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ABSTRACT 

Large number of numerical computer simulations in engineering places is a serious burden on associated optimization problems nowadays. Kriging 
Surrogate based optimization (KSBO) becomes standard practice in analyzing expensive and time-consuming simulation. This paper aims to 
investigate the surrogate based analyze and optimization of thermal damage in living biological tissue by laser irradiation using a generalized duel 
phase model. The relationships of maximum temperature and thermal damage in living biological tissues of the response with two variables at a time 
are studied.  The result shows that the surrogate model predicted response variables i.e, temperature and thermal damage are in good agreement 
with the original values. This result will help to predict the thermal damage and temperature of living tissue without solving the large numeric 
computer simulation rather using surrogate kriging model. 
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1. INTRODUCTION 

Lasers are a very new piece of technology that has been presented in the 

medical field that contain many applications. With it first being 

introduced in the medical field in the 1960’s in cardiovascular surgery it 

has made great strides in small and precise movements in surgery 

reducing the amount of human error. In the span of 5 decades, use of 

lasers has spanned for the treatment of eyes, kidneys, varicose veins and 

other parts of the body [Wang, X, et al. 2021, Sun, C., et al. 2021, Zhang, 

Q., et al. 2021].  

  The use of varieties of lasers in different types of surgeries 

often creates problems. There are many factors that need to be considered 

when it comes to the settings of lasers. Two important factors for the 

application of lasers are the pulse and intensity.  These two setting can 

have a big impact on the depth that the laser will go into as well as the 

damage it will do to the biological tissue. The most concerning type of 

laser induced damage is the thermal damage that it has to the surrounding 

tissue when it performs surgery. As Pierce describes that the 

thermodynamic principles are the same in that there occurs “Observed 

irreversible thermal alterations range from substantial structural 

disruption due to steam evolution in high temperature short-term 

activations to low temperature rise, long-term initiation of the complex 

protein cascades that result in apoptosis and/or necroptosis.” 

First must be understood about the result of this laser induced 

thermal damage in biological tissue is that the veins as well as the 

surrounding tissue each vary in diameter depending on the area of the 

body. We must see the general bioheat equation considering blood 

perfusion and metabolic heat generation as it shows below [Pennes, H. 

H., 1948]. 

𝜌𝑐
𝜕𝑇

𝜕𝑡
= −

𝜕𝑞

𝜕𝑡
+ 𝑄𝐿 + 𝑄𝑚 + 𝑤𝑏𝜌𝑏𝑐𝑏(𝑇𝑏 − 𝑇)                                    

           (1) 

In the equation, q is heat flux, ρ and c are density and specific heat for 

the tissue. 𝑤𝑏 is the blood perfusion rate and 𝑇𝑏 and T are the 

temperatures of blood and tissue; 𝑄𝑚𝑎𝑛𝑑 𝑄𝐿are the source term due to 

the metabolic heating and hyperthermia therapy.  

 From the general heat equation above, we have various 

constant and from them we can also assume that the vein temperature 

along with the tissue temperature to be the same. Something different 

however is that the blood perfusion rate was taken from various parts of 

the body in order to be able to calculate the laser damage and depth.  

The simplest example of DPL model is its first order expansions for both 

q and T, given as [Tzou, D. Y., 1997]: 

𝑞(𝒓, 𝑡) + 𝜏𝑞
𝜕𝑞(𝒓,𝑡)

𝜕𝑡
= −𝑘[

𝜕𝑇(𝒓,𝑡)

𝜕𝑥
+ 𝜏𝑇

𝜕2𝑇(𝒓,𝑡)

𝜕𝑡𝜕𝑥
]      

                   (2) 

Combining the Eqs. (1) and (2), Jianhua [Zhou, J., et al. 2009] end up 

with this bioheat conduction equation with heat flux, q (x, t) and 

temperature T(x, t) that was used as a governing equation to simulate the 

DPL heat conduction in tissue: 

𝜏𝑞
𝜕2𝑞

𝜕𝑡2 +
𝜕𝑞

𝜕𝑡
= 𝛼

𝜕2𝑞

𝜕𝑥2 + 𝛼𝜏𝑇
𝜕3𝑞

𝜕𝑡𝜕𝑥2 − 𝛼
𝜕𝑄𝐿

𝜕𝑥
+ 𝛼𝑤𝑏𝜌𝑏𝑐𝑏

𝜕𝑇

𝜕𝑥
+

𝛼𝑤𝑏𝜌𝑏𝑐𝑏𝜏𝑇
𝜕2𝑇

𝜕𝑡𝜕𝑥
        (3) 

Considering not only interfacial convection heat transfer but also the 

blood perfusion, the two-step model can be written in the following 

forms: 

𝜀𝜌𝑏𝑐𝑏[
𝜕𝑇𝑏

𝜕𝑡
+ 𝑉⃗ . 𝛻𝑇𝑏] = 𝜀𝑘𝑏𝛻

2𝑇𝑏 + 𝐺(𝑇𝑠 − 𝑇𝑏) + 𝜀𝑄𝐿  

       (4) 

(1 − 𝜀)𝜌𝑠𝑐𝑠
𝜕𝑇𝑠

𝜕𝑡
= (1 − 𝜀)𝑘𝑠𝛻

2𝑇𝑠 + 𝐺(𝑇𝑏 − 𝑇𝑠) + (1 − 𝜀)𝑄𝐿 + (1 −

𝜀)𝑄𝑚       (5) 

where G is called lumped coupling factor between blood and tissue. G 

can be expressed as follows: 

𝐺 = 𝑎𝑏ℎ𝑏 + 𝑤𝑏𝑐𝑏      (6) 
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Combining Eqs. (1) and (5), while eliminating temperature T by operator 

method gives the following bioheat equation for heat flux: 

𝜏𝑞
𝜕2𝑞

𝜕𝑡2
+

𝜕𝑞

𝜕𝑡
= 𝛼𝑠

𝜕2𝑞

𝜕𝑥2
+ 𝛼𝑠𝜏𝑇

𝜕3𝑞

𝜕𝑡𝜕𝑥2
− 𝛼𝑠

𝜕𝑆

𝜕𝑥
−

𝐺

(1−𝜀)𝜌𝑠𝑐𝑠
[𝑞 + 𝜏𝑞

𝜕𝑞

𝜕𝑡
] 

        (7) 

In this study, following equation will be used as the basic governing 

equation to make a similarity of the Eq. (3): 

𝜏𝑞
𝜕2𝑞

𝜕𝑡2
+

𝜕𝑞

𝜕𝑡
= 𝛼𝑠

𝜕2𝑞

𝜕𝑥2
+ 𝛼𝑠𝜏𝑇

𝜕3𝑞

𝜕𝑡𝜕𝑥2
− 𝛼𝑠

𝜕𝑆

𝜕𝑥
+

𝐺𝛼𝑠

(1−𝜀)

𝜕𝑇

𝜕𝑥
+

𝐺𝛼𝑠𝜏𝑇

(1−𝜀)

𝜕2𝑇

𝜕𝑡𝜕𝑥
 

      (8) 

For highly absorbed tissues, the surface laser heating is approximated as 

boundary condition of second kind. In this case the laser volumetric heat 

source or laser irradiance, QL is zero and the boundary conditions are 

given by [Zhang, Y., 2009, Afrin, N., et al. 2012] : 

For, x=0,when 0<t<𝜏𝐿                             

 𝑞 = 𝜙𝑖𝑛(1 − 𝑅𝑑)       

For, x= L when 0 < t <𝜏𝐿 ,𝑞 = 0                  (9) 

For strongly scattering tissues, laser heating which is considered as body 

heat source is not equal to zero (QL≠0) and the irradiated surface is 

considered as thermally insulated. So, the boundary condition can be 

represented as: 

For, x=0 when 0 < t <𝜏𝐿      𝑞 = 0       

For, x= L when 0 < t 𝜏𝐿            𝑞 = 0            

                                 (10)       

And the initial conditions are: 

At, t=0, q=0 and 
𝜕𝑞

𝜕𝑡
= 0 for 0<x<L        (11) 

The laser volumetric heat source can be determined as follows: 

𝑄𝐿(𝑥) = 𝜇𝑎𝜙(𝑥)                 (12) 

To calculate light distribution in scattering tissue broad beam laser 

method [Afrin, N., et al. 2012] is adopted and the light distribution can 

be determined by the following relation: 

𝜙(𝑥) = 𝜙𝑖𝑛[𝐶1 𝑒𝑥𝑝( − 𝑘1𝑧/𝛿) − 𝐶2 𝑒𝑥𝑝( − 𝑘2𝑧/𝛿)]          (13) 

The effective penetration depth can be defined by the diffusion theory as  

𝛿 =
1

√3𝜇𝑎[𝜇𝑎+𝜇𝑠(1−𝑔)]
                (14) 

Here, μs is the scattering coefficient and g is the scattering anisotropy. 

The optical properties varied to represent the spectrum of tissues 

encountered in laser application are, 0.1≤ 
𝜇𝑠

(𝜇𝑎+𝜇𝑠)
≤0.999 and 0.7≤g≤0.9 

[Gardner, C., et al. 1996].  An improved scattering coefficient can be 

introduced as 

𝜇𝑠
′ = 𝜇𝑠(1 − 𝑔)          (15) 

As for the calculation of thermal damage (Ω), the Arrhenius integration 

is widely used, which is given as [Welch, A. J., 1994,Xu, F., et al. 2009]: 

𝛺 = 𝐴∫ 𝑒𝑥𝑝( −
𝐸

𝑅𝑇

𝑡𝑓
𝑡0

)𝑑𝑡                (16) 

where A is the frequency factor, 3.1х1098 s-1 [Xu, F., et al. 2009]; E is 

the energy of activation of denaturation reaction, 6.28x105 J/mol [Xu, F., 

et al. 2009]; R is the universal gas constant, 8.314 J/ (mol K); T is the 

absolute temperature of the tissue at the location where thermal damage 

is calculated; t0 is the time at onset of laser exposure; and tf is the time 

of thermal damage evaluation. When Ω=1.0, then the tissue is assumed 

irreversible damage which causes the denaturation of 63% of the 

molecules.  

 Performing integration of Eq. (8) over the control volume with grid 

point P in Fig.1 and over the time step from t to t+∆t: 

∫ ∫ (𝜏𝑞
𝑡+𝛥𝑡

𝑡

𝑒

𝑤

𝜕2𝑞

𝜕𝑡2 +
𝜕𝑞

𝜕𝑡
)𝑑𝑡𝑑𝑥 = ∫ ∫ (𝛼𝑠

𝑡+𝛥𝑡

𝑡

𝑒

𝑤

𝜕2𝑞

𝜕𝑥2 + 𝛼𝑠𝜏𝑇
𝜕3𝑞

𝜕𝑡𝜕𝑥2 − 𝛼𝑠
𝜕𝑄𝐿

𝜕𝑥
+

𝐺𝛼𝑠

(1−𝜀)

𝜕𝑇

𝜕𝑥
+

𝐺𝛼𝑠𝜏𝑇

(1−𝜀)

𝜕2𝑇

𝜕𝑡𝜕𝑥
)𝑑𝑡𝑑𝑥                                                                                                               

(17) 

Appling backward difference in time and piecewise-linear profile in 

space, the following algebraic equation for temperature can be obtained 

from Eq. (17): 

𝑎𝑃𝑞𝑃
𝑡+𝛥𝑡 = 𝑎𝐸𝑞𝐸

𝑡+𝛥𝑡 + 𝑎𝑊𝑞𝑊
𝑡+𝛥𝑡 + 𝑏         (18) 

where, 

𝑎𝐸 =
𝛼𝑠𝛥𝑡

(𝛿𝑥)𝑒
+

𝛼𝑠𝜏𝑇

(𝛿𝑥)𝑒
      

                 (19) 

𝑎𝑊 =
𝛼𝑠𝛥𝑡

(𝛿𝑥)𝑤
+

𝛼𝑠𝜏𝑇

(𝛿𝑥)𝑤
      

                (20) 

𝑎𝑃 = 𝑎𝑤 + 𝑎𝑒 +
𝜏𝑞𝛥𝑥

𝛥𝑡
+ 𝛥𝑥         

                     (21) 

𝑏 = [
2𝜏𝑞𝛥𝑥

𝛥𝑡
+ 𝛥𝑥 +

𝛼𝑠𝜏𝑇

(𝛿𝑥)𝑒
+

𝛼𝑠𝜏𝑇

(𝛿𝑥)𝑤
]𝑞𝑃

𝑡 −
𝛼𝑠𝜏𝑇

(𝛿𝑥)𝑒
𝑞𝑒

𝑡 −
𝛼𝑠𝜏𝑇

(𝛿𝑥)𝑤
𝑞𝑤

𝑡

−
𝜏𝑞𝛥𝑥

𝛥𝑡
𝑞𝑃

𝑡−𝛥𝑡 − 𝛼𝑠𝜇𝑎𝛥𝑥𝛥𝑡
𝜕𝜙

𝜕𝑥
|
𝑃

 

+
𝐺𝛼𝑠

(1−𝜀)

𝑇𝐸
𝑡−𝑇𝑊

𝑡

2
𝛥𝑡 +

𝐺𝛼𝑠𝜏𝑇

(1−𝜀)
[
𝑇𝐸

𝑡+𝛥𝑡−𝑇𝑊
𝑡+𝛥𝑡

2
−

𝑇𝐸
𝑡−𝑇𝑊

𝑡

2
]      

                         (22) 

In the Eq. (22), the value of 
𝜕𝜙

𝜕𝑥
can be obtained from the Eq. (13). 

2. Kriging Surrogate method  

Kriging also known as Gaussian process regression is a method of 

interpolation based on the Gaussian Process [Bufia, E. A., Cinnella, P., 

2015]. Kriging method is a response surface model which represents a 

relationship between design variables and objective functions using 

stochastic process. Kriging equations are determined by fitting line 

through points to minimize weighted sum of squares between points and 

line. These equations are weighted based on spatial 

autocorrelation, which is determined from 

the semivariograms. Semivariogram measures the strength of statistical 

correlation as a function of distance.  

Semi-variogram = 0.5×average [(value at location i- value at location j)2] 

𝛾(ℎ) = ∑
{𝑧(𝑥𝑖)−𝑧(𝑥𝑖+ℎ)}2

2𝑛

𝑛
𝑖=0             (23) 

Kriging method has both a deterministic and probabilistic component 

where both are the function of distance.  

Z(s)=μ(s)+ε'(s)+ε"(s)          (24) 

The Kriging model has gained popularity for aerodynamics design which 

drastically reduce computational time required for objective function 

evaluation in the uncertainty quantification process. Kriging methods are 

basically used in aerodynamics design problem optimization. The model 

predicts the value if unknown point using stochastic processes where 

sample points are interpolated with Gaussian random function to estimate 

the trend of the stochastic process [Bufia, E. A., Cinnella, P., 2015, J.P.C., 

2009, Joeng, S., et al. 2005, Park, K., et al. 2006, Jouhaud, J.-C, et al. 

2005, Sommanawat, W., Kanok-Nukulchai, W., 2009]. 

Surrogate based optimization (SBO) is an optimization process where 

the original objective is replaced by iterative re-optimization and 

updating the analytically tractable and computationally cheap 

surrogate. It has been suggested for the design with time-consuming 

computational model. When high-fidelity model consumes time and 

becoming computationally expensive, the surrogate modeling which is 

constructed data from high-fidelity models provides faster 

approximations of the objectives and constraints at new design points to 

make sensitivity and optimization studies feasible [Lee, H., et al. 2016, 

Gel, A., et al. 2013, Wenzel, C., et al 2015]. The initial functional 

surrogate can be generated using high -fidelity model 

data obtained through sampling of design. Design of experiments 

involves the use of strategies for allocating samples within the design 

space. Figure 1 shows the model construction flowchart for a functional 

surrogate model. Nazia et al. applied surrogate based analysis to optimize 

thermal damage in living biological tissue by laser irradiation. They 

applied Latin Hypercube Sampling (LHS) and Response Surface Model 

(RSM) to study optimization of thermal damage. They found out that the 

input variables had quadratic response to maximum temperature and 

thermal damage of living tissue [Afrin, N., Zhang, Y., 2019] 

Regression is a type of supervised machine learning that is used to predict 

continuous response. The major steps to speed up computations are 

import data, select data to train the model by selecting accurate model 

and use the model to predict new set of data. Regression analysis is a 

reliable method of identifying which variables have impact on the topic 

of interest. 
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3. Results and discussions 

Thermophysical properties of tissues [Yamada, Y., et al. 1995]: 𝜌 

=1000 kg/m3, k = 0.628 W/ (m K), c = 4187 J/(kg K); thermo-physical 

properties of blood vessel: 𝜌𝑏= 1060 kg/m3, cb = 3860 J/(kg K), wb = 

1.87×10-3 m3/ (m3 tissue s): optical properties [23]: 𝜇𝑠= 120.0 cm-1, 

𝜇𝑎= 0.4 cm-1, g = 0.9 ; blood temperature: Tb = 37oC; metabolic heat 

generation: Qm = 1.19  103 W/m3 [Yamada, Y., et al. 1995]. The 

thickness of the slab of tissue is L = 5 cm, and the initial temperature is 

T0 = 37˚C. The diffuse reflectance Rd = 0.05 is used for the laser light 

distribution of scattering tissue. Two laser irradiances are considered, 

in= 2 W/cm2 and 30 W/cm2. The laser duration time τL is 5s. After the 

model convergence test, a total of 120 grid points and a time step (∆t) of 

0.001s are employed. Three different values of the coupling factor are 

taken based on the blood perfusion rate. According to the blood perfusion 

rate wb= 1.8710-3 m3/ (m3 tissue s), the values of ε are 0.0079, 0.025 

and 0.0845 [7] and the coupling factors are 67435, 55078 and 47488 

W/m3K [Zhang, Y., 2009, Yamada, Y., et al. 1995, Glenn, T. N.,Ganong 

W. F.,]. 

 

 
Figure 1: Regression Learner flowchart for the problem 

 

To find out the surrogate model to observe temperature of the tissue and 

thermal damage, the paper used “Regression Learner” app in Matlab. The 

flow chart of the app in figure 1 shows a common workflow for the 

regression model in the Regression learner app. The regression learner is 

a train regression model to predict data using supervised machine 

learning. We choose cross validation option to use good estimate of the 

predictive accuracy of the final model trained using full data set. We 

trained all available nonoptimizable model types such as Linear 

Regression models (Interactions Linear, Robust Linear and Stepwise 

Linear), Regression Trees (Fine Tree, Medium Tree and Coarse Tree), 

Regression models (Linear SVM, Quadratic SVM, Cubic SVM, Fine 

Gaussian SVM, Medium Gaussian SVM and Coarse Gaussian SVM) and 

Gaussian Process Regression models (Rational Quadratic, square 

exponential, Matern 5/2 and Exponential). The result shows that for the 

Gaussian process regression model Matern 5/2 gave the minimum Root 

Mean Square Error (RMSE) value for 100 number of data points. RMSE 

represents model performance and fitness against the data. The lower the 

error the better the fitness. In this case, the Gaussian regression showed 

RMSE value of 2.7288. The prediction plot for Gaussian regression 

represents how well of this model makes prediction for the actual value. 

A perfect regression model has a predicted response is equal to true 

response means all the points lie in the diagonal line and the vertical line 

from the point to the diagonal line represent the error of the prediction of 

that point. Figure 3 shows the predicted vs actual value plot for the tissue 

temperature with respect to laser pulse and blood perfusion. Most of the 

actual value lies close to the prediction (diagonal line) which implies a 

good fit of the predicted function with the actual values. 

 

 
Figure 2: Response plot for Tissue Temperature(K) vs laser pulse(µs) 

and blood perfusion (wb) with 100 data points 
 

 

 
Figure 3: Predicted vs actual plot for the tissue temperature with 

independent variables laser pulse and wb 

 

Figure 4 shows residual plot for tissue temperature(K) with true response 

with independent variables laser pulse and blood perfusion respectively. 

The difference between the observed value of the dependent variable and 

the predicted value is called the residual and each data point has one 

residual. The fig. 4 shows that the residual plot is random means the line 

is a good fit for the data.  

Figure 5 shows the estimated and observed minimum MSE at different 

iteration (Optimizable GPR of the model). Optimizable model 

corresponding Gaussian regression model is enabled and the optimizable 

GPR model is used iterate through all the combination of hyper-

parameter for GPR model. The visualization (fig:5) shows that the error 

decreases as different combination of hyperparameters are validated. The 

first attempt to observe the optimization refers that we should consider 
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more data points to get more accurate surrogate model to predict the new 

set of data. PCA can also be used to reduced dimensionality. After using 

regression model to predict data, one can use generated Matlab code 

which can use to train the model with new data. The advantages of 

generating code are training on huge data set, examine the code to learn 

how to train models and modify the code for further analysis. The 

generate code shows to process the data into the right shape, train a model 

and specify all model options, perform cross-validation, compute 

statistics and compute validation predictions and scores. 

 
Figure 4: Residual plot for tissue temperature with true response 

 

 
 
Figure 5: Estimated and observed minimum MSE at different iteration 

(Optimizable GPR of the model) 

 

 
Figure 6: Comparison between Kriging method and numerical 

simulation values for tissue temperature 

 

The advantage of Matlab regression learner app is that it will allow to 

export the best surrogate model which validates the optimization and 

then trained model can be used to make predictions using new data. To 

justify the surrogate model is valid or not, we used the best kriging 

exported model to predict new set of data which will validate the kriging 

method. Supplied data inputs (laser pulse and blood perfusion) will 

provide new set of data using the best kriging model by using “predictFcn 

(input variables)”. Figure 6 shows the comparison between the predict 

data set from the best model and numerical simulation results. The figure 

shows a good agreement with those data sets. The minimum RMSE value 

for thermal damage is 0.000188887 for Boosted Trees. The training time 

for the method is 0.27933 second. Mean Squared Error (MSE) value is 

1.2263×10-4. 

 

 
Figure 7: Response plot for tissue temperature optimization for 200 data 

points 

 

 
Figure 8: Predicted vs actual plot for tissue temperature with 

independent variables (laser pulse) 

 
Figure 9: Residual plot for tissue temperature with true response for 

200 data points 
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Figure 10: Comparison between Kriging method and numerical 

simulation values for tissue temperature 

 

 
Figure 11: Response plot for thermal damage optimization for 200 data 

points 

  

 
Figure 12: Predicted vs actual plot for thermal damage with independent 

variables (laser pulse and blood perfusion) with 200 data points 

 
Figure 13: Residual plot for thermal damage with true response 

 

We increased number of data points up to 200 to consider temperature 

and thermal damage optimization as the results indicated that more data 

points would provide more accurate optimization of surrogate model. 

After training regression model in Regression Learner app in Matlab, we 

compared models based on model statistics, visualize results in the 

response plot, actual plot verses predicted plot, and by residual plot. 

Figure 7 shows the response plot for tissue temperature for 200 data 

points. Figures 8 shows predicted vs actual plot for tissue temperature 

with independent variables. It implies the effect of the model and 

compares the model against the null model. Most of the actual values for 

tissue temperature lies or close to the predicted curve which indicates a 

good fit of the model.  

Figure 9 shows the residual plot for tissue temperature with true response 

for 200data points. Surrogate model can be evaluated by using residuals 

plot. Usually a good model has residual scattered roughly symmetrically 

around 0. Our result shows a good model since residuals are almost 

symmetrically distributed around 0 and residuals doesn’t change 

significantly in size from left to right in the plot. Figure 10 shows the 

comparison between kriging method and numerical simulation values for 

tissue temperature. Figure 11 shows response plot for thermal damage 

optimization for 200 data points. Gaussian Process regression model 

Matern 5/2 GPR gave the lowest RMSE value 4.0989.  Figure 12 shows 

the predicted plot vs true response plot for thermal damage. This figure 

helps to check the model performance. A perfect regression model has a 

predicted response the same as the observed values so all the points lies 

on the diagonal line. The data points are closed to be as close to the 

diagonal line and scattered roughly symmetrically around the line 

meaning the model can be improved. Boosted trees model type is used to 

train the data points to make it more flexible. Figure 13 shows the 

residuals plot vs true response. Figure 14 shows the comparison between 

the numerical simulation results and kriging model optimization results 

for thermal damage in living tissue. The figure indicates a good 

agreement with numerical and optimization results. Since the data points 

are not very large, cross-validation is used to validate the points which 

helps partition data into some number of folds, trains the model and 

calculate the average test error over all folds. In this paper the numerical 

solution is used to train the surrogate model. Figures 6 and 10 are the 

representation in terms of comparison of the training data and validation 

data. It shows from both of the figs that the numerical solution 

successfully train the surrogate model. 

Overall from this study we can conclude that the Kriging surrogate model 

shows a good optimization model to predict the temperature and thermal 

damage of living tissue. 
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Figure 14: Comparison between Kriging method and numerical 

simulation values for thermal damage for 200 data points 

3. CONCLUSIONS 

The surrogate based analyze and optimization of thermal 

damage in living biological tissue is carried out for laser irradiation using 

a generalized duel phase model. The relationships of maximum 

temperature and thermal damage in living biological tissues optimization 

with independent variables blood perfusion and laser pulse are studied.  

The result shows that the surrogate model predicted response variables 

i.e, maximum temperature and thermal damage are in good agreement 

with the numerical result. This result implies that surrogate kriging model 

is sufficient to predict the thermal damage and temperature of living 

tissue, rather than the numerical simulation of full biological model.  
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NOMENCLATURE 

a  specific heat transfer area, m2/m3 

c  specific heat, J/ (kg K) 

G  coupling factor between blood and tissue, W/ (m3 K) 

t  time, s 

T  average temperature, K 

q  heat flux vector, W/m2 

x  position vector, m 

w  blood perfusion rate, m3/m3 tissue 

QL  heat source due to hyperthermia therapy, W/m3 

Qm  source terms due to metabolic heating, W/m3 

Rd  diffuse reflectance of light 

A  frequency factor, s-1 

R  universal gas constant, J/(mol K) 

E  energy of activation of denaturation reaction, J/mol 

 

Greek Symbols  

ρ  density, kg/m3 

β  vector of unknown constant coefficients 

τq  phase lag time of the heat flux, s 

τT  phase lag of the temperature gradient, s 

τL  laser exposure time, s 

α  thermal diffusivity, m2/s 

ε  porosity 

φ in incident laser irradiance 

 

Appendix: Exported model: 

function[trainedModel,validationRMSE]=trainRegressionModel(trainin

gData) 

[trainedModel, validationRMSE] = trainRegressionModel(T) 

yfit = trainedModel.predictFcn(T2) 

inputTable = trainingData; 

predictorNames = {'Tpulse', 'WB'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Damage; 

isCategoricalPredictor = [false, false]; 

% Train a regression model 

% This code specifies all the model options and trains the model. 

regressionTree = fitrtree(predictors, response,'MinLeafSize', 4, 

'Surrogate', 'off'); 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

treePredictFcn = @(x) predict(regressionTree, x); 

trainedModel.predictFcn=@(x) 

treePredictFcn(predictorExtractionFcn(x)); 

% Add additional fields to the result struct 

trainedModel.RequiredVariables = {'Tpulse', 'WB'}; 

trainedModel.RegressionTree = regressionTree; 

trainedModel.About = 'This struct is a trained model exported from 

Regression Learner R2020b.'; 

trainedModel.HowToPredict = sprintf('To make predictions on a new 

table, T, use: \n  yfit = c.predictFcn(T) \nreplacing ''c'' with the name of 

the variable that is this struct, e.g. ''trainedModel''. \n \nThe table, T, must 

contain the variables returned by: \n  c.RequiredVariables \nVariable 

formats (e.g. matrix/vector, datatype) must match the original training 

data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appregression_exportmodeltoworkspace'')">How to predict using an 

exported model</a>.'); 

% Extract predictors and response 

inputTable = trainingData; 

predictorNames = {'laservPulse', 'wb'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Temp; 

isCategoricalPredictor = [false, false]; 

% Perform cross-validation 

partitionedModel = crossval(trainedModel.RegressionTree, 'KFold', 5); 

% Compute validation predictions 

validationPredictions = kfoldPredict(partitionedModel); 

% Compute validation RMSE 

validationRMSE = sqrt(kfoldLoss(partitionedModel, 'LossFun', 'mse')); 
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