml with the bubble
length L. In none of the cases regarded has τ+ an effect on whether start-
up occurs or not. It does, however, affect the growth rate as well as the
frequency of instabilities with significant growth rate.

This shows the limitations of the extremely reduced setup used for
this study. In theory the finding that filling ratio does not influence start-
up behavior may be correct, however in a practical PHP, the filling ratio
influences the number of phase interfaces. Since capillary forces define
a minimum size of bubbles and slugs, a filling ratio of about 50% allows
the highest amount of phase interfaces. Since start-up by linear instabil-
ity requires a phase interface in a zone with a wall temperature gradient,
the start-up probability is higher with more phase interfaces. This argu-
ment stands in agreement with Stevens et al. (2019), who performed an
extensive investigation on reproducibility of PHP start-up and operation
and found that there may be significant differences in start-up reliability
between two identically built PHPs.

5.4. Suppression of instabilities by contact angle hysteresis

Contact angle hysteresis makes the PHP model under investigation com-
pletely stable against infinitesimal perturbations (see also Srinivasan et al.,
2015; Srinivasan and Khandekar, 2017). This result stands in contra-
diction to experimental results of PHPs actually working (Quan and Jia,
2009; Song and Xu, 2009; Qu et al., 2009; Stevens et al., 2019; Khan-
dekar and Groll, 2004; Han et al., 2016). Nevertheless, literature shows
quite a lot of evidence for the adverse effect CAH has on PHP operation.

In a real PHP there are many more bubbles and slugs than in the
models investigated. Also, typically at least on the hot part of the wall
there is no boundary condition of fixed temperature, but rather of fixed
heat flux, since the main prospected application of the PHP is cooling of
micro-electronics. As long as the PHP does not contribute to heat trans-
fer the evaporator wall temperature will increase. If the initial bubble
distribution is asymmetric, a pressure difference sufficient to overcome
frictional pressure is eventually built up causing a first movement. Such
a situation should not be confused with a linear instability8. Contact an-
gle hysteresis creates a finite range of stable bubble positions, which also
significantly increases the probability of so-called stop-over, i.e. the prob-

8It could however pave the way to a linear instability by laying a film on the bubble walls
(see Section 5.5). A film on the walls would eliminate CAH and its stabilizing effect.

ability of the PHP coincidentally finding a state that allows to cease all
motion.

Most experimental setups of PHPs use high surface energy materials
(find a list in Han et al. (2016)), such as copper, aluminum or glass. Such
materials reduce the relevance of CAH, and thus the visibility of its ad-
verse effect. Using a PHP made of two acrylic plates – a material of low
surface free energy – Khandekar et al. (2003) obtained poor performance
in horizontal operation, i.e. when the inherent instability resulting from
bottom-heat mode is missing. They also concluded that part of the reason
must be CAH, and they had a validation experiment with glass tubes, but
did not report quantitative results for the latter, since such results would
not be comparable due to a change in geometry.

A mechanism that would circumvent the barrier posed by CAH is
bubble formation within a slug in the evaporator zone. A newly formed
bubble initially forms a liquid film between gaseous and solid phase. The
film eliminates CAH and hence enables the instability mechanisms pre-
sented in this paper. Due to its non-linear nature, bubble formation could
not be taken into account in the models of this paper. As discussed be-
fore, bubble formation is a mechanism that is not sufficiently understood
and requires more research.

Contradicting all the evidence collected above, Dilawar and Patta-
matta (2013) found in their numerical study that CAH does not have a
significant influence on PHP performance in steady-state operation. They
argue that the pressure differences caused are small compared to the pres-
sure differences resulting from evaporation and condensation at different
(wall-)temperatures. The present study has not tried to reproduce this re-
sult, but from Srinivasan et al. (2015), as an exemplary value it is known
that in case of a water slug in a 1.5 mm glass tube the pressure differ-
ence from CAH was 240 Pa, which is clearly more than what would be
considered an infinitesimal perturbation.

In conclusion, CAH has an adverse effect on PHP start-up, which
can be mitigated by use of surfactants (Srinivasan et al., 2015) and appro-
priate choice of materials. It is apparent from the discussion that CAH in
PHPs is not fully understood and requires further research.

5.5. Film models and dry-out

In particular because it avoids the adverse effect of CAH on PHP start-
up, but also because of the high area available for evaporation, a liquid
film between bubble and wall is favorable for PHP operation and start-
up. In contrast, this paper assumes a dry wall throughout. Of course,
partially this is to not further complicate the model, and avoid the need to
arbitrarily assume a film thickness (Dobson, 2004).

The authors also think that a dry wall is a good assumption for a
start-up scenario, since Khandekar and Groll (2004) found that agglom-
eration of all bubbles in the evaporator is an important precursor to stop-
over, i.e. the complete cease of motion in the PHP. This situation requires
the dry-out of the evaporator wall, since a film would still constitute evap-
oration, i.e. motion. Stop-over then is the initial condition for start-up.

As a criterion for the existence of a liquid film in partially wetting
conditions, researchers have often resorted to the capillary number Ca =
ηlw/σlv > 10−3, with the dynamic viscosity ηl of the liquid (Eral et al.,
2013; Srinivasan et al., 2015; Srinivasan and Khandekar, 2017). Since
for start-up, the initial condition is zero velocity w = 0, the criterion for
a liquid film to cover the wall is never fulfilled.

6. CONCLUSIONS

From the theoretical analysis of linear stability of a minimum working
example of a PHP we conclude the following:

Firstly, evaporation and condensation are crucial for the start-up of
a PHP. Whereas this has been understood for a while, the authors are
not aware of another publication deriving this fact from first principles.
This paper has demonstrated that PHP operation is actually not impossi-
ble with a non-condensible gas, but that the required temperature differ-
ences are prohibitively high.
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Secondly, there are two types of instability: an oscillatory one and
a non-oscillatory one. The oscillatory instability follows the pattern of a
thermodynamic cycle. Given a small perturbation that reduces the size of
a bubble, its pressure increases. If by the same perturbation the bubble
moves to a higher relevant wall temperature, heat is added, increasing the
pressure even more. Eventually the pressure increase reverses the slug
movement, resulting in bubble expansion, pressure decrease, and – due
to lower wall temperature – heat rejection at low pressure. The work
resulting from this cycle is invested in kinetic energy of the slug, i.e.
higher and higher oscillation amplitudes. This mechanism is the same as
in a thermo-acoustic instability.

The non-oscillatory instability occurs in case of the opposite temper-
ature gradient. When the bubble volume is slightly reduced, the relevant
wall temperature drops at the same time. A sufficient amount of heat is re-
moved from the bubble to decrease its pressure despite volume reduction.
Remarkably, in case of evaporation / condensation the non-oscillatory in-
stability has an onset at zero temperature gradient.

Finally, contact angle hysteresis suppresses both types of instability.
For PHP design it is hence favorable to choose high surface energy mate-
rials and make sure they are smooth and very clean. With contact angle
hysteresis present, the start-up mechanism of a PHP cannot be explained
by linear instability. Instead the PHP must rely on a non-linear mecha-
nism, like bubble formation – crucial for start-up – or film evaporation.
If the influence of contact angle hysteresis can be eliminated, the sur-
face tension itself and its temperature dependence do not affect start-up
reliability.
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A. SENSITIVITY OF GROWTH RATES WITH RESPECT TO
TEMPERATURE GRADIENTS

As a first step of the investigation the polynomial in λ+ from Eq. (11) is
rewritten in terms of imaginary a dn real part:

0 =τ+λ+3
+ λ+2

+ 2γτ+λ+ + 2

(
1− ∂T̄ ∗w

∂x∗

)
=τ+σ+3 − 3τ+σ+ω+2

+ σ+2 − ω+2
+ 2γτ+σ+ + 2

(
1− ∂T̄ ∗w

∂x∗

)
+ iω+

(
3τ+σ+2 − τ+ω+2

+ 2σ+ + 2γτ+
)
. (56)

From the imaginary part of the polynomial one obtains

ω+2
= 3σ+2

+
2

τ+
σ+ + 2γ or ω+ = 0 , (57)

and recognizes by insertion of σ+ = 0 that this result corresponds to
the frequencies of the two conditions found before. Now one can insert
ω+2

= 3σ+2
+ 2σ+/τ+ + 2γ into the real part of the equation, i.e.

regard the case of an oscillatory eigenvalue ω+ 6= 0:

0 =τ+σ+3 − 3τ+σ+ω+2
+ σ+2 − ω+2

+ 2γτ+σ+ + 2

(
1− ∂T̄ ∗w

∂x∗

)
=− 8τ+σ+3 − 8σ+2 −

(
4γτ+ +

2

τ+

)
σ+ − 2γ + 2

(
1− ∂T̄ ∗w

∂x∗

)
.

(58)

The derivative dσ+/d
(
∂T̄ ∗w/∂x

∗) can now be found as an implicit deriva-
tive of the above equation:

0 = −24τ+σ+2 dσ+

d
∂T̄∗

w
∂x∗

− 16σ+ dσ+

d
∂T̄∗

w
∂x∗

−
(

4γτ+ +
2

τ+

)
dσ+

d
∂T̄∗

w
∂x∗

− 2 .

(59)
With γ and τ+ always greater than zero, the derivative is therefore nega-
tive at the position σ+ = 0:

dσ+

d
∂T̄∗

w
∂x∗

∣∣∣∣
σ+=0 , ω+ 6=0

= − τ+

2γτ+2 + 1
< 0 . (60)

Hence, for an oscillatory eigenvalue, the criterion ∂T̄ ∗w/∂x∗ = 1 − γ
is always a stability limit. A similar analysis for the proposed stability
condition of the non-oscillatory eigenvalue also leads to the conclusion,
that it is always an actual stability limit.
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B. EXCEPTIONAL POINTS

This appendix sketches the ansatz to prove that the multiple eigenvalues
occurring in Figs. 5 and 6 are exceptional points. Many of the equa-
tions occurring are too long to be helpful for the readers’ understanding
in this context and are therefore omitted here. The authors used MAT-
LAB’s symbolic toolbox to execute the analysis sketched below (MAT-
LAB, 2016).

First regard the third-grade polynomial in the characteristic equa-
tion.

0 = τ+λ+3
+ λ+2

+ 2γτ+λ+ + 2

(
1− ∂T̄ ∗w

∂x∗

)
(61)

Its discriminant is zero, if and only if the polynomial has a multiple root.
By postulating that the discriminant is zero one can solve for the non-
dimensional temperature gradient that allows a multiple root:

∂T̄ ∗w
∂x∗

= 1− γ

3
+

1±
√(

1− 6γτ+2
)3

27τ+2 . (62)

Since the temperature gradient must be real-valued, it is evident that a
multiple root only exists if τ+ < 1/

√
6γ ≈ 0.35355, assuming γ = 4/3

as in Figs. 5 and 6.
The multiple eigenvalue λ+

mult for a given τ+ must be real-valued
and thus at the same time an extremal point and root of the third-grade
polynomial in the characteristic equation. By finding the extremal points
first and then choosing the one that is also a root, one finds:

λ+
mult =

−1∓
√

1− 6γτ+2

3τ+
, (63)

where the realization with negative square root corresponds to the tem-
perature gradient with positive square root.

Inserting the multiple eigenvalue into the original eigenvalue prob-
lem (

M − Iλ+
mult

)
z+ = 0 (64)

yields a multiple eigenvector z+
mult, instead of an eigenspace z+

1 , 2, which
proves that the multiple eigenvalues are exceptional points.
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