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ABSTRACT 
The present paper provides a discussion about the use of constraints in step-by-step optimization algorithms used for the solution of a two-
dimensional inverse heat transfer problem containing a modeling error. It is observed that the unrestricted algorithms provided better estimates to the 
power map and the introduction of constraints is harmful to the solution of the inverse heat transfer problem, reducing the area in which this solution 
approaches the actual heat sources distribution, due to the solution of the unrestricted problem adopting negative values in restricted areas, which 
compensate the high sensitivity of this problem and consequently provide improved solutions.  
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1. INTRODUCTION 
The recent development of advanced techniques for the local 

cooling of the hotspots formed in the operation of a computer 
microprocessor, such as the use of high-velocity impingement jets 
produced by piezoelectric fans (Velardo et. al, 2021) and microchannel 
cooling systems (Gulia and Sur, 2022), resulted in a direct concern with 
the solution of two-dimensional inverse heat transfer problems such that 
the correct location and intensity of these hotspots could be provided to 
the application of these techniques.  

The direct two-dimensional steady heat transfer problem applied to 
these electronic devices is defined by the normalized steady-state heat 
diffusion equation:  

 
 (1) 

 (2) 
 
Such that the heat sources distribution S is previously known and 

defined as a boundary condition, as well as the geometrical boundaries 
of the domain, which are defined as zero heat flux boundary condition. 

The solution of the two-dimensional steady inverse heat transfer 
problem regarding this application comprehends transforming Eq. (1) in 
a linear form such as: 

 
 (3) 

 
This equation provides that, once the inverse of the thermal 

resistance matrix R is known and the normalized temperature profile is 
obtained (by measurements or any other technique), a vector containing 
the power map of a 2D heat source S can be easily obtained. 

However, this problem is considered as an ill-posed problem 
according to Cochran et al. (2010), Nowroz (2014), Okamoto (2005), Qi 
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et al. (2010) and many others. Even if the problem physics ensures 
thatthere is at least one solution that satisfies this equation, the unity and 
stability criteria cannot be assured for most 2D inverse heat transfer 
problems (Okamoto, 2005, and Qi et al., 2010). This becomes a major 
problem since most modeling and measurement techniques rely on 
approximations that result in slight differences obtained when using 
different methodologies. These small discrepancies, allied to high 
sensitivity, often result in inverse solutions that are significantly distant 
from the exact solution of the inverse problem. 

So, to obtain better approaches to these solutions, they are usually 
obtained through a minimization least-squares problem defined such as: 

 

 (4) 

 
The goal of this minimization problem is to minimize the error 

between the estimated solution and the measured temperatures, 
restricting the solution using constraints, such that the sum of all source 
terms is equal to the total power emitted by the electronic device and that 
all source terms are necessarily non-negative. 

So, the use of step-by-step solutions to these minimization problems 
considers directly the use of constraints in order to restrict the obtained 
solutions using previously known information of the physical problem, 
such as the inexistence of negative heat source terms, or the total thermal 
power emitted obtained through an energy balance. This use of 
constraints is regarded as beneficial, reducing the occurrence of ill-posed 
solutions (Nowroz, 2014, and Reda, 2011). 

So, it is possible to obtain this solution using a step-by-step least-
squares linear constrained solver, such as the MATLAB lsqlin function 
(Dev et al., 2013). This approach neglects the use of regularization 
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techniques, relying only on conditioning techniques and on the 
constraints to obtain a stable solution process. 

Other approaches (Cochran et al., 2010, and Okamoto, 2005) uses a 
Tikhonov regularized form of the minimization problem, such as: 

 

 (5) 

 
However, once the regularized objective function problem can be 

rewritten as a quadratic equation, other step-by-step algorithms, such as 
quadratic programming, also can be used to solve this problem. 

The proposition of the present article consists in using a previously 
established heat source term to obtain an inverse solution using different 
solution methods. This problem is known as an inverse crime (Kaipio 
and Somersalo, 2004, and Siltanen, 2010). The use of these methods will 
result in a very small difference, but enough to disturb the solution 
process. The main goal of the present study is to present the effects 
obtained with the use of step-by-step algorithms incorporating often used 
constraints, with and without the introduction of regularization 
techniques, such as the Tikhonov regularization.  

2. PROBLEM DESCRIPTION 
To create a model that could describe accurately the dimensional issues 
associated with a two-dimensional heat transfer problem, such as a 
computer microprocessor, it was elaborated a flat surface containing 
positive heat source terms. The heat source characteristics, such as 
dimensions, magnitude, and spatial distribution, were based in both  
Hamann et al. (2006) and Reda (2011), since the dimensions of the model 
and the heat source magnitude are equivalent to the die of the IBM dual-
core microprocessor PowerPC® 970 FX specifications (IBM Corp., 
2006), while the heat source spatial distribution comprises two regions 
containing heat source terms with different spatial frequency. Fig. 1 
shows a visual representation of this model. 
 

 
Fig. 1 Model representation 

 
The sum of the net heat source values presented in Fig. 1 is 11 W, 

equal to the Thermal Design Power (TDP) of the PowerPC® 970 FX 
microprocessor (Stanford VLSI Group, 2019). 

Also, to emulate the thermal diffusion due to heat conduction and 
the heat dissipation required for reaching steady-state condition, it is 
important to define a thermal conductivity to the material of the surface 

and a dissipation term. For simplicity, it is assumed as homogeneous 
along the entire surface and equal to the thermal conductivity of the 
silicon, which is the base material used to fabricate microprocessors. So, 
it is defined that the thermal conductivity of the entire surface is constant 
and equal to 148 W/(m.K) (Plawsky, 2014). 

For the dissipation term, in a real microprocessor, it would be 
necessary to represent the heat dissipation effect provided by the internal 
heat spreader (IHS) of the microprocessor, which, in most cases, is 
directly in contact with the die of the micro- processor. However, in 
situations involving direct die cooling, the microprocessor die could be 
able to dissipate heat directly to a fluid flow through convection heat 
transfer. This reduces the problem of defining the dissipation term to the 
definition of a convection heat transfer coefficient. 

For liquid flow, usually the convection heat transfer coefficient 
obtained is in the range between 100 and 20000 (Incropera et al., 2007). 
Also, according to the datasheet of the PowerPC® 970 FX (IBM Corp., 
2006), the application temperature of this processor is 105°C and its 
storage temperature cannot exceed 125°C. So, the convection heat 
transfer coefficient is defined respecting this range, so that it results in a 
maximum temperature along the surface into the range between 
105~125°C. The value of 1000 W/m²K was tested and satisfied both 
these conditions. 

Once these conditions are defined, the solution of the direct problem 
was obtained using the finite differences method (FDM) using quadratic 
elements, such that the nodes were positioned at the center of each 
element. The boundary condition was defined as adiabatic by positioning 
ghost cells next to the border elements with equal temperature to the 
adjacent element, representing a null temperature gradient. 

Also, from a grid independence analysis executed for 20x20, 40x40 
and 60x60 elements grids, it is observed that the difference obtained 
when refining the grid from the 40x40 elements grid to the 60x60 
elements grid is smaller than 1% of the temperature obtained, proving 
independence, so that the 40x40 elements grid could be defined as 
satisfactory. So, for a reference temperature of 20°C, the solution of the 
direct problem for a 40x40 elements grid using FDM can be seen in Fig. 
2. 

 

 
Fig. 2 Temperature distribution obtained using FDM 
 

Once the model was correctly physically defined, it became 
necessary to obtain a temperature distribution containing a modeling 
error. This modeling error provides that the step-by-step solution of the 
inverse problem is not direct and will need to converge to the closest 
possible solution of the exact solution. This modeling error is obtained 
by solving the direct problem using CFD. 
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So, the commercial package ANSYS™ was selected for the creation 
of a CFD model. The software ICEM CFD® was used for the creation of 
a computational grid, while the software ANSYS CFX® was used for the 
application of the initial and boundary conditions and the solution of the 
conservation equations. 

The same grid independence analysis is performed to grids having 
20x20, 40x40, and 60x60 elements, obtaining that the 40x40 grid also is 
sufficiently refined to provide a solution within a 1% precision. 

In the CFX, it is also important to define the solution controls for 
the numeric solution of the conservation equations of the problem to lead 
to a converged solution. For this, it is necessary to define four main 
configurations: Advection scheme, residual convergence control, 
maximum number of iterations, and numeric timescale. 

The selection of the advection scheme consists in the choice of a 
blend factor β and a nodal gradient ∇φ for a variable φ to be applied to 
the solution of the advection problem posed for a variable φ such as: 

 
 (6) 

 
Where φip is the value of the variable φ at the integration point, φup 

is the value of the variable φ at the upwind node and Δr is the vector from 
the upwind node to the integration point. 

The computational software ANSYS CFX® (ANSYS INC., 2009) 
provides three advection schemes for the solution of the CFD problem: 
Upwind (β = 0), Specified Blend Factor (0 ≤ β ≤ 1) and High-Resolution 
(β is computed through a nonlinear function at each node, such that β → 
1 without introducing new extrema). The High-Resolution scheme was 
adopted in agreement with Choudhary et. al. (2021) and several other 
studies, providing the best option for reducing discretization errors. 

The residual convergence control was set using the orders of 
magnitude of the problem such that the maximum RMS residual is 
defined as 10-6. Also, the maximum number of iterations was set as 1000, 
although the residual convergence control was reached in every 
simulation before those iterations reached their maximum. The numeric 
timescale was set as automatic. 

So, also for a reference temperature of 20°C, the solution of the 
direct problem for a 40x40 elements grid using CFD can be observed in 
Fig. 3. 

 

 
Fig. 3 Temperature distribution obtained using CFD 
 

The absolute modeling error obtained comparing the direct solution 
of the heat transfer problem using FDM or CFD can be observed in Fig. 
4. The greater values of the modeling error are concentrated in the region 

with the higher spatial frequency of different heat source terms. 
However, the order of magnitude of the obtained errors is between 0.1% 
and 0.2% of the temperature for the entire surface. 

 
Fig. 4 Absolute modeling error 
 
Once there are two distinct temperature distributions obtained 

through different methods, four different approaches are defined to 
obtain the solution for the inverse heat transfer problem from the 
temperature distribution obtained from the CFD solution. 

The first approach consists in using the direct inverse of the thermal 
resistances matrix R to obtain the heat sources distribution S. This can be 
done by directly multiplying a matrix A obtained from the FDM 
discretization with the vectorized and normalized temperature 
distribution θ obtained from the CFD solution, such that: 

 
 (7) 

 (8) 
 

Since this solution is obtained without using any inversion 
technique, it corresponds to the best solution obtainable by any algorithm 
using these input parameters. Also, this method is direct, dismissing any 
kind of restriction. 

The second approach consists in solving the minimization least-
squares problem as defined in Eq. (4) using a step-by-step linear 
optimization algorithm, such that the solution of this minimization 
problem consists in an approach of the best solution of the heat sources 
distribution S with a minimized error. This solution is obtained using the 
MATLAB lsqlin function.  

According to Mathworks Inc. (2019) the lsqlin function consists of 
a linear least-squares solver with bound and linear constraints. It is 
suitable for least-squares curve fitting problems of the form: 

 

 (9) 

 
The use of constraints allows the problem to introduce a priori 

known information to restrict the number of possible solutions, and, 
theoretically, improving the solution process. 
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Usually, the adopted constraints restrict the heat sources distribution 
S to a matrix with only non-negative values, in the form of a boundary 
constraint, such that: 

 (10) 
 

And restrict the sum of all heat sources distribution S terms as equal 
to the total power consumption of the entire surface, such that: 
 

 (11) 
 

Such constraints are also used in Cochran et al. (2010) and Reda 
(2011). 

This method uses an interior-point-convex algorithm, which enables 
the use of the aforementioned constraints. This algorithm is defined such 
that the minimization linear least-squares problem defined in Eq. (9) is 
converted to the quadratic form: 
 

 (12) 

 (13) 

 (14) 
 
Next, the third approach consists in solving the regularized form of 

the inverse problem as defined in Eq. (5) directly. The application of 
regularization techniques looks to improve the solution process of an ill-
posed inverse heat transfer problem by solving a similar better-posed 
problem with the same solution as the original problem. 

The Tikhonov regularized form of the minimization least-squares 
problem as defined in Eq. (5) is known for providing a direct solution 
using an SVD decomposition of the thermal resistance matrix R, such as: 

 

 (15) 

 
This solution also dismisses the use of constraints. 
Finally, the fourth approach consists in solving the regularized form 

of the inverse problem as defined in Eq. (5) using a quadratic step-by-
step algorithm. The regularized form of the optimization problem can be 
rewritten to assume the same form presented in Eq. (12). However, it 
incorporates the regularization parameter in the Hessian matrix H 
resulting in the form: 

 

 (16) 
 
Such that I is an identity matrix with the size of C. This objective 

function remains a quadratic function that can be solved using quadratic 
programming algorithms, such as the MATLAB® quadprog function. 

Furthermore, since the aforementioned interior-point-convex 
algorithm can deal with quadratic minimization problems, this algorithm 
is also used to solve the regularized minimization problem through 
quadratic programming. The same constraints that can be evaluated with 
the linear least-squares solver can also be evaluated with this algorithm. 

3. RESULTS 
The use of the first approach in order to solve the inverse heat transfer 
problem enables that two important variables are verified: the thermal 
resistance matrix R and the heat sources distribution S corresponding to 
the best obtainable solution using the thermal resistance matrix obtained 
from the FDM discretization. 

In order to verify the validity of the thermal resistance matrix, we 
initially used the solution obtained through the FDM as an input 
parameter for the solution of the inverse heat transfer problem using the 
first approach. 

The obtained heat sources distribution using this approach is 
significantly close to the heat sources distribution presented in Fig. 1, 
such that a qualitative image of both sources is practically identical. So, 
Fig. 5 presents the corresponding heat source difference distribution ΔS 
between the two distributions. It can be observed that the maximum 
difference between the two distributions is close to three orders of 
magnitude smaller than the minimum values of the actual heat sources 
distribution so that it can be assured that the thermal resistance matrix 
can accurately represent the thermal diffusion and the convection 
dissipation phenomena along the surface. 

 

 
Fig. 5 Heat sources difference distribution: actual heat source 

distribution and first approach FDM 
 

Next, once this thermal resistance matrix is verified, a direct 
solution for the inverse problem can be obtained for the temperature 
distribution resulting from the CFD direct solution. Since Fig. 4 presents 
that there is a slight difference between the obtained temperature 
distributions for the two different modeling techniques, it is expected that 
the heat sources distribution obtained through this approach is different 
from the actual heat sources distribution.  

Figure 6a presents the heat sources distribution obtained through the 
first approach using the temperature distribution resulting from the CFD 
direct solution. As expected, there is a significant difference between the 
actual heat sources distribution and the obtained heat distribution, with 
heat source terms near the borders with values two orders of magnitude 
greater than the heat source terms present in the actual heat sources 
distribution of Fig. 1.  

However, Fig. 6b presents the same temperature distribution using 
the same scale used for the actual heat sources distribution presented in 
Fig. 1 (between 2×105 and 2×106), revealing that, far from the border 
region, the solution of the inverse problem using this approach succeeds 
in representing quite accurately the heat sources distribution. This 
distribution, however, seems to be subject to a low-pass filter effect. The 
mean relative error in this region is ±3.95%. 

Also, Fig. 6c presents a distribution revealing only the location of 
the positive and negative terms for this solution. From this figure, it can 
be observed that some of the ghost cells used for the application of the 
adiabatic boundary conditions assumed negative values to compensate 
for the high sensitivity obtained through the inversion of the modeling 
error. 
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(a) 

 
(b) 

 
(c) 

 
Fig. 6 First approach heat sources distribution 
 
Next, the second approach is applied to obtain the heat sources 

distribution using a step-by-step linear optimization algorithm. The 

maximum number of iterations and the function tolerance remained at 
the automatic values (200 and 2.22×10-14) since all solution processes 
succeeded to converge to their corresponding minima within these 
stopping conditions. 

Figure 7 presents the heat sources distribution obtained through the 
unrestricted solution in the actual heat sources distribution scale 
(between 2×105 and 2×106). It can be observed from a comparison 
between Figs. 6 and 7 that the unrestricted step-by-step algorithm obtains 
a solution that is very close to the solution obtained through the first 
approach. 

 

 
Fig. 7 Unrestricted second approach heat sources distribution 
 
The introduction of the constraints from Eqs. (10) and (11) 

(therefore named constraints CI and CII) to the second approach can be 
observed in Figs. 8 to 12. Fig. 8 correspond to the heat sources 
distribution incorporating only the CI non-negative terms restriction. Fig. 
9 correspond to the heat sources distribution incorporating only the CII 
sum of all heat sources restriction, adopting the heat source sum from the 
actual heat sources distribution presented in Fig. 1 (therefore named as 
CII-A). Fig. 10 correspond to the heat sources distribution incorporating 
only the CII sum of all heat sources restriction and adopting the heat 
source sum from the inverse heat transfer problem solution presented in 
Fig. 6 (therefore named as CII-B). Figs. 11 and 12 adopt both the CII 
non-negative restriction and the CII sum of heat sources restriction, using 
the CII-A sum of all heat sources (Fig. 12) or the CII-B sum of all heat 
sources (Fig. 13). 

 

 
Fig. 8 Restricted second approach heat sources distribution – 

constraint CI 
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Fig. 9 Restricted second approach heat sources distribution – 

constraint CII-A 
 

 
Fig. 10 Restricted second approach heat sources distribution – 

constraint CII-B 
 

 
Fig. 11 Restricted second approach heat sources distribution – 

constraints CI and CII-A 

 
Fig. 12 Restricted second approach heat sources distribution – 

constraints CI and CII-B 
 
From Figs. 8 to 12, it can be observed that none of these constraints 

could significantly upgrade the solution obtained through the solution of 
the unrestricted inverse problem both by the direct solution or by the 
unrestricted step-by-step linear least-squares solution presented in Figs. 
6 and 7. Also, Fig. 12 present that the use of the CI non-negative 
restriction and the CII-B sum of heat sources restriction completely ruins 
the solution. 

In all studied cases in which the CI non-negative terms restriction 
was used, the obtained solution corresponding to a limited solution of the 
inverse heat transfer problem, confined to the central area of the problem, 
while the remaining terms around the border region were fixed as zero. 
This is a direct consequence of the absence of the small negative terms 
adopted in the ghost cells used in the FDM direct solution. These terms 
compensated part of the modeling error of the problem by exploiting the 
high sensitivity of this problem to counterbalance the effect of the high 
heat source terms found near the borders of the problem. When these 
terms are set to be non-negative, the optimization algorithm could not 
find better solutions for the border regions than setting them all as zero, 
due to the modeling error, so the algorithm could not compensate for the 
high sensitivity resulting from the modeling error and provided this 
limited solution. 

On the other hand, the adoption of the CII sum of heat sources 
restriction had different effects. Fig. 9 shows that the heat sources 
distribution obtained using the actual heat sources distribution adopted 
for this study as the CII sum of all heat sources restriction resulted in a 
different solution. This solution preserves a considerable area of the best 
solution obtained through the unrestricted problem and the heat source 
terms in the ghost cells are closer to zero than the unrestricted solution. 
This effect can be observed in Fig. 13a (unrestricted problem) and 13b 
(restricted problem – CII-A sum of all heat sources restriction). 

Still, it can be observed the creation of an additional layer of terms 
in the border region containing a disturbed solution with negative heat 
source terms. This is a direct consequence of this restriction, which tries 
to compensate the smaller sum of all heat sources with negative terms in 
the heat sources distribution. 

Also, from Fig. 10, it can be observed that the adoption of the CII-
B restriction resulted in the same heat sources distribution obtained 
through the unrestricted problem. 

The next step is the solution of the inverse problem using the third 
approach. This approach requires the estimation of the regularization 
parameter α, which is performed by using the method a posteriori known 
as the Morozov discrepancy principle (Kaipio and Somersalo, 2004). 
This principle defines that the regularization parameter must be defined 
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(a) 

 
(b) 

 
Fig. 13 Ghost cells heat source terms 
 

defined such that the L2 norm of the errors due to measurements or 
numeric methods is equal to the regularization parameter. So: 

 

 (17) 

 
The numeric implementation of this principle is described in 

Siltanen (2010) and corresponds to the location of the zero of a function 
of the regularization parameter α. This is performed using the absolute 
modeling error distribution presented in Fig. 4. The resulting 
regularization parameter obtained is 1.2026×10-16. 

Then, the solution of the inverse heat transfer problem is reduced to 
the application of Eq. (15). The resulting heat sources distribution can be 
observed in Fig. 14a. The effect obtained through the introduction of the 
regularization is similar to the effect obtained using an additional low-
pass filter. The modeling error is not eliminated by the regularization 
process, once it is recognized as part of the original problem, due to the 
nature of the error. Instead, the regularization tends to smooth the 
gradients along the heat sources distribution, isolating the central areas 
of the heat sources distribution with a layer of negative heat source terms, 
as presented in Figs. 14b and 14c. Also, in the ghost cells, the heat source 
terms remained all negative. 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 14 Third approach heat sources distribution 
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Finally, the fourth approach is applied to solve the regularized 
inverse heat transfer problem using quadratic programming, resulting in 
the heat sources distributions presented in Fig. 15 for the unrestricted 
solution and in Figs. 16 to 20 for the same constraints adopted for the 
second approach. The maximum number of iterations, the function 
tolerance, and the constraint tolerance remained at the automatic values 
(200, 1×10-8, and 1×10-8) since all solution processes succeeded to 
converge to their corresponding minima within these stopping 
conditions. 

 

 
Fig. 15 Unrestricted fourth approach heat sources distribution 
 
 
It must be noticed that the same effects observed when comparing 

the results of the first and the second approach repeated them when 
comparing the results of the third and the fourth approach regarding the 
use of constraints. Once again, it can be observed that: 

• none of these constraints could significantly upgrade the 
solution obtained through the solution of the unrestricted inverse problem 
both by the direct solution or by the unrestricted step-by-step quadratic 
programming solution; 

• the use of the CI non-negative restriction and the CII-B sum of 
heat sources restriction completely ruins the solution;  

• for all studied cases in which the CI non-negative terms 
restriction was used, the obtained solution corresponding to a limited 
solution of the inverse heat transfer problem, confined to the central area 
of the problem, while the remaining terms around the border region were 
fixed as zero; 

• using only the CII-A restriction, the solution of the inverse heat 
transfer problem of Fig. 17 resulted in a heat sources distribution 
presenting a considerable area of the best solution obtained through the 
unrestricted problem preserved and the heat source terms in the ghost 
cells closer to zero than the unrestricted solution. This solution also 
presents an additional layer of terms in the border region containing a 
disturbed solution with negative heat source terms; 

• the adoption of the CII-B restriction resulted in the same heat 
sources distribution obtained through the unrestricted problem. 

4. CONCLUSIONS 
The present study succeeded in obtaining two different temperature 
distributions to simulate a modeling error for the direct solution of a heat 
transfer problem. The solution of the corresponding inverse heat transfer 
problem of these temperature distributions revealed this modeling error 
from CFD to FDM solution, which consists in obtaining a low-pass 
filtered version of the actual heat sources distribution with a disturbed 
border region. This modeling error allowed that the  study  of  the use  of 

 
Fig. 16 Restricted fourth approach heat sources distribution – 

constraint CI 
 

 
Fig. 17 Restricted fourth approach heat sources distribution – 

constraint CII-A 
 

 
Fig. 18 Restricted second approach heat sources distribution – 

constraint CI 
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Fig. 19 Restricted fourth approach heat sources distribution – 

constraints CI and CII-A 
 

 
Fig. 20 Restricted fourth approach heat sources distribution – 

constraints CI and CII-B 
 

constraints for the solution of the inverse heat transfer problem was 
compared to unrestricted solutions. 

It must be noticed that the solution of the inverse heat transfer 
problem obtained through unrestricted step-by-step algorithms is 
numerically identical to the direct solution of this problem. Also, both 
provided a reasonable and manageable solution for the inverse heat 
transfer problem, even in the presence of this modeling error.  

This use of constraints, which is usually regarded as beneficial and 
able to reduce the occurrence of ill-posed solutions led the step-by-step 
algorithm to worse solutions than the unrestricted algorithm in the 
presence of this modeling error. The high sensitivity of the problem led 
to the adoption of negative heat source terms along the ghost cells used 
for the application of the boundary conditions, helping to compensate for 
the disturbance produced in the border region by this error. The use of 
constraints denies the adoption of these negative terms, so the algorithm 
defined all the border section of the heat sources as zero in order to obtain 
a valid solution, obtaining so a reasonable solution confined to the central 
area of the problem. 

So, it was concluded that the CI non-negative terms restriction is 
harmful to the solution of the inverse heat transfer problem containing a 
modeling error, once it neglects that, in order to compensate the high 

sensitivity of this problem, the solution process may place negative terms 
in support cells to reach better solutions. 

Also, the CII sum of heat sources restriction is less harmful to the 
solution of the inverse heat transfer problem containing a modeling error 
than the CI non-negative terms restriction, once it permits that negative 
heat source terms still compensate the modeling errors. However, the 
smaller this sum is defined, the farther from the direct solution of the heat 
transfer problem the resulting solution becomes. 

Finally, future studies should address the use of different 
regularization techniques and different constraints to suppress the 
modeling error and obtain a closer solution to the actual heat sources 
distribution. The use of the CII-A restriction seems to provide a better 
perspective than the CI for this further development. 
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NOMENCLATURE 

A  thermal diffusion matrix (W/K) 
k  thermal conductivity (W/m·K)  
f quadratic first-order coefficient 
F linear first-order coefficient 
g  linear zero-order coefficient 
h  convective heat transfer coefficient (W/m²·K)  
H  hessian matrix 
lb optimization lower boundary 
R  thermal resistance matrix (K/W) 
S  heat sources distribution (W) 
T  temperature (K) 
U  singular values decomposition matrix 
ub  optimization upper boundary 
V  singular values decomposition matrix 
x  optimization variable 

Greek Symbols  
α regularization parameter 
β blend factor 
θ normalized temperature (K) 
Subscripts  
d singular matrix diagonal values 
e electron 
l lattice 
∞ ambient environment 
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