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ABSTRACT

This paper examines the steady magnetohydrodynamic (MHD) flow of water over a yawed cylinder with variable fluid properties and non-uniform
mass transfer. The impact of viscous dissipation is taken into consideration. The velocity and temperature fields are governed by coupled nonlinear
partial differential equations together with boundary constraints. These governing equations are converted to dimensionless form with suitable
non-similar transformations and then solved using an implicit finite difference method and the quasi-linearization technique. The results indicate that
the yaw angle enhancement declines the skin friction coefficient in the axial direction and the heat transfer coefficient. It is also ascertained that the
separation can be delayed by enhancing the MHD effect, the suction parameter with slot movement in the downstream direction.

Keywords: Boundary layer flow, Magnetohydrodynamic, Non-uniform mass transfer, Non-similar, Variable viscosity

1. INTRODUCTION

Magnetohydrodynamic heat and mass transfer have numerous applica-
tions in magnetohydrodynamic electrical power generation, boundary layer
control, MHD generators, MHD pumps, petroleum industries, plasma
studies and many others. Many methods have been evolved to control
the boundary layer’s behavior, and out of that, the enhancement of the
MHD principle plays a crucial part in altering the boundary layer’s struc-
ture and thus influencing flow in the intended direction. The mutual inter-
action of electromagnetic field and fluid velocity characterize the MHD
boundary layer flow. Aldoss et al. (1996) have investigated analytically
and numerically the effect of MHD mixed convection flow over a hori-
zontal circular cylinder. El-Amin (2003) has studied the effect of MHD
forced convection over a non-isothermal horizontal cylinder embedded in
a fluid-saturated porous medium. Nagaraju et al. (2019); Kumar et al.
(2021) analyzed the MHD flow and heat transfer with geometries of the
circular horizontal pipe and porous disks, respectively.

The geometry considered here is an infinite yawed circular cylinder
due to its extensive engineering design applications, yet only a handful
of investigations have been made so far. Several authors have published
experimental results (King, 1977; Ramberg, 1983; Thakur et al., 2004;
Mityakov et al., 2017) and numerical results (Marshall, 2003) of flow past
a yawed cylinder. Recently, Patil et al. (2020) have published a work on
mixed convection flow past a yawed cylinder. However, no investigation
is found on MHD flow past a yawed cylinder so far.

Boundary layer is non-similar in nature. This non-similarity occurs
due to the body’s curvature or the velocity profiles at the edge or due to
the surface mass transfer or perhaps an amalgamation of all the above-
mentioned factors. A brief review on obtaining non-similar solutions and
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the references of apposite works are found by Dewey and Gross (1967).
Non-similar solutions for a compressible laminar boundary-layer flow
had been obtained by Davies and Walker (1977) using the finite differ-
ence method, and their behavior was presented near the point of separa-
tion. Venkatachala and Nath (1980) have brought non-similar solutions
using the finite difference method for a boundary layer flow of steady
laminar incompressible two-dimensional and axisymmetric porous bod-
ies with pressure gradient. Roy (2001) shows non-similar solutions for a
compressible flow over the yawed cylinder using the implicit finite dif-
ference method along with the quasi-linearization technique. Subhashini
and Samuel (2016) obtained a non-similar solution of steady compress-
ible flow over a thin cylinder.

Fundamental physical properties of fluid often change notably with
temperature; hence it is essential to acknowledge such properties as a
function of temperature. Several investigators have studied the impact
of variable fluid properties for steady laminar flows over different heated
surfaces (Chin et al., 2007; Eisenhuth and Hoffman, 1981; Pantokratoras,
2005; Mohammad, 2020).

Surface mass transfer has a substantial impact in preventing or slow-
ing down the boundary layer separation. The influence of non-uniform
mass transfer on water flow past various bodies has been studied by Saikr-
ishnan and Roy (2003a,b), and it is discovered that non-uniform suc-
tion delays the point of separation. Tashtoush et al. (2000) have inves-
tigated the mass transfer’s effect of non-Newtonian fluid on a power-law
stretched surface. Researchers Ponnaiah (2012); Revathi et al. (2014);
Roy and Saikrishnan (2004) have solved steady/unsteady forced convec-
tion flow problem over a yawed cylinder taking non-uniform slot suc-
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tion/injection into consideration. Ganapathirao et al. (2019); Jenifer et al.
(2021) analyzed the effects of non-uniform slot suction/injection on MHD
mixed convective flow past a vertical wedge and sphere, respectively.

The current study is concentrated on the effects of MHD flow over a
yawed cylinder with non-uniform mass transfer and temperature-dependent
viscosity and Prandtl number. The fluid considered here is water due to
its extreme practical applications.

2. MATHEMATICAL FORMULATION

The flow model of the steady laminar MHD past a yawed infinite cylinder
of radius R, set in a free stream with the oncoming free stream velocity
U∞ (see Fig. 1). A constant magnetic field B0 is applied in the normal
direction to the cylinder’s surface. The surface of a yawed cylinder and
the free stream are at constant temperatures of Tw, T∞, respectively.

Fig. 1 Flow model

The variation in temperature between the sphere’s surface and the
free stream is taken in the range 0oC − 40oC. The viscosity (µ) and
thermal conductivity (k) show a significant variation with temperature,
and so does the Prandtl number (Pr). So, both µ and Pr can be expressed
as inverse linear functions of T as given by Eswara and Nath (1994).

µ =
1

(a+ bT )
and Pr =

1

(c+ dT )
(1)

where

a = 53.41, b = 2.43, c = 0.068, d = 0.004 (2)

Within this temperature limit considered, fluid density (ρ) and specific
heat (cp) vary with the temperature only up to a maximum of 1%. This
minute variation allows us to take ρ and cp as constants.
The governing equations are:

(ru)x + (rv)y = 0 (3)

uux + vuy = ue(ue)x +
1

ρ
(µuy)y −

σB2
0

ρ
(u− ue) (4)

uwx + vwy =
1

ρ
(µwy)y −

σB2
0

ρ
w (5)

uTx + vTy =
1

ρ

( µ

Pr
Ty
)
y

+
µ

ρcp
(u2
y + w2

y) +
σB2

0

ρcp
(u2 − ueu) (6)

Boundary conditions:

u(x, 0) = 0, u(x,∞) = ue(x), v(x, 0) = vw(x),

w(x, 0) = 0, w(x,∞) = we(x), T (x, 0) = Tw, T (x,∞) = T∞
(7)

The transformations to non-dimensionalize the Eqs. (3) - (6) are,

ψ(x, y) = Ru∞

(
2ξ

Re

)1/2

f(ξ, η), u = ψy, v = −ψx,

ξ =

∫ x

0

ue
u∞

d
( x
R

)
, η =

(
ue
u∞

)(
Re

2ξ

)1/2 ( y
R

)
,

G =
T − T∞
Tw − T∞

, u∞ = U∞ cos θ, Re =
u∞R

ν
(8)

The above transformations satisfy Eq. (3) identically the non-dimensional
form of the Eqs. (4), (5) and (6) are given below.

(NFη)η + fFη + β(1− F 2) +MP (1− F ) = 2ξ(FFξ − fξFη) (9)

(NSη)η + fSη −MPS = 2ξ(FSξ − fξSη) (10)

(
1

Pr
NGη

)
η

+ fGη +NEc

[(
ue
u∞

)2

cos2 θF 2
η + sin2 θS2

η

]

+ PEcM

(
ue
u∞

)2

cos2 θF (F − 1) = 2ξ(FGξ − fξGη) (11)

with the boundary conditions

F (ξ, 0) = 0, F (ξ,∞) = 1

S(ξ, 0) = 0, S(ξ,∞) = 1

G(ξ, 0) = 1, G(ξ,∞) = 0 (12)

where
N =

µ

µ∞
=
a+ bT∞
a+ bT

=
1

1 + E1G

E1 =
b∆Tw
a+ bT∞

Pr =
1

c+ dT
=

1

E2 + E3G
,

E2 = c+ dT∞, E3 = d∆Tw,

∆Tw = Tw − T∞,
u

ue
= fη = F,

Ec =
U2
∞

cp(Tw − T∞)
, β(ξ) =

2ξ

ue

due
dξ

,

P = 3ξ

(
u∞
ue

)2

, M =
2

3

σB2
0R

ρu∞

ν∞ =
µ∞
ρ

f =

∫ η

0

Fdη + fw

where

fw = −(2ξ)−1/2(Re)1/2

∫ x

0

vw(x)

u∞
d
( x
R

)
(13)

The free stream velocity components in chordwise and spanwise di-
rections are given by

ue = 2u∞ sin x̄, u∞ = U∞ cos θ

we(x̄) = w∞ = U∞ sin θ, x̄ =
x

R
(14)

ξ, β(ξ) and P (ξ) can be written as expressions in x̄ as follows.

ξ = 2P1(x̄), β =
2 cos x̄

P2
, P =

3

2P2
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Fig. 2 Comparison of the effect of MHD parameter on the skin friction
coefficient for constant fluid properties with those of Sathyakr-
ishna et al. (2001) where T∞ = 18.7oC,∆Tw = 10.0oC, θ = 0◦
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Fig. 3 Comparison of the effect of mass transfer parameter on the ve-
locity and temperature profiles for variable fluid properties with
those of Revathi et al. (2014) where M = 0.0, θ = 30◦

where
P1 = 1− cos x̄, and P2 = 1 + cos x̄ (15)

fw is given by

fw =


0, x̄ ≤ x̄0

A(P1)−1/2[1− cos(ω∗(x̄− x̄0))], x̄ ∈ [x̄0, x̄
∗
0]

A(P1)−1/2[1− cos(ω∗(x̄∗0 − x̄0))], otherwise
(16)

Also, vw is considered to be

vw =

{
−2Au∞(Re)−1/2 sin(ω∗(x̄− x̄0)), wherex̄ ∈ [x̄0, x̄

∗
0]

0, otherwise
(17)

It is suitable to write the equations in x̄ instead of ξ.
x̄ and ξ are related by

ξ
∂

∂ξ
= Q(x̄)

∂

∂x̄
(18)

where,
Q(x̄) = tan

x̄

2
(19)

Substituting Eqs. (18) and (19) in the Eqs. (9), (10) and (11), we obtain
the dimensionless equations,

(NFη)η+fFη+β(1−F 2)+MP (1−F ) = 2Q(x̄)(FFx̄−fx̄Fη) (20)
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Fig. 4 Effect of the constant and variable properties on the skin friction
coefficient (Cf (Re)1/2)
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Fig. 5 Effect of the constant and variable properties on the skin friction
coefficient (Cf (Re)1/2)
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Fig. 6 Effect of the constant and variable properties on the heat transfer
coefficient

(NSη)η + fSη −MPS = 2Q(x̄)(FSx̄ − fx̄Sη) (21)
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Fig. 7 Effect of the MHD parameter M and yaw angle θ on the skin
friction coefficient (Cf (Re)1/2) for variable viscosity and Prandtl
number
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Fig. 8 Effect of the MHD parameter M and yaw angle θ on the skin
friction coefficient (Cf (Re)1/2) for variable viscosity and Prandtl
number

(
1

Pr
NGη

)
η

+ fGη +NEc

[(
ue
u∞

)2

cos2 θF 2
η + sin2 θS2

η

]

+ PEcM

(
ue
u∞

)2

F (F − 1) = 2Q(x̄)(FGx̄ − fx̄Gη) (22)

The boundary conditions become

F (x̄, 0) = 0, F (x̄,∞) = 1

S(x̄, 0) = 0, S(x̄,∞) = 1

G(x̄, 0) = 1, G(x̄,∞) = 0 (23)
The skin friction coefficients in the x, z−directions and the heat transfer

coefficient can be written as

Cf (Re)1/2 = 4P2P
1/2
1 (cos θ)3/2Nw(Fη)w (24)

Cf (Re)1/2 = 23/2 cos
( x̄

2

)√
cos θ sin θNw(Sη)w (25)

Nu(Re)−1/2 = −
√

2 cos θ cos
( x̄

2

)
(Gη)w (26)

where,

Cf =
2[µ( ∂u

∂y
)]w

ρU2
∞

, Cf =
2[µ( ∂w

∂y
)]w

ρU2
∞

Nw =
1

1 + E1Gw
= constant, Nu =

R( ∂T
∂y

)w

(T∞ − Tw)
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Fig. 9 Effect of the MHD parameter M and yaw angle θ on the heat
transfer coefficient for variable viscosity and Prandtl number
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Fig. 10 Effect of the MHD parameterM on the velocity profiles F, S for
θ = 30◦, variable viscosity and Prandtl number

3. RESULTS AND DISCUSSIONS

The quasi-linearization method is utilised to linearise the non-linear PDEs
(20), (21) and (22) and the resulting sequence is, in turn, converted into a
block tridiagonal system of algebraic equations (Inouye and Tate, 1974).
Finally, Varga’s algorithm is implemented to solve the block tridiagonal
system (Varga, 2000). The convergence of solution is supposed to be
achieved when
max

{∣∣∣(Fη)
(k+1)
w − (Fη)

(k)
w

∣∣∣ , ∣∣∣(Sη)
(k+1)
w − (Sη)

(k)
w

∣∣∣ , ∣∣∣(Gη)
(k+1)
w − (Gη)

(k)
w

∣∣∣} < 10−4

The step sizes in η and x̄ directions respetively are ∆η = 10−2 and
∆x̄ = 5× 10−4. Here, η∞ is taken as 6.0.

The efficiency of our results are verified by comparing the non-
similar solutions obtained for a horizontal cylinder (θ = 0◦) with Sathyakr-
ishna et al. (2001) for A = 0, Ec = 0, t∗ = 0.0,M = 0, 0.5, 1 and for
a yawed cylinder (θ = 30◦) with Revathi et al. (2014) for Ec = 0, t∗ =
0.0,M = 0, A = 0.25, 0.0,−0.1 are presented in Fig. 2 and 3. The
results are found to be in excellent agreement.

Figures 4-6 depict the variations of the skin friction coefficients
(Cf (Re)1/2, Cf (Re)1/2) and the heat transfer coefficient (Nu(Re)−1/2)
due to constant and variable fluid properties. Irrespective of the MHD pa-
rameter M and yaw angle θ, the variable properties diminish Cf (Re)1/2

and Cf (Re)1/2 as compared to the constant fluid properties. Contrast-
ingly, the heat transfer is enhanced by the variable fluid properties.

From Figs. 7-9, it is observed that for each M and θ, Cf (Re)1/2

enhances from zero, hits its maximum and then declines to zero whereas
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Fig. 12 Effects of the viscous dissipation parameter Ec and yaw angle θ
on the heat transfer coefficient for M = 1, variable viscosity and
Prandtl number

Cf (Re)1/2, Nu(Re)−1/2 decline monotonically as x̄ further increases.
With the enhancing of magnetic effect, Cf (Re)1/2 and Nu(Re)−1/2

increase, but Cf (Re)1/2 decreases. However, for a constant magnetic
effect M , the yaw angle enhancement reverses the above effects. As M
changes from 0 to 1, the point of zero skin friction in the x−direction
moves downstream. This observation reveals that the separation can be
slowed down by enhancing the MHD parameter M .

The variations in the velocity profiles in the x, z−direction (F, S)
and on the temperature profile (G) with respect to M for θ = 30◦ are
presented in Figs. 10 and 11. F is reduced with the enhancing of the
magnetic effect. However, the effect is just the opposite on S and G.
This is because the imposed magnetic field generates a supporting force
in x−direction and an opposing force in z−direction. This results in
accelerating and decelerating the flow in the respective directions. The
impact of M is not remarkable on the temperature profile.

The influence of viscous dissipation parameter (Ec) and the yaw
angle (θ) on Nu(Re)−1/2 and G are shown in Figs. 12 and 13. It is
noticed that an increment of Ec enhances the temperature of the fluid
within the boundary layer. For Ec > 0, the fluid’s temperature near the
wall elevates higher than Tw, owing to viscous dissipation. This results in
the temperature profile surpassing 1 near the body’s surface, which then
declines to zero.

Figure 12 depicts thatNu(Re)−1/2 declines with an increase ofEc.
The heat transfer parameter becomes negative for Ec > 0, showing the
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Fig. 13 Effects of the viscous dissipation parameter Ec and yaw angle
θ on the temerature profile for M = 1, variable viscosity and
Prandtl number
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Fig. 14 Effects of suction (A > 0) and slot location (x̄0 = 0.5, 1.3) on
the skin friction coefficient (Cf (Re)1/2) for M = 0.5, variable
viscosity and Prandtl number
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Fig. 15 Effects of suction (A > 0) and slot location (x̄0 = 0.5, 1.3) on
the skin friction coefficient (Cf (Re)1/2) for M = 0.5, variable
viscosity and Prandtl number

inversion of the heat transfer direction. However, this is not observable
for Ec = 0. The viscous dissipation parameter has a shallow impact on

5



Frontiers in Heat and Mass Transfer (FHMT), 17, 4 (2021)
DOI: 10.5098/hmt.17.4

Global Digital Central
ISSN: 2151-8629

0 0.5 1 1.5 2 2.5

0

5

10

15

A=0.1

A=0.2

A=0.0

Fig. 16 Effects of suction (A > 0) and slot location (x̄0 = 0.5, 1.3) on
the heat transfer coefficient for M = 0.5, variable viscosity and
Prandtl number
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Fig. 17 Effects of injection (A < 0) and slot location (x̄0 = 0.5, 1.3) on
the skin friction coefficient (Cf (Re)1/2) for M = 0.5, variable
viscosity and Prandtl number

the skin friction coefficients, and hence the corresponding figures are not
presented here.

The impact of the mass transfer through two different slots [0.5, 1.0]
and [1.3, 1.8] on Cf (Re)1/2, Cf (Re)1/2 and Nu(Re)−1/2 are shown
in Figs. 14-19. For slot suction (A > 0), as the slot starts, Cf (Re)1/2,
Cf (Re)1/2 and Nu(Re)−1/2 increase and hit their maximum before
reaching its end. After that Cf (Re)1/2 and Nu(Re)−1/2 decline and
reach a non-zero finite value, but Cf (Re)1/2 almost vanishes. The in-
jection (A < 0) shows the opposite effect. The reason behind this is the
function vw considered in Eq. (17), which describes the effect of mass
transfer within a slot. The term sin(ω∗(x̄ − x̄0)) in vw increases in the
first half of the slot, reaches its highest value of 1 at (x̄0 + x̄∗0)/2 and de-
creases to 0 afterwards. Hence, the corresponding changed velocity field
influences the temperature field, leading to a change in skin friction and
heat transfer coefficients. It is observed that a small increment in the suc-
tion parameter A > 0 influences the zero skin friction in x−direction to
move downstream and hence delays the separation. This phenomenon is
much noticeable if the location of the slot [0.5, 1.0] is also moved down-
stream to [1.3, 1.8]. However, in the case of injection, increasing the in-
jection parameterA < 0 and moving the slot location downstream makes
the zero skin friction in x−direction to move upstream.
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Fig. 18 Effects of injection (A < 0) and slot location (x̄0 = 0.5, 1.3) on
the skin friction coefficient (Cf (Re)1/2) for M = 0.5, variable
viscosity and Prandtl number
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Fig. 19 Effects of injection (A < 0) and slot location (x̄0 = 0.5, 1.3) on
the heat transfer coefficient for M = 0.5, variable viscosity and
Prandtl number

4. CONCLUSIONS

The steady MHD flow problem over a yawed cylinder has been solved
numerically, and the following observations are made:

• The separation can be slowed down by enhancing the MHD pa-
rameter M .

• With an increase of yaw angle θ, the skin friction coefficientCf (Re)1/2

and the heat transfer coefficientNu(Re)−1/2 declines irrespective
of the value of M .

• The enhancement of viscous dissipation effect Ec enhances the
temperature (G) of the fluid within the boundary layer while in-
creasing the yaw angle θ diminishes G.

• Overshoot in the temperature profile is observed near the body sur-
face for Ec > 0.

• Increasing suction (A > 0) and the slot’s movement in downstream
direction moves the zero skin friction in x−direction downstream,
whereas the injection’s effect is the opposite.

NOMENCLATURE

A Dimensionless mass transfer parameter
B0 Magnetic field strength
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cp Specific heat (kJ/kg · K)
Cf , Cf Skin friction coefficient in x, z−directions, respectively
Ec Eckert number (viscous dissipation parameter)
fw(x) Surface mass transfer distribution
f Dimensionless stream function
F Dimensionless velocity component in the x−direction
G Dimensionless temperature
k Thermal conductivity (W/m · K)
M MHD parameter
Nu Nusselt number
N µ

µ∞
Viscosity ratio

Pr Prandtl number
Re Reynolds number
R Radius of the yawed cylinder
S Dimensionless velocity component in the z−direction
T Temperature (K)
u, v, w Dimensional velocity components in x, y, z−directions,

respectively (m/s)
U Steady state velocity at the boundary layer’s edge
x, y, z Dimensional meridional, azimuthal and normal distances,

respectively (m)
x̄ Dimensionless meridional distance
x̄0, x̄

∗
0 Ends of slot

Greek Symbols
β(ξ) Pressure gradient
η, ξ Transformed coordinates
∆η,∆x̄ Step sizes in η−, x̄− directions, respectively
µ Dynamic viscosity (Kg/m · s)
ν Kinematic viscosity (m2/s)
ρ Density (Kg/m3)
σ Electrical conduction
θ Yaw angle
ω∗ Slot length parameter
ψ Dimensional stream function (m2/s)
Subscripts
e Conditions at the edge of the boundary layer
w Conditions at the surface of the sphere
∞ Conditions in the free stream
x, z, x̄, ξ, η Partial derivatives with respect to these variables
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