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ABSTRACT

A magnetohydrodynamics (MHD) flow of fractional Maxwell fluid past an exponentially accelerated vertical plate is considered. In addition, other
factors such as heat generation and chemical reaction are used in the problem. The flow model is solved using Caputo fractional derivative. Initially,
the governing equations are made non-dimensional and then solved by Laplace transform. The influence of different parameters like diffusion thermo,
fractional parameter, Magnetic field, chemical reaction, Prandtl number and Maxwell parameter are discussed through numerous graphs. From figures,
it is observed that fluid motion decreases with increasing values of Schmidt number and chemical reaction, whereas velocity field decreases with

decreasing values of diffusion thermo and heat generation.
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1. INTRODUCTION

Convection flow in the presence of porosity has numerous important
applications such as flows in soils, solar power collectors, heat transfer
correlated with geothermal systems, heat source in the field of
agricultural storage system, heat transfer in nuclear reactors, heat transfer
in aerobic and anaerobic reactions, heat evacuation from nuclear fuel
detritus, and heat exchangers for porous material. Convection flow of
MHD fluid has many implementations in meteorology, distillation of
gasoline, boundary layer control, energy generators, geophysics,
accelerators, petroleum industry, astrophysics, polymer technology,
aerodynamics, and in material processing such as metal forming, glass
fiber drawing, extrusion, and casting wire. Shah et al. (2019) analyzed
the influence of magnetic field on double convection problem of
fractional viscous fluid over an exponentially moving vertical plate. The
combined effect of heat and mass diffusion on fluid flow through a plate
has been observed by Chaudhary and Jain (2007). The analytical solution
for magnetohydrodynamics flow through a perpendicular plate in the
existence of porosity is obtained by Sivaiah et al. (2009). Das and Jana
(2010) discussed the solution for MHD flow through a plate in the
presence of porous media.

Now a days, magnetohydrodynamic (MHD) has been extended into
wide areas of basic and applied research in sciences and engineering. The
study of non-Newtonian fluid becomes very interested due to variety of
technological applications like making of plastic sheets, lubricant’s
performance and motion of biological fluid. Numerous non-Newtonian
fluid models have been presented to demonstrate the distinction between
Newtonian and non-Newtonian fluids. Shah et al. (2016) discussed the
effects of the fractional order and magnetic field on the blood flow in
cylindrical domains. Kai-Long Hsiao (2017) worked on MHD heat
transfer thermal extrusion system using non-Newtonian Maxwell fluid
with radiative and viscous dissipation effects. A comparative study and
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analysis of natural convection flow of MHD non-Newtonian fluid in the
presence of heat source and first order chemical reaction was studied by
Ahmad et al. (2019). During the last decade, different generalized
fractional derivatives have appeared in the literature that are derivatives
of Caputo, Caputo-Fabrizio, constant proportional Caputo by Atangana
et al. (2020) and Baleanu et al. (2020). Soret and radiation effects on
MHD free convection flow over an inclined porous plate with heat and
mass flux was studied by Kumar et al. (2016). Sandeep et al. (2016)
analyzed the heat and mass transfer in nano fluid over an inclined
stretching sheet with volume fraction of dust and nanoparticles.
Ahammad et al. (2017) analyzed the radiation effect with eckert number
and forchimer number on heat and mass transfer over an inclined plate in
the influence of suction/injection flow. Ramzan et al. (2021) analyzed
the unsteady free convective magnetohydrodynamics flow of a Casson
fluid through a channel with double diffusion and ramp temperature and
concentration Khan et al. (2018) discussed the multiples solutions of
non-Newtonian Carreau fluid flow over an inclined shrinking sheet.
Some mathematical models of second grade fluids are industrial
oils, slurry streams, and dilute polymer solutions with different geometry
and boundary conditions. Fetecau ef al. (2005) analyzed the solution of
unsteady unidirectional flows of second grade fluid at plate with the
assistance of the Fourier sine transformation. Ahmed et al. (2015) has
analyzed MHD boundary layer convective heat transfer with flow
pressure gradient. Convective mixed MHD flow studied by Narayana
(2015), while Nadeem et al. (2014) discussed the thermo-diffusion
effects on MHD oblique stagnation point flow of viscoelastic fluid.
Because of its rising significance, engineering needs to incorporate non-
Newtonian fluid. Shafique et al. (2022) presented a fractional flow of the
Jeffrey fluid on a vertical plate driven by temperature as well as
concentration  gradients. Khan et al  (2014) discussed
magnetohydrodynamic flow in the existence of permeable media through
plate. Tran et al. (2020) worked on mandatory stability of fractional
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derivatives for fractional calculus equations, and the mathematical model
used for transference of COVID-19 with Caputo fractional derivatives
also discussed by Tuan et al. (2020). Seth et al. (2015) discussed the
MHD convection flow over a vertical plate with ramped temperature.
Razzaq et al. (2019) discussed the nanofluid with Newtonian heating
over a plate. Ramzan et al. (2022) discussed the viscous fluid over an
inclined plate. Khan et al. (2018) investigated the Brinkman fluid effect
between two side walls. Liu et al. (2017) presented the flow of Maxwell
fluid with slip using a heat generation. Ali et al. (2013) discussed on the
magnetohydrodynamics fluid with heat transport. Ramzan et al. (2021)
reported the behavior of heat absorption/generation on the MHD flow of
Brinkman fluid. Ali et al. (2018) studied the magnetohydrodynamics
oscillating and rotating flows of Maxwell electrically conducting fluid in
a porous plane.

In this problem, an unsteady MHD flow of Maxwell fluid over a
vertical plate is considered with Dufour effect. The impact of chemical
reaction and heat obsorption/generation is added into account. Firstly, the
governing equations have been made non-dimensional and then solved
semi analytically. The results for velocity profile, temperature profile,
and concentration profile are obtained and then analyzed graphically.
From figures, it is observed that fluid motion decreases with increasing
values of Schmidt number and chemical reaction, whereas velocity field
increases with increasing values of diffusion thermo and heat generation.
The comparison between ordinary and fractionalized fluid is drawn
graphically and found that Caputo fractional derivative is the best choice
for controlled fluid velocity.

l / / Velocity boundary laver

/ / Concentration boundary layer

Temperature boundary laver

Fig 1: Flow diagram

2. MATHEMATICAL MODEL

The flow of Maxwell fluid with heat and mass transfer over a vertical
plate is considered. The flow is taken along the y*-axis and the x*-axis
is perpendicular to the plate. The fluid and plate have temperature Ty, and
concentration C5, at time t; = 0 with zero velocity. But for 0 < t7, the
plate begins to move with velocity U, f(t;*). The concentration and
temperature of the plate is raised to Cx, + (Cy, — Cx)t1 and Ty + (T, —
To)t; with time t; > 0. A uniform transverse magnetic field By is
applied in x direction. The flow diagram is shown in Fig. The flow
governing equations are being taken into account as (see [Ali et al.
(2018)])

divU = 0. 1)
[at* + (U.N)U] = divS — ofoU + gPr-(T*(x", ¢]) — Ts;) +

9B (C(x", 1) — C)s (2)
The extra stress tensor S for Maxwell fluid satisfies

S+ AO[ + (U.v)s —LS — SL‘l] UA,, 3)
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where L = VU, pu indicate dynamic viscosity, A, indicate the relaxation
time and A; represents first Rivlin-Ericken tensor given as A, = L + Lt1.

Using Boussinesq’s approximation and these assumption, the linear
momentum Eq. of Maxwell fluid with diffusion thermo effects over a
plate is (see [Shah et al. (2019), Sheikh et al. (2020), Ahmad et al.
(2020)])

9\ dug(x*t1) _  9t(x*ty) K Kk pH)
(1 + Aoa_q) e,V ox + (1 +4o at;) 9P (T"(x", 1)

Ta) + (1 + ao %) 9Be-(C (") =€) —
1+ /10 ui(x 1), 4)

aty

shear stress 7 is

v = P, s)

thermal Eq. is

OT"(x"t7) _ _ 9q(x,t1)
PCy at; ax*

Kk g * KrDm 0] (x",t1)
+Qu(T" (", 1)) = T) = 522022 (6)
According to Fourier’s Law, q(x*, t1)is given by

aT tr
gt tf) = —k ), ©)

Diffusion Eq. is

acT(x"ty) _  0J(x"t1)
at; ax*

= K (C' (" t1) = Cao). ®)

According to Fourier’s Law, J(x*, t])is given by

ac*(x*t;)

J ) = —p 25, ©)

with boundary condition

u (x%t) =0, T"(x"t]) =Ty, C*(x"t])=Csx, y*>0, t; >0,
(10

ul(X*rtik) = Ulf(tik)v T*(X*rti) = Tf:) + (Tl:/' - TO*O)tIJ

C*(x*t)) = Co + (Cl, — CL)E, >0, x>0, (1)

u (x*,t7) =0, T"(x*t7) =» 0, C*(x*,t{) -0, x*—>o0, t;>0.

(12)
To write the flow model in dimensionless form, we used the following
dimensionless variables

Ux* ut; T* T vC,
x= p=, T=——= =t gy =

v v Tw—Too k U

2
Gr = pvPr (T, — Ts) M= Boo 0= Qv _Ryv
U3 ’ pU’ U2pC,’ UZ'

c*-C; +(Cly—C. :
C=c‘—c°*o‘Gm M]__'q=q_' SC——

w~Coo Jo do To

(13)
Using non-dimensional variables from Eq. (10) into the Egs. (1-9), we
have

[1+20,] 250 =, ZECD 4 (94 29,1GrT (x, £) + [1+

20,1GmC(x.t) — [1 + 10, ]Mu(x, £), (14)
du(xt)

=K==, (15)
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—aT(g);'t) n2 o 44 QT (x,t) + Du a](x t), (16)
AT (x,t)
q=-P1— > an
ac(x.t) aJ(x.t)
e (S — RC(x,t), (18)
ac(xt
J = —m; 258, (19)
where
_ To _ U _ 9o _ (Tw=Tw)KU
M=y K= v’ 2T Upg,nTe)’ P1T T g
— Jo — UD(Cw—Ceo)U
s = (Cw=Co)U’ M= Jov ’

Gr, Sc, Q, M, Pr, Gm, and u represents the Grashof number for heat
transfer, Schmidt number, non-dimensional heat source, magnetic field,
Prandtl number, mass Grashof number, and velocity of fluid respectively.

3. GENERALIZED MODEL

Eq. (15) is fractionally generalized by Blair and Caffyn (see [Blair et al.
(1955)])

1-p ou

T=K gD, ", 12F>0, (20)

Put Eq. (20) into Eq. (14), we have

ou (x t)

[1+0,] 2 [Ly-pD; P EED 4 14 20,161T (x, 1) +
[1+20 ]GmC(x t) - [1 + A0 ]Mu(x t) 21

Eq. (17) is generalized by using Fourier’s Law defined by Povstenko
and Hristov (see [Povstenko et al. (2015), Hristov et al. (2017)])

1yaT

q = —p1-D; P 1>2y>0, (22)

Put Eq. (22) into Eq. (16), we have

BT(x,t)

1 y OT
at nza [li- y

I+ QT ) + Dubp e EED (23

Eq. (19) is generalized by using Fick’s Law defined by

Dl—a IC(x.t)
ox '

] = —my_gD} 1>y >0. (24)

Put Eq. (24) into Eq. (18), we have

ac@t)

1-a 6C(x t)
at D

=Nz [n1 « — RC(x,t), (25)

Taking inversion left operator on Egs. (21), (23), and (25), we obtain

[1+ 20,11, 7F 220 =, 22D > SO0 4 [1+ 40,1671, T 6) + [1+

20,16mI e ) — 1+ Mt]MIt “Fux,b), (26)
e 2z LD 4 QLT T ) + Dua o 7)
predCet) _y FCED  pr-ac(y p). 28)

at ox?

or equivalently
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92 u(x 0,

[1 420D u(x,t) = L, +[1420)6rL PT(x,0) + [1 +

20, 6m1 Pt — [1+ /Iat]MItl_Bu(x, £), 29)
fora =y

DIT(x,t) = L, 2 T80+ QI T(xt) + Du z o (30)
DEC(x,t) = Ly ZE&8 ZLED _ RIZEC(x 1), G1)

where Ly = n,K;_p = 1when - 1, L, = nyp;_, = 1/Pr wheny -
1,L; =nsmy_, =1/Scwhena - 1.

The initial and boundary conditions are

ulx,t) =T(x,t)=C(x,t)=0, x>0, t=0, (32)
u(0,t) = f(t), T(0,t) =C(0,t) =t, t>0, (33)
u(x,t)=0, T(x,t)—-0, C(x,t)=0, x—->0, t>0, (34)

where Df u(x, t) is the Caputo derivative of u(x, t) defined as

g Taph (- EERds, 0sp<
D u(x,t) = ouCet) (35)
T' B=1.

4. SOLUTION OF PROBLEM

Eqgs. (29-34) has been solved semi analytically (see [Tzou et al. (1997),
Stehfest et al. (1970)])

4.1 Calculation of Concentration

By taking Laplace transform on Eq. (31), we have

9°C(xs) R

s¥C(x,s) = Ly o (36)
Boundary conditions satisfying Eq. (36) are

C(0,s) =Siz, C(x,s) >0, x > oo. 37)
Substitute Eq. (37) into Eq. (36), we have

B _y [[&B

C(x,5) =s7%e Vb9, (38)
4.2 Calculation of Temperature

By taking Laplace transform on Eq. (30), we have

sYT(x,s) = L,—= 2z T(xs) + RsY 1T (x,s) + Du 26 ;(Z ) (39)
Boundary conditions satisfying Eq. (39) are

T(0,s) = 512' T(x,s) > 0, x > o, (40)

Substitute Eq. (40) into Eq. (39), we have
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(5-Q) Du(s+R)(—— ) (5-Q) (s+R)
_ —-x —x -x
T(x,s) = (—Slz)e LT L L 7 L5tV _ g TLasiTY,

GRG0,
(41

L3 —( Ly

Suitable form of Eq. (41) fora = y is

Gl Du(s+R)(———=. ) _ | =@ _ | (5+R)
- _ .1 X |Tsi-a L L352 X 1517 X |Lesi-a
T(x,s) = (S—Z)e 28 4+ iR 25tV _ o 25179,

G-0))
L3 Ly
42)
4.3 Calculation of Velocity
By taking Laplace transform on Eq. (29), we have
[1+ As]sﬁu(x s) =12 “i’js) [1+ A5] =5 GrT(x, )[1 +
As]==6mC(x,s) — 1+/15 Muxs 43
si- /3
Boundary conditions satisfying Eq. (43) are
u(0,s) = m, u(x,s) > 0, x = oo. (44)
Substitute Eq. (44) into Eq. (43), we have
1
_, [GF 296+ [1+4s]sP- 1[67 M]
7l N R N e 3 GHR)-L3 1 (-Q)
ux,s) = wirszC ! + LyL3(s—Q)sY~1—(1+1s)(s+M)shP~1
m  GrDu(s+R)s"2L3'L7?!
[Gnen (=0 (1425158 (-T2 R g
Lysi—a@ \LzsTY L3 Ly
[e R € # LiL3Y(s+R)s¥ 1= (1+1s)(s+M)shP~1
[A+As)(s+M) —x [ (s+R)
e N mst P o LT, (45)

By taking @ = 8 = y, suitable form of Eq. (45) is

o [EREEED [aas)G w]
5 e Ls=@ (s+R)-L3 ' (s-Q)
w?+s2 LyL3t(s— Q) (1+/1s)(s+M)

(Gm_GrDuly L3 1(s+R)s™2 ]
L31(s+R)-L51(5-Q)
LyL31(s+R)—(1+15)(s+M)

u(x,s) =

[a+2s)(s+M) [-@

)(s+ 9 [1+2s][Z
[e \j Lys —e \jLzs ]+

_. [a+29)s+m) [ (s+R)
[e L5 @ X\IL3S1 a]

5. RESULT AND DISCUSSION

The solution for the impact of diffusion thermo, magnetic field, and heat
generation on flow of Maxwell’s fluid past over a vertical plate are
developed by using Laplace transform technique. The effect of numerous
parameters used in the governing equations of velocity fields have been
analyzed in Figures.

Fig. 2 represent the result of Gr on fluid velocity u(x,t). The fluid
velocity increases with increasing values of Gr, and it represents the
impact of thermal buoyancy force to viscous force. Therefore,
maximizing the values of Gr exceed the temperature gradient due to
which velocity field rises. The impact of Gm on fluid velocity u(x,t) is
illustrate in Fig. 3. It is highlighted that fluid motion increases with
increasing values of Gm. Physically higher the values of Gm increase the
concentration gradients which make the buoyancy force significant and
hence it is examined that velocity field is raising.

Fig. 4 highlights the effect of Du on u(x,t). Graph shows that the
u(x,t) is reduced with reducing values of Du. Physically, mass buoyancy
force is dominant with raising values of Du which speed up the u(x,t).
Fig. 5 shows the influence of o= =y on u(x,t). The behavior of Graph
indicates that for accelerating values of fractional parameters, fluid
velocity is increased. Fig. 6 shows the influence of A on u(x,t). Graph
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shows that u(x,t) increases with decreasing values of Maxwell parameter.
The impact of M on u(x,t) is reported in Fig. 7. Graph shows that fluid
speed u(x,t) is reduced with accelerating values of parameter M.
Resistivity becomes dominant with raising M which reduced the speed
of fluid. An increasing value of R decreases the u(x,t) as appeared in Fig.
8. The impact of Sc on u(x.t) is indicate in Fig. 9. It is highlighted that
maximizing the values of Sc slow down the fluid motion due to decay of
molecular diffusion.

The behavior of fractional parameter on T(x,t) is discussed in Fig.
10. Fig. 11 indicates the effect of Du on T(x,t). Temperature T(x,t)
increases with increasing values of Du as shown in graph. The influence
of Pr on T(x,t) is reported in Fig. 12. As we increased the value of Pr,
heat diffusion is reduced which slow down the fluid motion. The
influence of heat Q on T(x,t) is reported in Fig. 13. This Fig. shows that
temperature T(x,t) is accelerated with increasing values of Q. Physically,
thermal conductivity is larger for increasing values of heat generation

Fig. 14 represents the effect of fractional parameter on C(x,t). Fig.
15 reports the influence of R on C(x,t). The influence of Sc on C(x,t) is
shown in Fig. 16. The C(x,t) is decreases with increasing values of Sc as
depicted in graph. The comparison of present work with Ahmad et. al/
(2020) is shown in Fig. 17. If we put y=a=B—1, Q=R=o
=Gm=Du=0, Maxwell parameter —0, and t—1, the velocity profiles
show the validity of present work as depicted in Fig 18. The velocity
profiles overlap which shows the authenticity of inversion algorithms as
presented in Fig. 19. Fig. 20 and 21 represents the authenticity of
inversion algorithms for T(x,t) and C(x,t).

u(x,t)

Fig. 2: Velocity profile u(x,t) different values of Gr at Pr=0.5,
o=B=y=0.5, Q=0.34, 2=0.6, Gm=8, Du=0.2, Sc=1.5.

Gm=2.0
¢ Gm=3.5
Gm=5.0
& Gm=5.5

1.467

u(x,b)

0 16 32 48 64 8

Fig. 3: Velocity profile u(x,t) different values of Gm at Pr=0.5,
a=B=y=0.5, Q=0.34, A=0.6, Gr=8, Du=0.2, Sc=1.5
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0 16

Fig. 4: Velocity profile u(x,t) for different values of Du at Pr=0.5,
a=B=y=0.5, Q=0.34, A=0.6, Gr=8, Gm=8, Sc=1.5.

[

32

X

48 64 8

(=)

u(x,t)

0.5

m a=3=v=02
o+ a=3=7=04
o a=3=7=06
Ak o= (3= =08

Fig. 5: Velocity profile u(x,t) for fractional different values of a=f=y at

[

a=B=y=0.5, Q=0.34, 1=0.6, Gr=8, Du=0.2, Sc=1.5, Pr=0.5.

1.667,

u(x,t)
E

0.833

0.417

Fig. 6: Velocity profile u(x,t) for different values of A at Gm=8

a=B=y=0.5, Q=0.34, Gr=8, Du=0.2, Sc=1.5, Pr=0.5.
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u(x,t)

Fig. 7: Velocity profile u(x,t) for different values of M at R=1.5, K=0.3,
a=B=y=0.5, Gr=9, Gm=14, Sr=0.4, Sc=2.2, Pr=0.9, Q=0.5.

1.867

u(x,t)

0.933

0.467]

Fig. 8: Velocity profile u(x,t) for Chemical reaction different values of R at
Q=4, Du=0.4, Gr=14, Gm=8, M=4, Sc=2.5, a==y=0.5, Pr=6, K=2

Fig. 9: Velocity profile u(x,t) for different values of Sc at Pr=0.5,
a=B=y=0.5, Q=0.34, A=0.6, Gr=8, Gm=8, Sc=1.5.
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0 16 32 48 64 8
X
Fig. 10: Temperature profile T(x,t) for different values of a=y
at Du=0.2, Pr=0.5, Sc=1.5, R=2.6, Q=0.34, t=0.7.
£
=

Fig. 11: Temperature profile T(x,t) for different values of Du

at a=y =0.5, Pr=0.5, Sc=1.5, R=2.6, Q=0.34, t=0.7.
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. 12: Temperature profile T(x,t) for different values of Pr
at Du=0.2, a=y =0.5, Sc=1.5, R=2.6, Q=0.34, t=0.7.

T(x,t)

Clx,b)

C(x,b)

Global Digital Central
ISSN: 2151-8629

0.63

0.56]

0.49]
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035

16 32 48 64 8
X

Fig. 13: Temperature profile T(x,t) for different values of Q

at Du=0.2, a=y =0.5, Sc=1.5, R=2.6, Pr=0.5, t=0.7.
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Fig. 14: Concentration profile C(x,t) for different values of a at t=0.7.
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Fig. 15: Concentration profile C(x,t) for different values of R at t=0.7.
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Fig. 16: Concentration profile C(x,t) for different values of Sc at t=0.7. Fig. 19: Velocity obtain by Stehfest's and Tzou's Algorithms.
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Fig. 18: Velocity distribution u(x,t) for comparison of fluids Fig. 21: Concentration obtain by Stehfest's and Tzou's Algorithms.
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6. CONCLUSIONS

A magnetohydrodynamics flow of Maxwell’s fractional fluid model has
been taken and solved using Laplace transform with solution. The
conditions of flow problem are satisfied by the results. Different graphs
have been plotted for flow parameters and then discussed. The key points
of this flow model are:

* Fluid velocity is an increasing function of fractional parameter.
» Thermal buoyancy forces accelerate the fluid velocity.

* The velocity of fluid decreases as values of magnetic parameter,
Schmidt number, and chemical reaction parameter increases.

* The fluid velocity decreases with an increasing values of Maxwell fluid.

» The temperature profile increases with decreasing values of Prandtl
number.

* The concentration profile decreases with increasing values of Schmidt
number.

* The concentration profile decreases with an increasing value of
chemical reaction.

* The concentration level is an increasing function of a.
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