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ABSTRACT 
This paper presents an exact analytical solution to the extended Graetz problem in microchannels and microtubes, including axial heat conduction, 
viscous dissipation, and rarefaction effects for an imposed constant wall temperature. The flow in the microchannel or microtube is assumed to be 
hydrodynamically fully developed. At the same time, the first-order slip-velocity and temperature jump models represent the wall boundary conditions. 
The energy equation is solved analytically, and the solution is obtained in terms of Kummer functions with expansion constants directly determined 
from explicit expressions. The local and fully developed Nusselt numbers are calculated in terms of the Péclet number, Brinkman number, Knudsen 
number, and thermal properties of the fluid. The constant pressure drop along the streamwise direction per unit length is imposed at a constant value 
and independent of the flow parameters, unlike the usual practice of fixing the average velocity. This solution can be used as the reference solution for 
optimization problems to enhance heat transfer using a fixed pressure drop. It is found that for no viscous dissipation and negligible axial heat 
conduction, the local Nusselt number is larger for imposed pressure drop compared to imposed average velocity. The thermal entrance length increases 
as the Knudsen number or the degree of temperature jump increases for imposed pressure drop, while it is approximately unchangeable for imposed 
average velocity. The quantitative differences between the cases of imposed pressure drop and imposed average velocity in the average Nusselt number 
over the largest thermal entrance length are reduced with the increase of axial heat conduction or viscous dissipation effects. The fully developed 
Nusselt number is the same for imposed pressure drop and imposed average velocity. 
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1. INTRODUCTION 
The miniaturization of industrial products is continuously evolving due 
to the technological development in many industrial fields. The ever-
increasing miniaturization raises several challenges in which cooling 
plays an important role, such as in the development of micro-heat-
exchangers (Chung et al., 2011; Khan and Fartaj, 2011; Han et al., 2012; 
Ismail et al., 2012; Kanor and Manimaran, 2016; Zhang, 2017; Qasem 
and Zubair, 2018; Zarita and Hachemi, 2019; Ramesh et al., 2021; Soheel 
et al., 2021; Turkyilmazoglu, 2021b; Gao et al., 2022; Gulia and Sur, 
2022; Al-Gburi et al., 2023; Jaddoa et al., 2023). Therefore, 
understanding the physics of heat transfer and fluid flow at the 
microscale level has a significant role in this industrial trend. 
Microelectromechanical systems (MEMS) have characteristic lengths 
between 1	𝑚𝑚 and 1	𝜇𝑚. The Knudsen number 𝐾𝑛 = 𝜆/𝐿! compares 
the mean free path 𝜆 to the characteristic length of the flow 𝐿!, which is 
used to classify different flow regimes. According to Beskok and 
Kamiadakis (1994) and Gad-el-Hak (1999) and following empirical 
information, the fluid can be considered as a continuum for 𝐾𝑛 ≤ 10"#, 
which is known as the no-slip flow, the slip flow is for 10"# < 𝐾𝑛 < 0.1 
and the transition flow for 0.1 < 𝐾𝑛 < 10, while for 𝐾𝑛 ≥ 10 it is 
considered free molecular flow. In microfluidics, Navier-Stokes and 
energy equations can still be used to predict the slip flows and early 
transition flows; however, there are corrections to the boundary 
conditions that have to be made by taking into consideration the slip-
velocity and the temperature jump at the walls. 
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This paper focuses on the analytical study of the fluid flow and heat 
transfer in microchannels and microtubes to investigate the effects of the 
axial heat conduction, viscous dissipation, and rarefaction on the heat 
transfer for the slip flow regime corresponding to 10"# < 𝐾𝑛 < 0.1. The 
microchannel or microtube is considered infinite. The boundary 
conditions at the walls are divided into two regions with two different 
values of the constant wall temperature. The junction point is the abscise 
of the step change in the wall temperature. The usual uniform inlet 
temperature condition is not used due to the effects of axial heat 
conduction and viscous dissipation. The main interest of this study is to 
consider a fixed pressure drop along the streamwise direction per unit 
length as opposed to the heavily studied usual case of fixed average 
velocity. Let us note that the case studied in this paper is of significant 
importance and can be useful for optimization problems or energy 
efficiency maximization (Fabbri, 2000; Tian et al., 2022), such as in 
electronic components cooling, where the pumping power is important. 

In the case of no-slip flow, the Graetz problem, which is the steady 
laminar incompressible thermally developing and hydrodynamically 
developed flow in a tube with Dirichlet boundary condition, was first 
studied by Graetz (1882). The inlet temperature is considered uniform 
due to the hypotheses of negligible viscous dissipation and axial heat 
conduction, which leads to the parabolic form of the energy equation, 
where only the inlet condition and the wall boundary conditions are 
needed to obtain the solution in the channel or tube. The results and 
conclusions are the same either a fixed average velocity is used or a fixed 
pressure drop along the streamwise direction per unit length due to the 
linear relationship between them, which is given by the Hagen-Poiseuille 
equation. Shah and London (1978) reviewed various analytical and 
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numerical methods used to solve the Graetz problem in different 
macroscale configurations, including the effects of axial heat conduction 
and viscous dissipation. The extended Graetz problem, which includes 
axial heat conduction, has been studied by many researchers (Hennecke, 
1968; Papoutsakis et al., 1980; Lahjomri and Oubarra, 1999). Hennecke 
(1968) found that a uniform inlet temperature assumption is not justified 
for small Péclet numbers due to the upstream effect related to axial heat 
conduction. Recently, Turkyilmazoglu (2021a) studied the extended 
Graetz problem analytically in parallel-plate channels with a moving 
upper wall and a fixed lower wall where the simple Couette flow gives 
the considered hydrodynamically developed flow. It was found that the 
heat transfer rate at the moving wall is of significant importance as the 
Péclet number increases. Viscous dissipation and axial heat conduction 
effects on the fully developed forced convection of non-Newtonian fluids 
were investigated analytically by Khatyr and Khalid Naciri (2022). 

The viscous dissipation effect on the Graetz problem is known to be 
important for the slip flow in microchannels or microtubes. Sparrow and 
Lin (1962) studied the Graetz problem analytically under slip flow 
conditions. It was found that for a constant average velocity, the Nusselt 
number decreases with increasing the Knudsen number and the rate of 
reduction is influenced by the degree of temperature jump. The thermal 
entrance length also increases as the Knudsen number increases. Larrodé 
et al. (2000) studied the influence of rarefaction on heat transfer in 
microtubes. They introduced a spatial rescaling factor, which measures 
rarefaction through its dependence on the Knudsen number to identify 
similarities with the classical Graetz problem. Tunc and Bayazitoglu 
(2001) studied the Graetz problem in microtubes, including slip flow, 
temperature jump, and viscous dissipation, using the integral transform 
technique. For a fixed average velocity, it was found that as the Prandtl 
number increases, the temperature jump effect diminishes, which leads 
to an increase in the Nusselt number. Xu et al. (2003) studied the effects 
of viscous dissipation in microchannel flows to provide evidence for the 
assumption that, at the microscale, viscous dissipation could be too 
important to be neglected. Rosa et al. (2009) reviewed the importance of 
scaling effects for single-phase heat transfer in microchannels. Recently, 
Turkyilmazoglu (2022) studied analytically the thermal performance of 
optimum exponential fins subjected to a temperature jump at the base. It 
was found that the temperature jump’s overall effect on the fin efficiency 
is such that it works to reduce the fin efficiency. 

Many investigations studied the coupling of axial heat conduction, 
viscous dissipation, and rarefaction effects on the Graetz problem in 
microchannels and microtubes, and to the best of our knowledge, all of 
them used the fixed average velocity condition (Jeong and Jeong, 2006; 
Çetin et al., 2008; Çetin and Zeinali, 2014; Barişik et al., 2015; Kalyoncu 
and Barişik, 2016; Haddout et al., 2020; Sun et al., 2020). However, for 
optimization problems or energy efficiency maximization, the variation 
of the pressure drop along the streamwise direction per unit length in the 
microchannel or microtube is as important as the variation of the Nusselt 
number. Therefore, the heat transfer result, Nusselt number, is limited by 
not considering the change in the pressure drop along the streamwise 
direction per unit length. Jeong and Jeong (2006) used the hypothesis of 
a uniform inlet temperature. Çetin et al. (2008) show that the fully 
developed Nusselt number and the thermal entrance length increase with 
the decrease of the Péclet number. Çetin and Zeinali (2014) used a 
second-order slip model to model the rarefaction effects. The 
temperature distribution, the Nusselt number, and the entropy generation 
are calculated in terms of confluent hypergeometric functions. They 
identified that for a negligible viscous dissipation, the Nusselt number 
decreases as the Knudsen number increases and decreases when the 
modeling is changed from the first-order model with negligible terms at 
𝐾𝑛$ to the second-order model. For a non-negligible viscous dissipation, 
the Nusselt number predicted by the first-order model is lower than that 
predicted by the second-order model. Barişik et al. (2015) and Kalyoncu 
and Barişik (2016) used the Gram-Schmidt orthogonalization technique 
(Dutta et al., 2006) due to the use of a uniform inlet temperature 
hypothesis. Barişik et al. (2015) concluded that for all cases with 

negligible viscous dissipation and short tubes with viscous dissipation, 
the axial heat conduction should not be neglected for Péclet numbers less 
than 100. For large length-over-diameter ratios, the viscous dissipation 
effect should be considered even for small Brinkman numbers. Kalyoncu 
and Barişik (2016) found that the convective heat transfer coefficient 
increases with decreasing flow dimensions despite the reduction of the 
Nusselt number. Haddout et al. (2020) used the self-adjoint formalism 
method involving the decomposition of the energy equation into a system 
of two first-order partial differential equations. It was concluded that heat 
transfer increases as the Péclet number and the Knudsen number 
decrease; at the same time, for large Péclet numbers, the Knudsen 
number does not affect the temperature gradient near-wall layer, while 
for small Péclet numbers, this effect becomes important. Sun et al. (2020) 
used the Gram-Schmidt orthogonalization procedure with the Gauss-
Legendre quadrature due to the uniform inlet temperature hypothesis. It 
was found that the effect of the axial heat conduction on the fully 
developed Nusselt number is negligible for Péclet numbers greater than 
10. In contrast, its effect on the Nusselt number and the bulk temperature 
can be neglected only for Péclet numbers greater than 100. 

The objective of this paper is to study the flow parameters’ effects 
on the extended Graetz problem in microchannels and microtubes with 
axial heat conduction, viscous dissipation, slip flow, and temperature 
jump by using an exact analytical solution. The first-order slip-velocity 
and temperature jump models are used, and the fixed constant pressure 
drop along the streamwise direction per unit length condition is 
considered. Therefore, the results of the effects of the Knudsen number 
and the degree of temperature jump on heat transfer are presented 
differently from those found in the case of a fixed average velocity 
condition (Larrodé et al., 2000; Tunc and Bayazitoglu, 2001; Jeong and 
Jeong, 2006; Çetin et al., 2008; Çetin and Zeinali, 2014; Barişik et al., 
2015; Kalyoncu and Barişik, 2016; Haddout et al., 2020; Sun et al., 
2020). The obtained analytical solution is directly applied without 
introducing the spatial rescaling factor (Larrodé et al., 2000), which is 
used for a fixed average velocity. Additionally, the results in the case of 
average velocity can be found by using the relationship between the 
pressure drop along the streamwise direction per unit length and the 
average velocity to redefine the dimensionless numbers. The temperature 
is written as a superposition of the fully developed temperature and an 
expansion in terms of a complete set which leads to an eigenvalue 
problem where the eigenfunctions are given by Kummer functions, and 
the expansion constants are determined by using a similar procedure to 
that presented by Lahjomri and Oubarra (1999). The Nusselt number is 
calculated for different values of the flow parameters to investigate their 
effects on heat transfer in both cases of imposed pressure drop along the 
streamwise direction per unit length and imposed average velocity. 

This paper is organized into five sections. The second section 
presents the analysis with the geometrical configuration, the 
mathematical formulation, and the analytical solution. The third section 
is devoted to the validation of the proposed analytical solution with the 
literature. Then, the fourth section presents the results and discussions. 
Finally, the last section presents the main conclusions of this research. 

2. ANALYSIS 

2.1 Geometrical Configuration 
Figure 1 shows the geometrical configuration of the considered 
microchannel or microtube. The parallel plate microchannel is 
symmetric, and the cylindrical microtube is axisymmetric, including the 
distribution of the boundary conditions, and as long as no force breaks 
the symmetry of the equations derived from the conservation laws, then 
only a part of the microchannel or microtube can be studied by adding a 
symmetry condition at the centerline. The distance between the 
centerline and the wall, 𝑑, is half the height for a microchannel and the 
radius for a microtube. The variable 𝜂∗ represents the transversal 
coordinate for a microchannel and the radial coordinate for a microtube. 
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The variable 𝑥∗ is the longitudinal coordinate. The constant wall 
temperature is 𝑇&' for 𝑥∗ < 0 and 𝑇&$ for 𝑥∗ > 0. The junction point at 
𝑥∗ = 0 represents the abscise of the step change in the wall temperature. 
The flow is supposed to be fully developed at 𝑥∗ = −∞, where the 
developed velocity and temperature profiles are respectively given by 
𝑢∗(𝜂∗) and 𝑇"(∗ (𝜂∗), and at 𝑥∗ = +∞, where the developed velocity and 
temperature profiles are respectively given by 𝑢∗(𝜂∗) and 𝑇)(∗ (𝜂∗). 
 

 
Fig. 1 The geometrical configuration of the considered microchannel or 

microtube. 

2.2 Mathematical Formulation 
Using the previously introduced assumptions, the governing equations 
for mass and momentum conservation reduce to the following system 
(Shah and London, 1978): 
 
*+∗

*,∗
= 0 (1) 

'
-∗"

*
*-∗

;𝜂∗. *+
∗

*-∗
< = '

/
*0∗

*,∗
 (2) 

*0∗

*-∗
= 0 (3) 

 
where 𝑙 is a geometrical parameter that accepts two values, 𝑙 = 0 
represents the microchannel case, and 𝑙 = 1 represents the microtube. 
The constant pressure gradient along the streamwise direction is 10

∗

1,∗
 

(Shah and London, 1978). 𝑢∗, 𝑝∗ and 𝜇 are respectively the velocity 
component in the 𝑥∗-direction, pressure, and dynamic viscosity of the 
fluid. (𝑥∗, 𝜂∗) are the cartesian coordinates for a microchannel and the 
cylindrical coordinates for a microtube. 

The slip-velocity (Beskok and Karniadakis, 1994; Gad-el-Hak, 
1999) at the stationary wall of the microchannel or microtube is given 
by: 
 
𝑢∗(𝜂∗ = 𝑑) = − $"2#

2#
𝜆 1+

∗

1-∗@-∗31
 (4) 

 
where 𝜆 and 𝜎4 are respectively the mean free path of the molecules and 
the tangential momentum accommodation coefficient. 

The symmetry condition for the velocity at the centerline is given 
by: 
 
1+∗

1-∗@-∗35
= 0 (5) 

 
Integrating Eq. (2) and using the boundary conditions, Eqs. (4) and (5), 
lead to the velocity distribution, which is written as follows: 
 

𝑢∗(𝜂∗) = − 1$

$(.)')/
10∗

1,∗ B1 − ;
-∗

1
<
$
+ 2 $"2#

2#

8
1D (6) 

 
The energy equation with the axial heat conduction and viscous 
dissipation is given by (Shah and London, 1978): 
 

𝜌𝐶0𝑢∗(𝜂∗)
*9%

∗

*,∗
= 𝑘 H

*$9%
∗

*,∗$
+ '

-∗"
*
*-∗

;𝜂∗.
*9%

∗

*-∗
<I + 𝜇 ;1+

∗

1-∗
<
$
 (7) 

 
where 𝐶0, 𝑘, 𝜌 and 𝑇:∗ are respectively the specific heat, the thermal 
conductivity, the density, and the temperature of the fluid. The index 𝑗 

represents two regions with two different wall temperature values where 
𝑗 = 1 for 𝑥∗ < 0 and 𝑗 = 2 for 𝑥∗ > 0. 

The temperature jump (Beskok and Karniadakis, 1994; Gad-el-Hak, 
1999) at the wall of the microchannel or microtube is given by: 
 
𝑇:∗(𝑥∗, 𝜂∗ = 𝑑) − 𝑇&: = − $"2&

2&

$;
;)'

8
<=

*9%
∗

*-∗@-∗31
 (8) 

 
where 𝜎9 is the energy accommodation coefficient, 𝑃𝑟 = />'

?
 is the 

Prandtl number, and γ is the specific heat ratio. 𝑇&: is the wall 
temperature where 𝑗 = 1 for 𝑥∗ < 0  and 𝑗 = 2 for 𝑥∗ > 0. 

The symmetry condition for the temperature at the centerline is 
given by: 
 
*9%

∗

*-∗@-∗35
= 0 (9) 

 
The condition for the temperature respectively at 𝑥∗ = −∞ and            
𝑥∗ = +∞ are given by: 
 
𝑇'∗(𝑥∗ = −∞, 𝜂∗) = 𝑇"(∗ (𝜂∗) (10) 
𝑇$∗(𝑥∗ = +∞, 𝜂∗) = 𝑇)(∗ (𝜂∗) (11) 
 
The flow is considered to be fully developed far upstream at 𝑥∗ = −∞  
and far downstream at 𝑥∗ = +∞. Therefore, 𝑇"(∗ (𝜂∗) and 𝑇)(∗ (𝜂∗) are 
independent of the axial coordinate 𝑥∗ even for small Péclet numbers due 
to their large distance from the junction point at 𝑥∗ = 0 where the axial 
heat conduction can play a significant role. Note that for a negligible 
viscous dissipation, the fluid temperature far upstream and far 
downstream are respectively the corresponding wall temperatures of 
each region, 𝑇&' and 𝑇&$ (Lahjomri and Oubarra, 1999) with no 
temperature jump due to the null temperature gradient at the walls of the 
microchannel or microtube far upstream and far downstream, Eq. (8). 
However, in the presence of viscous dissipation, they are dependent on 
the variable 𝜂∗ and their expressions will be given later using the energy 
equation along with the wall boundary conditions. 

The temperature and the axial heat flux are continuous at the section 
of the step change in the wall temperature 𝑥∗ = 0. Therefore, the 
additional continuity conditions at the junction section 𝑥∗ = 0 are given 
by: 
 
𝑇'∗(𝑥∗ = 0, 𝜂∗) = 𝑇$∗(𝑥∗ = 0, 𝜂∗)	for	0 ≤ 𝜂∗ < 𝑑 (12) 
*9(∗

*,∗@,∗35
= *9$∗

*,∗@,∗35
 (13) 

 
Defining the dimensionless variables as follows: 
 
𝑥 = ,∗

1∙<A
; 			𝜂 = -∗

1
; 			𝑢 = +∗

)$
$("+()-∆0.

∗
= 1 − 𝜂$ + 2#". $"2#

2#
𝐾𝑛;	  

𝑇: =
9%
∗"9/$

9/("9/$
  (14) 

 
where ∆𝑝C∗ = − 10∗

1,∗
= constant is the pressure drop along the 

streamwise direction per unit length, which is positive due to the negative 
pressure gradient along the streamwise direction, 𝑃𝑒 = D>'10

$(.)')/?
∆𝑝C∗ is 

the Péclet number, 𝐾𝑛 = 8
E1

 is the Knudsen number, and 𝐷F = 2$".𝑑 is 
the hydraulic diameter for the microchannel (𝑙 = 0) and the microtube 
(𝑙 = 1). The dimensionless temperature in Eq. (14) is written in a form 
similar to that used in (Lahjomri and Oubarra, 1999). 

By using parameters of Eq. (14), the dimensionless energy equation 
becomes: 

𝑢(𝜂) *9%
*,
= '

<A$
*$9%
*,$

+ '
-"

*
*-
;𝜂. *9%

*-
< + 𝐵𝑟 ;1+

1-
<
$
 (15) 
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where 𝐵𝑟 = 12(∆0.∗)$

G(.)')$/?(9/("9/$)
 is the Brinkman number that accounts for 

the viscous dissipation effect. 
The dimensionless boundary conditions become: 

 
𝑇'(𝑥, 𝜂 = 1) = 1 − 2$".	𝜅	𝐾𝑛 *9(

*- @-3'
 (16) 

𝑇$(𝑥, 𝜂 = 1) = −2$".	𝜅	𝐾𝑛 *9$
*- @-3'

 (17) 
*9%
*- @-35

= 0 (18) 

𝑇'(𝑥 = −∞, 𝜂) = 𝑇"((𝜂) (19) 
𝑇$(𝑥 = +∞, 𝜂) = 𝑇)((𝜂) (20) 
𝑇'(𝑥 = 0, 𝜂) = 𝑇$(𝑥 = 0, 𝜂)	for	0 ≤ 𝜂 < 1 (21) 
*9(
*, @,35

= *9$
*, @,35

 (22) 

 
where 𝜅 = $"2&

2&

$;
;)'

'
<=

 is a parameter that accounts for the degree of 

temperature jump and 𝑇∓( = 9∓4
∗ "9/$
9/("9/$

 are the dimensionless 
temperatures far upstream and far downstream given by (see Appendix 
A): 
 
𝑇"((𝜂) = 1 + I=

#).
(1 − 𝜂G + 2G".	𝜅	𝐾𝑛) (23) 

𝑇)((𝜂) =
I=
#).

(1 − 𝜂G + 2G".	𝜅	𝐾𝑛) (24) 
 
The solutions of Eq. (15) are sought as a superposition in the following 
form: 
 
𝑇:(𝑥, 𝜂) = 𝑇∓((𝜂) + Θ:(𝑥, 𝜂) (25) 
 
where Θ:(𝑥, 𝜂) are unknown functions introduced due to the step change 
in the wall temperature at the junction point, and they vanish far upstream 
and far downstream. 

Substituting Eq. (25) into the energy equation, Eq. (15), and since 
𝑇∓((𝜂) satisfies the energy equation, one obtains: 
 
𝑢(𝜂) *J%

*,
= '

<A$
*$J%
*,$

+ '
-"

*
*-
;𝜂. *J%

*-
< (26) 

 
With the following boundary conditions on the functions Θ:(𝑥, 𝜂): 
 
Θ:(𝑥, 𝜂 = 1) = −2$".	𝜅	𝐾𝑛 *J%

*- @-3'
 (27) 

*J%
*- @-35

= 0 (28) 

Θ'(𝑥 = −∞, 𝜂) = 0 (29) 
Θ$(𝑥 = +∞, 𝜂) = 0 (30) 
1 + Θ'(𝑥 = 0, 𝜂) = Θ$(𝑥 = 0, 𝜂)	for	0 ≤ 𝜂 < 1 (31) 
*J(
*, @,35

= *J$
*, @,35

 (32) 

2.3 Analytical Solution 

The solutions of Eq. (26) for 𝑗 = 1 and 2 are written as expansions in 
terms of a complete set in the following forms (Lahjomri and Oubarra, 
1999): 
 
Θ'(𝑥, 𝜂) = ∑ 𝐴K𝑓K(𝜂)𝑒L5

$,
K  (33) 

Θ$(𝑥, 𝜂) = ∑ 𝐵K𝑔K(𝜂)𝑒"M5
$,

K  (34) 
 
where Eqs. (29) and (30) are satisfied accordingly. 𝐴K and 𝐵K are the 
expansion constants, 𝛼K and 𝛽K are the real eigenvalues respectively 
associated with the eigenfunctions 𝑓K(𝜂) and 𝑔K(𝜂) that are respectively 
determined using the following equations: 

 
1
1-
;𝜂. 1N5

1-
< + 𝛼K$ c

L5$

<A$
− (1 − 𝜂$ + 𝜀)e 𝜂.𝑓K(𝜂) = 0 (35) 

1
1-
;𝜂. 1O5

1-
< + 𝛽K$ c

M5$

<A$
− (1 − 𝜂$ + 𝜀)e 𝜂.𝑔K(𝜂) = 0 (36) 

 
With the following boundary conditions: 
 
𝑓K(𝜂 = 1) = −𝛿 1N5

1- @-3'
 (37) 

1N5
1- @-35

= 0 (38) 

𝑔K(𝜂 = 1) = −𝛿 1O5
1- @-3'

 (39) 
1O5
1- @-35

= 0 (40) 

 
where 𝜀 = 2#". $"26

26
𝐾𝑛	and 𝛿 = 2$".	𝜅	𝐾𝑛. 

Introducing the following new variables and functions: 
 
𝜒 = 𝑖𝛼K𝜂$ (41) 
𝜓K(𝜒) = 𝑒

7
$𝑓K(𝜂) (42) 

𝜉 = 𝛽K𝜂$ (43) 

𝜙K(𝜉) = 𝑒
8
$𝑔K(𝜂) (44) 

 
where 𝑖$ = −1. 

Substituting Eqs. (41)-(44) into Eqs. (35) and (36), yield the 
following known equations: 
 
𝜒 1

$P5
1Q$

+ (𝑐 − 𝜒) − 𝑎K𝜓K(𝜒) = 0 (45) 

𝜉 1
$R5
1S$

+ (𝑐 − 𝜉) − 𝑏K𝜙K(𝜉) = 0 (46) 
 
where 𝑐 = ').

$
, 𝑎K =

').
G
− T)U

G
𝛼K +

TL50

G<A$
, and 𝑏K =

').
G
− ')U

G
𝛽K −

M50

G<A$
. 

The solutions of Eqs. (45) and (46) are expressed in terms of the 
confluent hypergeometric functions. Therefore, considering that the 
eigenfunctions 𝑓K(𝜂) and 𝑔K(𝜂) are continuous for 0 < 𝜂 < 1, they are 
written as follows: 
 

𝑓K(𝜂) = 𝑒"
9:5;$

$ 𝑀(𝑎K, 𝑐, 𝑖𝛼K𝜂$) (47) 

𝑔K(𝜂) = 𝑒"
<5;$

$ 𝑀(𝑏K, 𝑐, 𝛽K𝜂$) (48) 
 
where 𝑀 is the Kummer confluent first-kind hypergeometric function. 

The eigenvalues 𝛼K and 𝛽K can be calculated, using the boundary 
conditions Eqs. (37) and (39), respectively as the roots of the equations 
𝑓K(𝜂 = 1) + 𝛿 1N5

1- @-3'
= 0 and 𝑔K(𝜂 = 1) + 𝛿 1O5

1- @-3'
= 0. To 

determine the expansion constants 𝐴K and 𝐵K, the conditions at the 
junction section, Eqs. (31) and (32), are used. Substituting Eqs. (33) and 
(34) into Eqs. (31) and (32) lead to the following equations: 
 
1 +∑ 𝐴K𝑓K(𝜂)K = ∑ 𝐵K𝑔K(𝜂)K 	for	0 ≤ 𝜂 < 1 (49) 
∑ 𝛼K$𝐴K𝑓K(𝜂)K = −∑ 𝛽K$𝐵K𝑔K(𝜂)K  (50) 
 
Noting that the eigenfunctions 𝑓K(𝜂) and 𝑔K(𝜂) satisfy the following 
properties: 
 

∫ HL5
$)L=$

<A$
− (1 − 𝜂$ + 𝜀)I	𝜂.	𝑓K(𝜂)𝑓V(𝜂)𝑑𝜂 q

= 0			𝑖𝑓			𝑚 ≠ 𝑛
≠ 0			𝑖𝑓			𝑚 = 𝑛

'
5  (51) 

∫ HM5
$)M=$

<A$
+ (1 − 𝜂$ + 𝜀)I	𝜂.	𝑔K(𝜂)𝑔V(𝜂)𝑑𝜂 q

= 0			𝑖𝑓			𝑚 ≠ 𝑛
≠ 0			𝑖𝑓			𝑚 = 𝑛

'
5  (52) 
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As well as the following boundary conditions: 
 
𝑓K(𝜂 = 1) 1O=

1- @-3'
= 𝑔V(𝜂 = 1) 1N5

1- @-3'
= −𝛿 1N5

1- @-3'
1O=
1- @-3'

 (53) 

 
Following a similar procedure to that presented by Lahjomri and Oubarra 
(1999), the expansion constants 𝐴K and 𝐵K are calculated by using the 
following expressions: 

𝐴K = −
∫ X :5

$

>?$"('"-
$)U)Y	-"	N5(-)1-

(
@

∫ X$:5
$

>?$"('"-
$)U)Y	-"	[N5(-)]$1-

(
@

 (54) 

𝐵K =
∫ X<5

$

>?$)('"-
$)U)Y	-"	O5(-)1-

(
@

∫ X$<5
$

>?$)('"-
$)U)Y	-"	[O5(-)]$1-

(
@

 (55) 

 
To avoid the heavy calculations due to the integrals in Eqs. (54) and (55), 
the following expressions for the expansion constants presented by 
Haddout et al. (2020) can be used: 
 
𝐴K =

$

L5]
)A5(;B()

):5
)^ )

):5
_)A5); `;B(

ab
 (56) 

𝐵K = − $

M5]
)C5(;B()

)<5
)^ )

)<5
_)C5); `;B(

ab
 (57) 

 
The derivations in Eqs. (56) and (57) are calculated only once, in general, 
for an unknown eigenvalue then the different eigenvalues are replaced to 
find the associated expansion constant. The comparison between the 
values found by using Eqs. (54) and (55) with those found by using Eqs. 
(56) and (57) for different values of the dimensionless numbers is 
presented in Appendix B and shows that they are in perfect agreement in 
the no-slip flow regime (Table B.1). In the presence of a slip-velocity and 
temperature jump, the results are also in perfect agreement in the 
downstream region while they differ slightly in the upstream region for 
the first eigenvalues (Table B.2). The difference in the values of the 
expansion constants in the upstream region does not affect the results 
obtained in the downstream region which is the region of interest. 

The local Nusselt number is calculated for the region where there is 
a change in the wall temperature 𝑥 > 0 as follows: 
 

𝑁𝑢(𝑥) = c/	E1
?d9/$"9D

∗(,∗)e
=

"$$E"	F&$F; `;B(
9D(,)

 (58) 

 
where 𝑞& = 𝑘 *9$

∗

*-∗@-∗31
 is the heat flux at the walls for 𝑥 > 0, 𝑇f∗(𝑥∗) is 

the dimensional bulk temperature, and 𝑇f(𝑥) =
9D∗(,∗)"9/$
9/("9/$

 is the 
dimensionless bulk temperature which is given by the following 
equation: 
 

𝑇f(𝑥) =
∫ +(-)	9$(,,-)	-"	1-
(
@

∫ +(-)	-"	1-(
@

 (59) 

 
The average velocity is written as follows: 
 

𝑈hiA =
∫ )$

$("+()-∆0.
∗+(-)-"1-(

@

∫ -"1-(
@

= 1$

$(.)')/
∆𝑝C∗ ;

$
.)#

+ 2#". $"2#
2#

𝐾𝑛< (60) 

Equation (60) shows that the average velocity is proportional to the 
pressure drop along the streamwise direction per unit length. However, 
the slope is dependent on the Knudsen number and the tangential 
momentum accommodation coefficient. As in the Nusselt number Eq. 
(58), the velocity appears explicitly only in the bulk temperature Eq. (59) 
in both the numerator and denominator. For the case of 𝐾𝑛 = 0, the 
results are similar either a fixed average velocity is chosen, or a fixed 
pressure drop along the streamwise direction per unit length. Otherwise, 
for 𝐾𝑛 ≠ 0, the results are not the same due to the dependence of the 
slope on the Knudsen number Eq. (60). Thus, the results are presented 
differently in the literature (Larrodé et al., 2000; Tunc and Bayazitoglu, 
2001; Jeong and Jeong, 2006; Çetin et al., 2008; Çetin and Zeinali, 2014; 
Barişik et al., 2015; Kalyoncu and Barişik, 2016; Haddout et al., 2020; 
Sun et al., 2020) for the case of an average velocity independent of the 
flow parameters being chosen as the characteristic velocity. This paper 
focuses on the case of a pressure drop along the streamwise direction per 
unit length independent of the flow parameters. However, Eq. (60) can 
be used to obtain the Péclet number, Brinkman number, the 
dimensionless longitudinal coordinate, and the dimensionless velocity 
distribution in terms of the average velocity instead of the pressure drop 
along the streamwise direction per unit length and therefore find the 
results presented in the literature. 

3. VALIDATION 
This section is devoted to the validation of the presented analytical 
procedure and the calculations done by comparing the results with 
literature data obtained using various analytical and numerical methods 
for different values of the dimensionless numbers. 

3.1 No-slip Flow Regime Case with Axial Heat Conduction 

In the no-slip flow regime, 𝐾𝑛 = 0, the results found by using a fixed 
pressure drop along the streamwise direction per unit length are identical 
to those found by a fixed average velocity due to the proportionality that 
relates them, Eq. (60), with a slope independent of the dimensionless 
numbers. Therefore, the presented analytical solution can be compared 
for a fixed pressure drop along the streamwise direction per unit length 
with literature data for a fixed average velocity. Lahjomri and Oubarra 
(1999) studied the extended Graetz problem analytically in a channel or 
a tube with a step change in the wall temperature. They presented a 
general procedure for the direct determination of the expansion constants 
and presented the results in the case of the Hagen-Poiseuille flow. Barişik 
et al. (2015) investigated the extended Graetz problem analytically in 
microtubes, including axial heat conduction, viscous dissipation, and 
rarefaction effects by using the Gram-Shmidt orthogonalization 
technique and a uniform inlet temperature. Using a uniform inlet 
temperature in a semi-infinite microtube or an upstream region in an 
infinite microtube leads to different results in the thermal entrance or 
thermally developing region. However, the results in the fully developed 
region are identical due to their independence of the temperature profile 
at the inlet (Barişik et al., 2015) or the junction section (present study). 
Table 1 shows a comparison of the fully developed Nusselt number 𝑁𝑢jE 
and the first eigenvalue 𝛽' in a tube (𝑙 = 1) for different Péclet numbers, 
𝐵𝑟 = 0, and 𝐾𝑛 = 0 with the results of Lahjomri and Oubarra (1999) 
and Barişik et al. (2015) for negligible viscous dissipation and rarefaction 
effects. It is shown that they are in perfect agreement. 𝑁𝑢jE decreases 
with the increase of 𝑃𝑒.

Table 1 Comparison of the fully developed Nusselt number and the first eigenvalue in a tube for different Péclet numbers and 𝐵𝑟 = 0 with the literature. 
𝑃𝑒 1 2 5 10 50 100 1000 10k 

𝑁𝑢jE 
Present study 4.02735 3.92236 3.76729 3.69518 3.65858 3.65724 3.65680 3.65679 
Lahjomri and Oubarra (1999) 4.02735 3.92236 3.76729 3.69518 3.65858 3.65724 3.65680 3.65679 
Barişik et al. (2015) 4.02735 3.92236 3.76729 3.69518 3.65858 3.65724 3.65680 3.65679 

𝛽K 
Present study 1.42981 1.86755 2.38530 2.59693 2.69945 2.70313 2.70435 2.70436 
Lahjomri and Oubarra (1999) 1.42981 1.86755 2.38530 2.59693 2.69945 2.70313 2.70435 2.70436 
Barişik et al. (2015) 1.42981 1.86754 2.38530 2.59693 2.69945 2.70313 2.70435 2.70436 
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3.2 No-slip Flow Regime Case with Axial Heat Conduction 
and Viscous Dissipation 

Sphaier et al. (2021) presented an analytical solution for the extended 
Graetz problem with axial heat conduction, viscous dissipation, and 
additional volumetric heating effects in a channel or a tube via the 
generalized integral transform technique. Four combinations of boundary 
conditions are studied where the walls of the upstream region are either 
isothermal or thermally insulated, and the walls of the downstream region 
are either isothermal or uniformly heated with a step change in the 
boundary condition at the junction point. Figs. 2(a) and 2(b) show the 
evolution of 𝑁𝑢 as a function of 𝑥 in a tube (𝐾𝑛 = 0; 𝑙 = 1) for          
𝑃𝑒 = 1, 2, 10 and respectively 𝐵𝑟 = 0 and 𝐵𝑟 = 0.4. The results agree 
with those of Sphaier et al. (2021) for 𝑁 = 1000 and negligible 
volumetric heating effects with small quantitative differences in the 
thermal entrance region due to the different analytical techniques used to 
obtain these results. For no viscous dissipation 𝐵𝑟 = 0, the local Nusselt 
number increases with the decrease of the Péclet number for all the values 
of 𝑥. In the presence of viscous dissipation, the fully developed Nusselt 
number is independent of the Péclet number. 
 

 
(a) 𝐵𝑟 = 0 

 
(b) 𝐵𝑟 = 0.4 

 
Fig. 2 Evolution of the local Nusselt number as a function of 𝑥 in a tube 

for different Péclet numbers as well as a comparison with the 
results of Sphaier et al. (2021) considering both cases of: (a) no 
viscous dissipation and (b) viscous dissipation. 

3.3 Slip Flow Regime Case with Imposed Average Velocity 

In contrast, for the case of the slip flow regime, 𝐾𝑛 ≠ 0, the slope 
coefficient that relates the pressure drop along the streamwise direction 
per unit length to the average velocity, Eq. (60), is dependent on the 
Knudsen number. Therefore, to validate the presented methodology with 
literature data, a fixed average velocity is considered by using similar 
characteristic parameters as Barişik et al. (2015) in a microtube (𝑙 = 1) 
and using a similar procedure to that presented in this paper to determine 
the eigenvalues, expansion constants, and the Nusselt number. Çetin et 
al. (2008) studied the extended Graetz problem in microtubes with axial 
heat conduction, viscous dissipation, and rarefaction. The velocity profile 
is determined analytically, while the temperature distribution is obtained 
by a numerical solution of the energy equation based on the finite 
difference technique. Table 2 shows a comparison of the fully developed 
Nusselt number 𝑁𝑢jE in a microtube (𝑙 = 1) for different Péclet 
numbers 𝑃𝑒 = 1, 2, 5, 10, 1000, Knudsen numbers 𝐾𝑛 = 0.4, 0.8, and 
degrees of temperature jump, 𝜎4 = 1 and 𝐵𝑟 = 0 with the results of 
Çetin et al. (2008) and Barişik et al. (2015). The results are in good 
agreement with the literature data. They show that 𝑁𝑢jE increases as the 
Knudsen number increases for the case of no-temperature-jump at the 
walls (𝜅 = 0), while in the case of the temperature jump at the walls, 
𝑁𝑢jE decreases with the increase of the Knudsen number or the degree 
of temperature jump, 𝜅. 
 
Table 2 Comparison of the fully developed Nusselt number in a 
microtube for different Péclet numbers, Knudsen numbers, and degrees 
of temperature jump, 𝜎4 = 1, and 𝐵𝑟 = 0 with the literature using a fixed 
average velocity. 

𝜅 𝐾𝑛 𝑃𝑒 
𝑁𝑢jE 

Present 
study 

Çetin et al. 
(2008) 

Barişik et al. 
(2015) 

0 

0.04 

1 4.353 4.358 ---- 
2 4.262 4.270 ---- 
5 4.124 4.131 ---- 
10 4.057 4.061 ---- 

1000 4.021 4.020 ---- 

0.08 

1 4.577 4.585 ---- 
2 4.499 4.509 ---- 
5 4.376 4.386 ---- 
10 4.314 4.319 ---- 

1000 4.279 4.279 ---- 

1.667 

0.04 

1 3.597 3.604 3.603 
2 3.509 3.517 3.517 
5 3.380 3.387 3.387 
10 3.322 3.325 3.325 

1000 3.292 3.292 3.292 

0.08 

1 3.087 3.093 3.093 
2 3.028 3.036 3.035 
5 2.943 2.949 2.949 
10 2.906 2.909 2.908 

1000 2.887 2.887 2.886 

10 

0.04 

1 1.704 1.706 ---- 
2 1.676 1.678 ---- 
5 1.642 1.643 ---- 
10 1.629 1.630 ---- 

1000 1.624 1.624 ---- 

0.08 

1 1.028 1.029 ---- 
2 1.020 1.021 ---- 
5 1.011 1.012 ---- 
10 1.009 1.009 ---- 

1000 1.008 1.008 ---- 
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These comparisons, carried out by considering the cases where the 
average velocity is imposed, show that the proposed solution achieves 
the same results as those usually obtained for laminar forced convection 
and thus ensures the reliability of the proposed approach. 

3.4 Accuracy Analysis 

Figures 3(a) and 3(b) show the evolution of the local Nusselt number 𝑁𝑢 
as a function of the dimensional longitudinal coordinate 𝑥 for 𝑃𝑒 = 5, 
𝐵𝑟 = 0, and 𝐾𝑛 = 0 respectively in a tube (𝑙 = 1) and a channel 
(𝑙 = 0). These figures show a comparison with the results of Lahjomri 
and Oubarra (1999) in the case of no-slip flow and no viscous dissipation 
hypotheses and exemplify the effect of the truncation order 𝑁 on the 
accuracy of 𝑁𝑢 for small values of 𝑥. The results of 𝑁𝑢 for 𝑁 = 250 and 
𝑁 = 300 are identical in the range of 𝑥 ≥ 0.001 presented in Figs. 3(a) 
and 3(b). Due to the step change in the wall temperature, a higher value 
of 𝑁 is needed to find accurate results near the junction point. As the 
truncation order gets smaller, the local Nusselt number near the junction 
point is underpredicted. In this work, the results are limited to 𝑥 ≥ 0.01 
in the following section, and 𝑁 = 50 is used. However, as can be seen in 
Figs. 3(a) and 3(b), the results are accurate for 𝑥 ≥ 0.01 with 𝑁 = 50. 
Although the results are quantitatively different for small values of 𝑥 and 
the different values of 𝑁, they are qualitatively similar. For 𝑁 = 20, the 
results are in perfect agreement with those of Lahjomri and Oubarra 
(1999).  
 

 
(a) 𝑙 = 1 

 
(b) 𝑙 = 0 

 
Fig. 3 Evolution of the local Nusselt number as a function of 𝑥 for       

𝑁 = 20, 50, 100, 250, 300, 𝑃𝑒 = 5, and 𝐵𝑟 = 0 as well as a 
comparison with the results of Lahjomri and Oubarra (1999) in: 
(a) a tube and (b) a channel. 

 

For small Péclet numbers, the increase of the eigenvalues 𝛽K and the 
decrease of the expansion constants 𝐵K in the series become slower, 
which requires larger values of the truncation order to achieve accurate 
results near the junction point. Sphaier et al. (2021) presented an error 
analysis of the Nusselt number as a function of the truncation order for 
different values of the flow parameters. They concluded that the Nusselt 
error, as expected, decreases with the increase of the truncation order 
while it increases with the decrease of the Péclet number or near the 
junction point with few exceptions that occur near a discontinuity in the 
Nusselt number. They found that using similar types of boundary 
conditions, a fixed constant wall temperature or a fixed uniform heat flux 
in both regions, upstream and downstream, yields smaller Nusselt errors. 

4. RESULTS AND DISCUSSIONS 
The effects of axial heat conduction, viscous dissipation, and rarefaction 
on the extended Graetz problem in microchannels and microtubes with 
imposed average velocity are widely presented in the literature (Jeong 
and Jeong, 2006; Çetin et al., 2008; Çetin and Zeinali, 2014; Barişik et 
al., 2015; Kalyoncu and Barişik, 2016; Haddout et al., 2020; Sun et al., 
2020). However, there is a lack of results in the case of imposed pressure 
drop. For the no-slip flow regime, the results are identical either the 
average velocity or the pressure drop is imposed. Therefore, the results 
presented in this section focus on the slip flow regime with imposed 
pressure drop as well as a comparison with the case of imposed average 
velocity. The effects of the Knudsen number and the degree of 
temperature jump are presented for negligible axial heat conduction and 
no viscous dissipation, as well as in the case including axial heat 
conduction and viscous dissipation. The Knudsen number is varied 
within the range of the applicability limits of the no-slip flow and the slip 
flow, 0 ≤ 𝐾𝑛 ≤ 0.1. The degrees of temperature jump used in this 
section are 𝜅 = 0, 1.667, 5, 10. The case 𝜅 = 0 is presented to 
investigate the effect of the slip-velocity with no-temperature-jump at the 
walls, 𝜅 = 1.667 is a typical value widely used in literature which 
represents the value for air that is a working fluid in many industrial and 
engineering applications (Çetin et al., 2008), while 𝜅 = 5, 10 are 
included to exemplify the effects of the temperature jump at the walls. 
The pure diffuse reflection (Beskok and Kamiadakis, 1994), 𝜎4 = 1, is 
considered in what follows. For 𝐾𝑛 = 0, there is no-temperature-jump 
even with 𝜅 ≠ 0 due to the appearance of 𝜅 multiplied by 𝐾𝑛 in the 
temperature jump at the walls, as can be seen from Eqs. (16) and (17). 
4.1 Slip Flow Regime Case 
In this sub-section, the results for the local Nusselt number in a microtube 
or a microchannel are presented in the case of the slip flow, 𝐾𝑛 ≠ 0, for 
negligible axial heat conduction and no viscous dissipation with imposed 
pressure drop for different Knudsen numbers and degrees of temperature 
jump. In addition to that, these results are compared with the case of 
imposed average velocity. 

Figures 4(a) and 4(b) show the evolution of 𝑁𝑢 as a function of 𝑥 
for different Knudsen numbers 𝐾𝑛 = 0, 0.01, 0.05, 0.1, no-viscous 
dissipation 𝐵𝑟 = 0, no-temperature-jump 𝜅 = 0, and negligible axial 
heat conduction 𝑃𝑒 = ∞ with imposed pressure drop respectively in a 
microtube (𝑙 = 1) and a microchannel (𝑙 = 0). The results show that 𝑁𝑢 
increases as 𝐾𝑛 increases similarly for 𝑁𝑢jE in both microchannels and 
microtubes. This is due to the slip-velocity at the walls that increases as 
the Knudsen number increases, which leads to higher heat transfer. The 
length of the thermal entrance increases as well with the increase of 𝐾𝑛 
due to the slip-velocity at the walls, which induces an increase in the 
convective term in the energy equation, Eq. (15), and therefore leads to 
a more dominant convective heat transfer to conduction heat transfer in 
the thermal entrance region. 
 



Frontiers in Heat and Mass Transfer (FHMT), 20, 23 (2023)
DOI: 10.5098/hmt.20.23

Global Digital Central
ISSN: 2151-8629

 

 
   

8 

 
(a) 𝑙 = 1 

 
(b) 𝑙 = 0 

 
Fig. 4 Evolution of 𝑁𝑢 as a function of 𝑥 for 𝐾𝑛 = 0, 0.01, 0.05, 0.1, 

𝐵𝑟 = 0, 𝑃𝑒 = ∞ and 𝜅 = 0 with imposed pressure drop in: (a) a 
microtube and (b) a microchannel. 

 
As shown in Figs. 4(a) and 4(b), the results are qualitatively similar for a 
microtube and a microchannel with quantitative differences. At section 
𝑥 = 0.05, 𝑁𝑢 increases by 35.5% when 𝐾𝑛 changes from 0 to 0.1 in the 
microtube (𝑙 = 1) and by 49.7% in the microchannel (𝑙 = 0) for the 
same values. Therefore, what follows in this section focuses only on the 
microtube case (𝑙 = 1). 

To obtain the temperature profile for the case of fixed average 
velocity, the Péclet number, Brinkman number, dimensionless 
longitudinal coordinate, and the dimensionless velocity distribution must 
be redefined in terms of the average velocity. Thus, the modified versions 
of 𝑃𝑒, 𝐵𝑟, 𝑥, and 𝑢 are defined as follows: 
 
𝑥 = 𝑋 .)#

$
; $
.)#

+ 2#". $"2#
2#

𝐾𝑛< ; 			𝑢(𝜂) = 𝑈(𝜂); $
.)#

+ 2#". $"2#
2#

𝐾𝑛< ;  

𝑃𝑒 = <AG
"+0
$ 	d

$
"+0)$

0E"$EH#
H#

lKe
; 						𝐵𝑟 = I=G

d $
"+0)$

0E"$EH#
H#

lKe
$ (61) 

 
where 𝑃𝑒m =

.)#
$

D>'1mI6?
?

, 𝐵𝑟m =
/mI6?$

?(9/("9/$)
, 𝑋 = ,∗

1	<AG
, and 𝑈 = +∗

mI6?
 

are respectively the new defined Péclet number, Brinkman number, 
dimensionless longitudinal coordinate, and the dimensionless velocity 

distribution in terms of the average velocity. The proportionality in Eq. 
(61) is obtained using Eq. (60) to change ∆𝑝C∗ in terms of 𝑈hiA. Equation 
(61) for 𝐾𝑛 = 0 leads to 𝑃𝑒 = 𝑃𝑒m and 𝑥 = 𝑋.  

To compare the results in the case of imposed pressure drop with 
the results in the case of imposed average velocity, unified dimensionless 
variables and numbers must be defined in terms of a reference pressure 
drop ∆𝑝C∗5 and a reference average velocity 𝑈hiA5 that are related by Eq. 
(60) for 𝐾𝑛 = 0. In the case of imposed pressure drop, ∆𝑝C∗ = ∆𝑝C∗5 and 
𝑈hiA is determined for different Knudsen numbers by using Eq. (60), 
while in the case of imposed average velocity, 𝑈hiA = 𝑈hiA5 and ∆𝑝C∗ is 
determined for different Knudsen numbers by using Eq. (60). The 
reference dimensionless longitudinal coordinate, the Péclet number and 
Brinkman number are defined in terms of ∆𝑝C∗5 and 𝑈hiA5 as follows: 
 
𝑥5 =

,∗

1	<A@
; 					𝑃𝑒5 =

D>'10

$(.)')/?
∆𝑝C∗5 =

.)#
$

D>'1
?
𝑈hiA5;  

𝐵𝑟5 =
12

G(.)')$/?(9/("9/$)
�∆𝑝C∗5�

$ = ;.)#
$
<
$ /
?(9/("9/$)

𝑈hiA5
$ (62) 

 
In the case of a no-slip flow regime, the results for the fixed pressure drop 
are identical to those for the fixed average velocity due to the 
proportionality between ∆𝑝C∗5 and 𝑈hiA5. In contrast, in the case of the 
slip flow regime, the results are no longer identical due to the change in 
𝑈hiA with 𝐾𝑛 for fixed pressure drop, Eq. (60). To use the analytical 
solution presented in section 2, 𝑃𝑒5, 𝐵𝑟5, and 𝑥5 must be defined in terms 
of 𝑃𝑒, 𝐵𝑟, and 𝑥 for each case (a fixed ∆𝑝C∗ and a fixed 𝑈hiA). 

For a fixed pressure drop �∆𝑝C∗ = ∆𝑝C∗5�, the following relationships 
are obtained: 
 
𝑃𝑒5 = 𝑃𝑒;			𝐵𝑟5 = 𝐵𝑟;			𝑥5 = 𝑥 (63) 
 
where 𝑈hiA is determined using Eq. (60). 

For a fixed average velocity �𝑈hiA = 𝑈hiA5�, the following 
relationships are obtained: 
 

𝑃𝑒5 = 𝑃𝑒m =
.)#
$
	; $
.)#

+ 2#". $"2#
2#

𝐾𝑛<𝑃𝑒;			𝐵𝑟5 = ;.)#
$
<
$
𝐵𝑟m =

;.)#
$
<
$
; $
.)#

+ 2#". $"2#
2#

𝐾𝑛<
$
𝐵𝑟;			𝑥5 = 𝑋 = ,

"+0
$ d

$
"+0)$

0E"$EH#
H#

lKe
 (64) 

 
where the proportionalities in Eq. (64) are obtained using Eq. (61). 

Figure 5 shows a comparison between the evolution of 𝑁𝑢 as a 
function of 𝑥5 =

,∗

1∙<A@
 for different Knudsen numbers 𝐾𝑛 = 0, 0.05, 0.1 

in a microtube (𝑙 = 1) with no-temperature-jump at the walls (𝜅 = 0), 
no viscous dissipation (𝐵𝑟5 = 0), and negligible axial heat conduction 
(𝑃𝑒5 = ∞) in both cases of fixed pressure drop and fixed average 
velocity. The results show that 𝑁𝑢 in the developing region is larger for 
the case of imposed pressure drop compared to the case of imposed 
average velocity, and the thermal entrance length increases as well. This 
is due to the increase of the average velocity with the increase of the 
Knudsen number in the case of imposed pressure drop �∆𝑝C∗ = ∆𝑝C∗5� as 
opposed to the case of imposed average velocity where it is fixed as 
𝑈hiA = 𝑈hiA5 . 

Note that the loss in the thermal performance for a fixed average 
velocity is gained in the pressure drop along the streamwise direction per 
unit length, which decreases as Knudsen number increases                  

H∆𝑝C∗ =
$(.)')/
1$

∙ mI6?@
d $
"+0)$

0E"$EH#
H#

lKe
I. 𝑁𝑢 for a fixed average velocity 

increases as 𝐾𝑛 increases because of slip-velocity at the walls. At section 
𝑥5 = 0.05, 𝑁𝑢 increases by 35.5% when 𝐾𝑛 changes from 0 to 0.1 for 
an imposed pressure drop and by 19% for an imposed average velocity 
with the same values. 𝑁𝑢jE is the same in both cases of imposed pressure 
drop and imposed average velocity for the different Knudsen numbers 
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due to the fact that at 𝑥5 = +∞, the convective term in the energy 

equation does not affect the results anymore H*9$
*,@
@
,@3)(

= 0I. 

 

 
Fig. 5 Evolution of 𝑁𝑢 as a function of 𝑥5 for different Knudsen 

numbers in a microtube with 𝜅 = 0, 𝐵𝑟5 = 0, and 𝑃𝑒5 = ∞ in 
both cases of a fixed ∆𝑝C∗ and a fixed 𝑈hiA. 

 
The solution to the presented problem is unique. However using different 
characteristic parameters lead to different presentations of the results 
where one gives a different idea and can have a significant impact, 
especially for optimization problems. 

In addition to the slip-velocity at the walls, the temperature jump 
also plays a significant role in heat transfer. Figure 6 shows the evolution 
of 𝑁𝑢 as a function of 𝑥 for different degrees of temperature jump              
𝜅 = 0, 1.667, 5, 10, 𝐾𝑛 = 0.1, no-viscous dissipation 𝐵𝑟 = 0, and 
negligible axial heat conduction 𝑃𝑒 = ∞ with imposed pressure drop in 
a microtube (𝑙 = 1). The results show that 𝑁𝑢 and 𝑁𝑢jE decrease 
significantly as the degree of temperature jump, 𝜅, increases. This is due 
to the increase of the temperature jump at the walls, Eq. (17), which 
increases the dimensionless bulk temperature. The presence of the 
temperature jump also reduces heat conduction at the walls (Çetin and 
Zeinali, 2014). 
 

 
Fig. 6 Evolution of 𝑁𝑢 as a function of 𝑥 for different degrees of 

temperature jump, 𝐾𝑛 = 0.1, 𝑃𝑒 = ∞, and 𝐵𝑟 = 0 with imposed 
pressure drop in a microtube. 

 
To compare the results with and without the temperature jump at the 
walls in the case of a fixed pressure drop with those of a fixed average 
velocity, the unified dimensionless variables and numbers are introduced 

by using Eqs. (63) and (64) respectively for ∆𝑝C∗ = ∆𝑝C∗5 and             
𝑈hiA = 𝑈hiA5. Figures 7(a) and 7(b) show respectively the evolution of 
𝑁𝑢 (at section 𝑥5 = 0.05) and 𝑁𝑢hiA =

'
5.$'∫ 𝑁𝑢(𝑥5)𝑑𝑥5

5.$'
5  as a 

function of 𝐾𝑛 in a microtube with and without the temperature jump at 
the walls (𝜅 = 0, 1.667), no viscous dissipation (𝐵𝑟5 = 0), and 
negligible axial heat conduction (𝑃𝑒5 = ∞) for a fixed pressure drop and 
a fixed average velocity. To obtain the value of the average Nusselt 
number 𝑁𝑢hiA, the local Nusselt number is averaged from the junction 
point (𝑥5 = 0) to the largest thermal entrance length (𝑥5 = 0.21), which 
is the length required to achieve 101% of the fully developed Nusselt 
number, for the values presented in Fig. 7(b). The results show that 𝑁𝑢 
increases with increasing 𝐾𝑛 in the case of no-temperature-jump 
condition at the walls while it decreases with increasing 𝐾𝑛 in the case 
of the temperature jump at the walls. The same conclusions derived from 
Fig. 5 are observed in Figs. 7(a) and 7(b), which represent respectively 
one section (𝑥5 = 0.05) and the average over the largest thermal 
entrance length. At section 𝑥5 = 0.05 for 𝐾𝑛 = 0.1 and 𝜅 = 1.667, 𝑁𝑢 
increases by 8.6% when the results change from imposed average 
velocity to imposed pressure drop with the same values. Fig. 7(b) shows 
that for 𝐾𝑛 = 0.1, 𝑁𝑢hiA increases by 10.3% when the results change 
from imposed average velocity to imposed pressure drop for 𝜅 = 0 and 
by 5.3% for 𝜅 = 1.667 with the same values. 
 

 
(a) 𝑁𝑢	(𝑥5 = 0.05) 

 
(b) 𝑁𝑢hiA 

 
Fig. 7 Evolution of 𝑁𝑢 (at section 𝑥5 = 0.05) and 𝑁𝑢hiA (between   

𝑥5 = 0 and 0.21) as a function of 𝐾𝑛 in a microtube with           
𝜅 = 0,1.667, 𝐵𝑟5 = 0, and 𝑃𝑒5 = ∞ for a fixed ∆𝑝C∗ and a fixed 
𝑈hiA. 
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The thermal entrance length is defined as the length required to reach the 
fully developed region by approximately achieving the value of the fully 
developed Nusselt number with different reported criteria, somewhat 
arbitrary, used in the literature (Shah and London, 1978). To compare the 
thermal entrance lengths for different Knudsen numbers and degrees of 
temperature jump in this paper, the length required to achieve              
𝑁𝑢 = 1.01 ∙ 𝑁𝑢jE is considered as the thermal entrance length. Table 3 
shows the thermal entrance length in the case of an imposed pressure 
drop �∆𝑝C∗ = ∆𝑝C∗5�	and an imposed average velocity �𝑈hiA = 𝑈hiA5� in 
a microtube (𝑙 = 1) for 𝐾𝑛 = 0, 0.02, 0.04, 0.06, 0.08, 0.1,                     
𝜅 = 0, 1.667, 𝐵𝑟5 = 0, and 𝑃𝑒5 = ∞. As can be seen from Table 3, the 
thermal entrance length increases as 𝐾𝑛 or 𝜅 increases in the case of 
imposed pressure drop, which can be observed in Figs. 4(a) and 6. 
However, in the case of imposed average velocity with no viscous 
dissipation and negligible axial heat conduction, it is found that the 
thermal entrance length is slightly modified when increasing Knudsen 
numbers and degrees of temperature jump (~0.11). Table 3 shows that 
approximately there is a proportionality between the thermal entrance 
length in the case of fixed pressure drop and the case of fixed average 
velocity, which is similar to the proportionality between 𝑥 and 𝑋 (Eq. 
(61)). 
 
Table 3 The thermal entrance length in the case of an imposed pressure 
drop and an imposed average velocity in a microtube for different 
Knudsen numbers and degrees of temperature jump with negligible axial 
heat conduction and no viscous dissipation. 

𝜅 𝐾𝑛 
Thermal entrance length 

𝑁𝑢jE ∆𝑝C∗ = ∆𝑝C∗5 𝑈hiA = 𝑈hiA5 

0 

0 0.1101 0.1101 3.65679 
0.02 0.1247 0.1075 3.85558 
0.04 0.1393 0.1055 4.02067 
0.06 0.1538 0.1040 4.15989 
0.08 0.1684 0.1027 4.27885 
0.1 0.1828 0.1016 4.38166 

1.667 

0.02 0.1305 0.1125 3.48809 
0.04 0.1516 0.1148 3.29166 
0.06 0.1723 0.1164 3.08705 
0.08 0.1919 0.1170 2.88646 
0.1 0.2100 0.1167 2.69667 

5 

0.02 0.1358 0.1171 2.90180 
0.04 0.1539 0.1166 2.35607 
0.06 0.1665 0.1125 1.96130 
0.08 0.1755 0.1070 1.66958 
0.1 0.1824 0.1014 1.44822 

 

4.2 Slip Flow Regime Case with Axial Heat Conduction and 
Viscous Dissipation 

In this sub-section, the effects of the slip flow coupled with the axial heat 
conduction and viscous dissipation are investigated for a microtube 
(𝑙 = 1) with a comparison between the cases of imposed pressure drop 
and imposed average velocity. To obtain the average Nusselt number 
𝑁𝑢hiA in this case, the local Nusselt number is averaged from the 
junction point (𝑥5 = 0) to the largest thermal entrance length 
(𝑥5 = 2.07) and 𝑁𝑢hiA =

'
$.5o∫ 𝑁𝑢(𝑥5)𝑑𝑥5

$.5o
5 . 

Figures 8(a)-(c) show respectively the evolution of 𝑁𝑢 as a function 
of 𝑥5 for 𝐾𝑛 = 0.1, 𝜅 = 0, 𝐵𝑟5 = 0.1, and 𝑃𝑒5 = ∞, 𝑁𝑢hiA as a function 
of 𝐾𝑛 for 𝜅 = 0, 1.667, 𝐵𝑟5 = 0.1, and 𝑃𝑒5 = 5,∞ in a microtube with 
both cases of a fixed pressure drop �∆𝑝C∗ = ∆𝑝C∗5� and a fixed average 
velocity �𝑈hiA = 𝑈hiA5�. It is found that 𝑁𝑢hiA does not change much 
with viscous dissipation. However, for 𝑁𝑢 with viscous dissipation, there 
is a difference in behavior between the cases of imposed pressure drop 
and imposed average velocity. The results show that the quantitative 

differences in 𝑁𝑢hiA between the case of imposed pressure drop and 
imposed average velocity are reduced with axial heat conduction (small 
𝑃𝑒5) and viscous dissipation (large 𝐵𝑟5) effects. 
 

 
(a) 𝑁𝑢(𝑥5) with 𝑃𝑒5 = ∞ 

 
(b) 𝑁𝑢hiA(𝐾𝑛) with 𝑃𝑒5 = ∞ 

 
(c) 𝑁𝑢hiA(𝐾𝑛) with 𝑃𝑒5 = 5 

 
Fig. 8 Evolution of 𝑁𝑢 as a function of 𝑥5 (𝐾𝑛 = 0.1, 𝜅 = 0, 𝑃𝑒5 = ∞) 

and 𝑁𝑢hiA as a function of 𝐾𝑛 (𝜅 = 0, 1.667, 𝑃𝑒5 = 5,∞) in a 
microtube with 𝐵𝑟5 = 0.1 for a fixed ∆𝑝C∗ and a fixed 𝑈hiA. 
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Let us note that for 𝐵𝑟 ≠ 0, to obtain the fully developed Nusselt number 
expressions, the dimensionless temperature profile, Eq. (24), and its 
derivative are used to calculate the dimensionless bulk temperature, Eq. 
(59), and the fully developed Nusselt number using Eq. (58). The fully 
developed Nusselt number for 𝐵𝑟 ≠ 0 respectively in a microtube 
(𝑙 = 1) and a microchannel (𝑙 = 0) is given by: 

𝑁𝑢jE =
Gpd')p$EH#H#

lKe

q)#$$EH#H#
lK)GprlK)#pG$EH#H#

rlK$
 (65) 

𝑁𝑢jE =
#qd')'$$EH#H#

lKe

$)$'$EH#H#
lK)#qrlK)G$5$EH#H#

rlK$
 (66) 

Equations (65) and (66) show that 𝑁𝑢jE is independent of the Péclet 
number and the Brinkman number in the presence of viscous dissipation. 
These results, after rearrangements, are found to be identical to those 
presented by Jeong and Jeong (2006) for an imposed average velocity 
due to their independence of the parameters that differ depending on the 
case studied (imposed ∆𝑝C∗ or imposed 𝑈hiA). It can be verified using 
Eqs. (65) and (66) that the fully developed Nusselt number with viscous 
dissipation increases with increasing Knudsen numbers for no-
temperature-jump condition. In the case of the temperature jump at the 
walls, the fully developed Nusselt number decreases with the increase of 
the Knudsen number or the degree of temperature jump. 

5. CONCLUSIONS 
An exact analytical solution of the extended Graetz problem in 
microchannels and microtubes with axial heat conduction, viscous 
dissipation, and rarefaction effects was presented using constant wall 
temperatures and taking into account the slip-velocity and the 
temperature jump at the walls using first-order models as well as the non-
uniform temperature profile at the inlet of the microchannel or microtube 
for the case of imposed pressure drop along the streamwise direction per 
unit length. The dimensionless temperature distribution is written as a 
superposition of the dimensionless fully developed temperature and an 
expansion in terms of a complete set that leads to an eigenvalue problem 
where the eigenfunctions are given by Kummer confluent first-kind 
hypergeometric functions. The eigenvalues are determined as roots of 
equations derived from the boundary conditions, while the expansion 
constants are calculated using direct expressions. To the best of our 
knowledge, this case of imposed pressure drop along the streamwise 
direction per unit length has still not been investigated. The analytical 
solution for a fixed average velocity can be obtained using the presented 
solution in this paper by redefining the Péclet number, Brinkman 
number, dimensionless longitudinal coordinate, and the dimensionless 
velocity distribution. However, the proposed methodology in this paper 
has an advantage over the analytical procedure in the literature due to the 
direct resolution without introducing the spatial rescaling factor, which 
is needed for the case of fixed average velocity to identify similarities 
with the classical Graetz problem. The presented solution of the laminar 
forced convection in parallel plate microchannels and circular 
microtubes for the case of imposed pressure drop can be the reference 
solution for shape optimization problems to enhance heat transfer while 
using a fixed pressure drop. 

The following main conclusions can be summarized: 
• The Nusselt number increases with the increase of the Knudsen 

number in the case of no-temperature-jump condition at the 
walls. 

• In the case of the temperature jump at the walls, the Nusselt 
number decreases as the Knudsen number or the degree of 
temperature jump increases. 

• The thermal entrance length increases with the increase of the 
Knudsen number or the degree of the temperature jump in the 
case of imposed pressure drop while it is approximately 
unchangeable in the case of imposed average velocity. 

• For no viscous dissipation and negligible axial heat 
conduction, the local Nusselt number is larger for imposed 
pressure drop compared to imposed average velocity. 

• There is a difference in the behavior of the local Nusselt 
number with viscous dissipation between the cases of imposed 
pressure drop and imposed average velocity. 

• The quantitative differences between the cases of imposed 
pressure drop and imposed average velocity in the average 
Nusselt number over the largest thermal entrance length are 
reduced with increasing axial heat conduction or viscous 
dissipation effects. 

• The fully developed Nusselt number is the same for imposed  
pressure drop and imposed average velocity. 
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NOMENCLATURE 

A, B  expansion constants 
a, b, c  coefficients of Kummer function 
Br  Brinkman number 
Cp specific heat (J/kg·K) 
Dh  hydraulic diameter (m) 
d  half height or radius (m)  
f, g  eigenfunctions  
Kn  Knudsen number  
k  thermal conductivity (W/m·K)  
l  geometrical parameter  
M  Kummer function  
N  truncation order 
Nu  Nusselt number  
Pe  Péclet number  
Pr  Prandtl number  
p  pressure 
q  heat flux (W/m2) 
T  temperature 
u  axial velocity 
x  longitudinal coordinate 
 
Greek Symbols  
α, β eigenvalues  
γ specific heat ratio  
η transversal or radial coordinate  
κ degree of temperature jump  
λ mean free path (m)  
μ dynamic viscosity (kg/m·s) 
ρ density (kg/m3) 
σ accommodation coefficient 
Superscripts  
* dimensional 
Subscripts  
1 upstream (𝑥 < 0) 
2 downstream (𝑥 > 0) 
ave average 
b bulk 
FD fully developed 
j upstream or downstream 
n, m summation indexes 
w wall 
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APPENDIX A: FULLY DEVELOPED TEMPERATURE 
PROFILES 

𝑇"((𝜂) and 𝑇)((𝜂) satisfy the governing equation, Eq. (15), and 
respectively the boundary conditions at the walls of the microchannel or 
microtube, Eqs. (16) and (17), hence the energy equation becomes: 
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with the following boundary conditions: 
 
𝑇"((𝜂 = 1) = 1 − 2$".	𝜅	𝐾𝑛 19E4

1- @-3'
 (A.2) 

𝑇)((𝜂 = 1) = −2$".	𝜅	𝐾𝑛 19+4
1- @-3'

 (A.3) 
19∓4
1- @

-35
= 0 (A.4) 

 
Integrating Eq. (A.1) and using the boundary conditions, Eqs. (A.2)-
(A.4), lead to the following solutions: 
 
𝑇"((𝜂) = 1 + I=

#).
(1 − 𝜂G + 2G".	𝜅	𝐾𝑛) (A.5) 

𝑇)((𝜂) =
I=
#).

(1 − 𝜂G + 2G".	𝜅	𝐾𝑛) (A.6) 
 
As can be seen from Eqs. (A.5) and (A.6), the relationship between the 
dimensionless temperature profiles 𝑇"((𝜂) and 𝑇)((𝜂) can be written 
as follows: 
 
𝑇"((𝜂) = 1 + 𝑇)((𝜂) (A.7) 

APPENDIX B: FIRST 10 EXPANSION CONSTANTS 
Table B.1 shows the first 10 expansion constants found by using Eqs. 
(54)-(57) for 𝑃𝑒 = 1, 10, 𝐾𝑛 = 0, and 𝑙 = 1. The values presented in this 
table are limited only to the identical digits out of 10 decimal digits, and 
they are in perfect agreement. The expansion constants are independent 
of the Brinkman number, as can be verified from Eqs. (54)-(57). 
 

Table B.1 The first 10 expansion constants for 𝐾𝑛 = 0 and 𝑙 = 1. 

𝑛 𝑃𝑒 = 1 𝑃𝑒 = 10 
𝐴! 𝐵! 𝐴! 𝐵! 

1 - 0.688950918 0.91227178 - 0.107926367 1.37994838 
2 0.512563115 - 0.5511311325 0.23283863 - 0.680026395 
3 - 0.41657481 0.4342973864 - 0.303512760 0.4931037 
4 0.359306735 - 0.37006715 0.2966268426 - 0.406544287 
5 - 0.3204657258 0.327900342 - 0.279033010 0.354039419 
6 0.2919526589 - 0.297490036 0.2620290962 - 0.317633082 
7 - 0.269889632 0.274222535 - 0.2470098795 0.290431052 
8 0.2521669185 - 0.255678113 0.2339571532 - 0.269109882 
9 - 0.237527822 0.240448574 - 0.22259716 0.251824105 

10 0.225171708 - 0.227651188 0.212645526 - 0.237450077 
 
Table B.2 shows the comparison between the values of the first 10 
expansion constants determined by using Eqs. (54) and (55) with those 
determined by using Eqs. (56) and (57) for 𝐾𝑛 = 0.01, 0.1, 𝑃𝑒 = 1,     
𝜅 = 1.667, 𝜎4 = 1, and 𝑙 = 1. For the downstream region, the results are 

in perfect agreement. However, for the upstream region, there is a slight 
change in the values of the first eigenvalues, and this change diminishes 
after. 



Frontiers in Heat and Mass Transfer (FHMT), 20, 23 (2023)
DOI: 10.5098/hmt.20.23

Global Digital Central
ISSN: 2151-8629

 

 
   

14 

 
Table B.2 The first 10 expansion constants for 𝑃𝑒 = 1, 𝐾𝑛 = 0.01,0.1, 𝜅 = 1.667, 𝜎4 = 1, and 𝑙 = 1. 

𝐾𝑛 𝑛 𝐴! 𝐵! 
Equation (54) Equation (56) Equation (55) Equation (57) 

0.01 

1 - 0.6787224922 - 0.6858980364 0.9168939996 0.9168940004 
2 0.5034071553 0.5048635919 - 0.5442560981 - 0.5442560987 
3 - 0.4002482277 - 0.4009667958 0.4199332503 0.4199332504 
4 0.3349418823 0.3353589599 - 0.3476465229 - 0.3476465234 
5 - 0.2879090102 - 0.2881724159 0.2972338619 0.2972338622 
6 0.2514752005 0.2516496329 - 0.2587938326 - 0.2587938332 
7 - 0.2220303470 - 0.2221490567 0.2279964648 0.2279964652 
8 0.1976142200 0.1976961689 - 0.2025901890 - 0.2025901900 
9 - 0.1770318488 - 0.1770886555 0.1812435673 0.1812435686 

10 0.1594838978 0.1595230498 - 0.1630855398 - 0.1630855419 

0.1 

1 - 0.4856934128 - 0.5758467535 0.9053770956 0.9053770970 
2 0.2936889376 0.2851610776 - 0.3494749162 - 0.3494749181 
3 - 0.1626995917 - 0.1561907447 0.1826308976 0.1826308993 
4 0.1038461303 0.09895525334 - 0.1121495548 - 0.1121495560 
5 - 0.07284388737 - 0.06912105702 0.07672136868 0.07672137004 
6 0.05447759639 0.05155641686 - 0.05640804108 - 0.05640804422 
7 - 0.04263236294 - 0.04027351975 0.04360875311 0.04360875443 
8 0.03449889829 0.03254762795 - 0.03497004720 - 0.03497004881 
9 - 0.02864179952 - 0.02699527484 0.02883025102 0.02883025095 

10 0.02426407808 0.02285170563 - 0.02428831908 - 0.02428831919 
 


