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ABSTRACT

The Laplace transformation is a very important integral transform, and it is extensively used in solving ordinary

di�erential equations, partial di�erential equations, and several types of integro-di�erential equations. Our purpose

in this study is to introduce the notion of fuzzy double Laplace transform, fuzzy conformable double Laplace

transform (FCDLT). We discuss some basic properties of FCDLT. We obtain the solutions of fuzzy partial

di�erential equations (both one-dimensional and two-dimensional cases) through the double Laplace approach.

We demonstrate through numerical examples that our proposed method is very successful and convenient for

resolving partial di�erential equations.
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1 Introduction

1.1 Research Background

A natural way to model uncertainty is through fuzzy differential equations [1,2], and [3]. Having
these models and solutions requires an understanding of the dynamics of design [4]. The entire story
of humanity relies on this goal, to understand nature. Nowadays, because of various applications of
the theory of fuzzy differential equations, many researchers are working on fuzzy partial differential
equations. Several researchers emphasized studying the precise/numerical solutions of fuzzy differen-
tial equations [5–7].
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Various analytical and computational methods can solve fuzzy partial differential equations,
see for example [8–12]. Integral transform is a very useful technique for solving PDEs and has
extensively been used by researchers to solve differential [13]. Fuzzy Laplace transform was defined
by [14] and then further developed and used by several authors to solve fuzzy ordinary and fuzzy
partial differential equations, see for example [15–18]. Allahviranloo [19], introduced the conformable
Laplace transform, and then developed by several researchers to solve conformable differential
equations [20,21].

Recently, Younus et al. [22] generalized two predefined concepts under the name fuzzy con-
formable differential equations, and got the fuzzy conformable ordinary differential equations under
the strongly generalized conformable derivative. For the order 9, they used two methods. The first
technique is to resolve a fuzzy conformable differential equation into two systems of differential
equations according to the two types of derivatives. The second method solves fuzzy conformable
differential equations of order 9 by a variation of the constant formula.

In this article, we introduce the double fuzzy Laplace transform in the conformable setting, which
is more general than the single fuzzy Laplace transform and we extensively used it in the qualitative
theory of fuzzy partial differential equations.

1.2 Research Question

In this paper, we discussed the following questions:

1. In [23] Debnath, provided the solutions of PDEs and Integral and functional equations with
double Laplace transform, and Özkan et al. [24], generalized double Laplace transform in
the conformable setting. What is the conformable double Laplace transform in the fuzzy
environment?

2. What are the forms of fuzzy partial differential equations (both in 1D and 2D) in conformable
cases?

3. What are the effects of fuzzy conformable Laplace transformation on the solutions of fuzzy
conformable PDEs?

4. What is the application of fuzzy conformable double Laplace transform? Is this transformation
providing better results for this application?

1.3 Objective of the Work

A very broad literature including books and papers on the single Laplace transform, its features,
and applications are available. However, very few results are available on the double Laplace transform.
We generalized the notions of the double Laplace transform in the fuzzy conformable sense. We
obtained some basic properties of fuzzy conformable double Laplace. To solve fuzzy conformable
partial differential equations, we adopt the fuzzy conformable double Laplace transform.

1.4 Structure of the Study

The organization of this paper is as follows: We present basic principles in Section 2 to use in the
main part of the paper. In Section 3, we define the fuzzy double Laplace transform (FDLT), and fuzzy
conformable double Laplace transform (FCDLT). Some basic properties of FDLT and FCDLT are
also part of Section 3. In Section 4, solutions of the fuzzy conformable partial differential equations
are obtained with FCDLT. Concluding remarks are given in Section 5.



CMES, 2023, vol.134, no.3 2165

2 Basic Concepts

In this section, we recall the basic concepts whichwe have to use in themajor part of the article [14].

A fuzzy set is a map η:R → [0, 1] which generalizes classical sets from {0, 1} to [0, 1] . A fuzzy
number η is a fuzzy set that satisfies some additional properties of convexity, normality, upper-
semicontinuity, and compact support. We use R8 to denote the space of all real fuzzy numbers [25].
For 0 ≤ γ < 1, γ -cuts for a fuzzy number η is defined as (η, γ ) = {v ∈ R : η(v) ≥ γ }. In γ -cuts form,
the fuzzy number η is represented in the form (η, γ ) = [(η∗, γ ) , (η

∗, γ )]. A triangular fuzzy number
η, denoted by an ordered triple (a, b, c), with the condition a ≤ b ≤ c. The γ -cuts associated with
triangular fuzzy number η are [a+ (b− a)γ , c− (c− b)γ ].

If η,υ ∈ R8, then addition on the space of fuzzy numbers by γ -cuts is defined as [(η + υ) , γ ] =

[(η∗, γ )+ (υ∗, γ ), (η∗, γ )+ (υ∗, γ )]. TheH-difference for two fuzzy numbers η and υ denoted by η⊖υ

and defined as a fuzzy number ω such that ω = η + υ. In γ -cuts form, H-difference for two fuzzy
numbers η and υ has the form [(η⊖υ) , γ ] = [(η∗, γ )− (υ∗, γ ), (η∗, γ )− (υ∗, γ )] . A fuzzy-valued
function with two variables v and τ assigns an ordered pair (v, τ) to a fuzzy number 8(v, τ). In γ -
cuts form, 8(v, τ) is represented in the form 8(v, τ .γ ) = [8∗(v, τ , γ ),8∗(v, τ , γ )] ([10]).

A fuzzy-valued function 8(v, τ) is continuous at any point (v0, τ0) if ‖(v, τ )− (v0, τ0)‖ < δ, then
we have 8(v, τ)− L < ǫ. Mathematically, we can write as lim

(v,τ)→(v0 ,τ0)
8 (v, τ) = L.

Before defining fuzzy double Laplace transform, we state the fuzzy single Laplace transform and
some relevant properties for the fuzzy-valued function of two variables.

Fuzzy single Laplace transform for 8(v, τ) with respect to v is defined as

ℓv [8(v, τ)] = φ (r1, τ) =

∫ ∞

0

e−r1v ⊙8(v, τ) dv.

Fuzzy single Laplace transform for 8(v, τ) with respect to τ is defined as [20]

ℓτ [8(v, τ )] = φ (v, r2) =

∫ ∞

0

e−r2τ ⊙8(v, τ) dτ .

When fuzzy Laplace transform with respect to τ is applied to a strongly generalized partial
derivative with respect to v, then we have the result

ℓτ
[

∂8 (v, τ)

∂v

]

=
∂

∂v
[(φ (v, r2))] .

Let us state the translation theorems for fuzzy Laplace transformation:

Theorem 2.1. [14] (First translation theorem.) If 8 is fuzzy Laplace transformable, then

ℓτ
(

e−aτ8(v, τ )
)

= φ (v, r2 + a) .

Theorem 2.2. [14] (Second translation theorem.) If 8 is fuzzy Laplace transformable, then

ℓτ [U (v, τ − α)⊙8(v, τ − α)] = e−αr2 ⊙ φ (v, r2) ,

where U is the Heaviside function.

Theorem 2.3. For a fuzzy-valued function 8(v, τ), we have
(∫ ∞

0

e−r1v ⊙
∂8

∂v
(v, τ) dv

)

= r1 ⊙ φ (r1, τ)⊖8(0, τ) .
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Proof. The proof can easily be done using the integration of parts for fuzzy valued function [10].

The following table shows the conformable double Laplace transform for certain functions:

Function 8(v, τ) Conformable double laplace transform φ (r1, r2)

αβ =
αβ

r1r2
.

vτ = δ
1
δ9

1
9

γ(1+ 1
δ )γ(1+

1
9 )

r
1+ 1

δ
1 r

1+ 1
9

2

.

v9

9

τ δ

δ
=

1

r21r
2
2

.

vp9

9

τ qδ

δ
=

p! q!

r
(p+1)
1 r

(q+1)
2

.

e
v9

9
+ τδ

δ = 1

(r1−1)(r2−1)
.

e
v9

9
+ τδ

δ
vp9

9

τqδ

δ
, p, q ∈ N =

p! q!

(r1 − 1)p+1
(r2 − 1)q+1 .

cos

(

λ
v9

9

)

cos

(

λ
τ δ

δ

)

=
r1r2

(

λ2 + r21
) (

λ2 + r22
) .

sin

(

λ
v9

9

)

sin

(

λ
τ δ

δ

)

=
λ2

(

λ2 + r21
) (

λ2 + r22
) .

e
v9

9
+ τδ

δ sinh

(

v9

9

)

sinh

(

τ δ

δ

)

=
1

(r1 − 2) r1 (r2 − 2) r2
.

e
v9

9
+ τδ

δ cosh

(

v9

9

)

cosh

(

τ δ

δ

)

=
(r1 − 1) (r2 − 1)

(r1 − 2) r1 (r2 − 2) r2
.

2.1 Strongly Generalized Conformable Partial Derivatives

In this subsection, we define strongly generalized conformable partial derivative to solve fuzzy
conformable partial differential equations.

Definition 2.1. For a fuzzy-valued function 8(v, τ), the strongly generalized conformable partial

derivative with respect to v is of order 9 is defined as a fuzzy number
∂98(v, τ)

∂v9
such that

1. (∀) θ > 0, H-differences 8
(

v0 + θv1−9 , τ
)

⊖8(v0, τ) and 8(v0, τ)⊖8
(

v0 − θv1−9 , τ
)

exist and
we have

lim
θ→0

8
(

v0 + θv1−9 , τ
)

⊖8(v0, τ)

θ
= lim

θ→0

8(v0, τ)⊖8
(

v0 − θv1−9 , τ
)

θ
.
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2. (∀) θ > 0, there existH-differences8(v0, τ)⊖8(v0 + θv1−9 , τ) and8
(

v0 − θv1−9 , τ
)

⊖8(v0, τ)
and we have

lim
θ→0

8(v0, τ)⊖89
(

v0 + θv1−9 , τ
)

−θ
= lim

θ→0

8
(

v0 − θv1−9 , τ
)

⊖8(v0, τ)

−θ
.

Proposition 2.1. The fuzzy-valued function 8(v, τ) is said to be differential of type (9−1) if
8 is differentiable in the first form of the above definition, and differential of type (9−2) if 8 is
differentiable in the second form.

Definition 2.2. For a fuzzy-valued function 8(v, τ ), the strongly generalized conformable partial

derivative of order δ with respect to τ is defined as a fuzzy number
∂ δ8(v, τ)

∂τ δ
such that

1. (∀) θ > 0, H-differences 8
(

v, τ0 + θτ 1−δ
)

⊖8(v, τ0) and 8(v, τ0)⊖8
(

v, τ0 − θτ 1−δ
)

exist, and
we have

lim
θ→0

8
(

v, τ0 + θτ 1−δ
)

⊖8(v, τ0)

θ
= lim

θ→0

8(v, τ0)⊖8
(

v, τ0 − θτ 1−δ
)

θ
.

2. (∀) θ > 0, H-differences 8(v, τ0)⊖8
(

v, τ0 + θτ 1−δ
)

and 8
(

v, τ0 − θτ 1−δ
)

⊖8(v, τ0) exist, and
we have

lim
θ→0

8(v, τ0)⊖8
(

v, τ0 + θτ 1−δ
)

−θ
= lim

θ→0

8
(

v, τ0 − θτ 1−δ
)

⊖8(v, τ0)

−θ
.

Proposition 2.2.8 is said to be differential of type (δ−1) if8 is differentiable in the first form, and
differential of type (δ−2) if 8 is differentiable in the second form.

For a fuzzy-valued function 8, the fuzzy conformable integral of order 9 is defined as

I98(v) =

∫ v

0

8(µ)µ9−1dµ,

where integration is in the sense of fuzzy Riemann integral.

Lemma 2.1. If a continuous fuzzy-valued function 8(v, τ ) is strongly generalized conformable
partial differentiable with respect to τ , we have
∫ b

a

∂ δ8(v, τ)

∂τ δ
τ δ−1dτ = 8(v, b)⊖8(v, a) .

Lemma 2.2. For a continuous fuzzy-valued function 8(v, τ) which is strongly generalized con-
formable partial differentiable, we have
∫ b

a

∂98(v, τ)

∂v9
v9−1dv = 8(b, τ)⊖8(a, τ) .

Proof. If 8(v, τ) is differentiable of type (9−1), then we have
∫ b

a

∂98(v, τ , γ )

∂v9
v9−1dv =

∫ b

a

[

∂98∗ (v, τ , γ )

∂v9
,
∂98∗ (v, τ , γ )

∂v9

]

v9−1dv,

= [8∗ (b, τ , γ )−8∗ (a, τ , γ ) ,8
∗ (b, τ , γ )−8∗ (a, τ , γ )] ,

= 8(b, τ)⊖8(a, τ) .

This completes the proof.
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3 Double Laplace Transform

Now, we move towards our main results on double Laplace transform.

3.1 Fuzzy Double Laplace Transform

For this, we first define fuzzy double Laplace transform and some related properties.

Fuzzy double Laplace transform of a fuzzy-valued function 8(v, τ) is

ℓvℓτ [8(v, τ)] = φ (r1, r2) =

∫ ∞

0

∫ ∞

0

e−r2τ ⊙ e−r1v ⊙8(v, τ) dvdτ , (1)

where the integral in the definition should converge.

We can write the above definition in the form

ℓvℓτ [8(v, τ)] = [ℓvℓτ [8∗ (v, τ , γ )] , ℓ
vℓτ [8∗ (v, τ , γ )]] .

Definition 3.1. Fuzzy double inverse Laplace transform is defined as

ℓ−1
v
ℓ−1
τ
[φ (r1, r2)] = 8(v, τ) =

1

4π 2

∫ α+ι∞

α−ι∞

∫ β+ι∞

β−ι∞

er2τer1v ⊙ φ (r1, r2) dr1dr2.

Fuzzy double Laplace transform is linear, i.e., If ℓvℓτ [8(v, τ)] = φ (r1, r2) , then for any constants
α,β and fuzzy-valued functions 8 and ψ , we have

ℓvℓτ [α ⊙8(v, τ)+ β ⊙ ψ (v, τ)] = α ⊙ ℓvℓτ [8(v, τ )] + β ⊙ ℓvℓτ [ψ (v, τ )] .

Similarly, the fuzzy inverse double Laplace transform is also linear.

While studying the theory of fuzzy Laplace transform, we have to study the absolute value of the
fuzzy-valued function.

Definition 3.2. For the fuzzy-valued funcion8, the absolute value of the fuzzy-valued function in
the γ -cuts form as

[8(v, τ , γ )] = [|8∗ (v, τ , γ )| , |8
∗ (v, τ , γ )|] .

Definition 3.3. A fuzzy-valued function 8 is called of exponential order in the fuzzy sense if

8(v, τ) ≤ Meαv+βτ , (∀)α,β,M ∈ R
+.

Remark 3.1. Fuzzy double Laplace transform does not exist for all fuzzy-valued functions. For
example,8(v, τ ) = vτ⊙η or v2 +τ 2 ⊙η is not the fuzzy double Laplace transform of any fuzzy-valued
function 8(v, τ) because 8(v, τ) does not converge to zero whenever v → ∞, τ → ∞. Also, fuzzy
double Laplace transform for 8(v, τ) = exp

(

αv2 + βτ 2
)

⊙ η with α,β > 0 does not exist since it is
not of exponential order because

lim
v→∞,τ→∞

exp
(

αv2 + βτ 2 − r1v
2 − r2τ

2
)

⊙ η = ∞.

Here we give the condition for the existence of fuzzy double Laplace transform.

Theorem 3.1. If a fuzzy-valued function 8 satisfies two conditions:

1. 8 is of fuzzy exponential order.

2. 8 is bounded and piecewise continuous, then fuzzy double Laplace transform exists and also
converges absolutely.
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Proof. Given is 8 is bounded, so we have |8(v, τ)| ≤ M1. Also, 8 has exponential order, so by
definition of exponential order in the fuzzy sense, we have

|8(v, τ)| ≤ M2e
αv+βτ , (∀)M2,α,β ∈ R

+.

PutM = max{M1,M2}, we obtain

|8(v, τ)| ≤ Meαv+βτ , (∀)α,β,M ∈ R
+.

This yields
∫ ∞

0

∫ ∞

0
e−r1v−r2τ ⊙ |8(v, τ)| dvdτ ≤ M

∫ ∞

0

∫ ∞

0
e−v(r1−α)e−τ(r2−β)dvdτ .

Thus we have

lim
r1→∞,.r2→∞

φ (r1, r2) =
M

(r1 − α) (r2 − β)
, for r1 > α, r2 > β.

Theorem 3.2. Fuzzy double Laplace transform for a fuzzy-valued function8 differentiable of the
first-order is

Case 1: When 8 is strongly generalized partial differentiable with respect to v, we have

1. If 8 is differentiable of type (1), then

ℓvℓτ
[

∂8

∂v
(v, τ)

]

= r1 ⊙ φ (r1, r2)⊖φ (0, r2) .

2. If 8 is differentiable of type (2), then

ℓvℓτ
[

∂8

∂v
(v, τ)

]

= ⊖ [φ (0, r2)− r1 ⊙ φ (r1, r2)] .

Case 2: When 8 is strongly generalized partial differentiable with respect to τ , we have

1. If 8 is differentiable of type (1), then

2. ℓvℓτ
[

∂8

∂τ
(v, τ)

]

= r2 ⊙ φ (r1, r2)⊖φ (r1, 0) .

3. If 8 is differentiable of type (2), then

ℓvℓτ
[

∂8

∂τ
(v, τ)

]

= ⊖ [φ (r1, 0)− r1 ⊙ φ (r1, r2)] .

Proof. By using the definition of fuzzy double Laplace transform, we have

ℓvℓτ
[

∂8

∂v
(v, τ)

]

=

∫ ∞

0

e−r2τ ⊙

(∫ ∞

0

e−r1v ⊙
∂8

∂v
(v, τ ) dv

)

dτ . (2)

Using Theorem 2.3, we have
(∫ ∞

0

e−r1v ⊙
∂8

∂v
(v, τ) dv

)

= r1 ⊙ φ (r1, τ)⊖8(0, τ) . (3)

Using Eq. (3) in the Eq. (2), we have

ℓvℓτ
[

∂8

∂v
(v, τ)

]

= r1 ⊙ φ (r1, r2)⊖φ (0, r2) .
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This completes our proof.

Theorem 3.3. For second-order fuzzy partial derivative with respect to v, fuzzy double Laplace
transform is

Case 1: When 8 is differentiable with respect to v, we have

1. If 8 and
∂8 (v, τ)

∂v
both are differentiable of type (1), we have

ℓvℓτ
[

∂28

∂v2
(v, τ)

]

= r21 ⊙ φ (r1, r2)⊖r1 ⊙ φ (0, r2)⊖
∂φ (0, r2)

∂v
.

2. If 8 is differentiable of type (1) and
∂8 (v, τ)

∂v
is differentiable of type (2), then

ℓvℓτ
[

∂28

∂v2
(v, τ)

]

= −
∂φ (0, r2)

∂v
⊖

(

−r21 ⊙ φ (r1, r2)
)

⊖r1 ⊙ φ (0, r2) .

3. If 8 is differentiable of type (2) and
∂8 (v, τ)

∂v
is differentiable of type (1), then

ℓvℓτ
[

∂28

∂v2
(v, τ)

]

= −r1 ⊙ φ (0, r2)⊖
(

−r21 ⊙ φ (r1, r2)
)

⊖
∂φ (0, r2)

∂v
.

4. If both 8 and
∂8 (v, τ)

∂v
are differentiable of type (2), we have

ℓvℓτ
[

∂28

∂v2
(v, τ)

]

= r21 ⊙ φ (r1, r2)⊖r1 ⊙ φ (0, r2)−
∂φ (0, r2)

∂v
.

Case 2: For second-order partial derivative with respect to τ , double Laplace transform is

1. If 8 and
∂8

∂τ
(v, τ) both are differentiable of type (1), we have

ℓvℓτ
[

∂28

∂τ 2
(v, τ)

]

= r22 ⊙ φ (r1, r2)⊖r2 ⊙ φ
(

r1,0
)

⊖
∂φ (r1, 0)

∂τ
.

2. If 8 is differentiable of type (1) and
∂8

∂τ
(v, τ) is differentiable of type (2), then

ℓvℓτ
[

∂28

∂τ 2
(v, τ)

]

= −
∂φ

(

r1,0
)

∂τ
⊖

(

−r22 ⊙ φ (r1, r2)
)

⊖r2 ⊙ φ
(

r1,0
)

.

3. If 8 is differentiable of type (2) and
∂8

∂τ
(v, τ) is differentiable of type (1), then

ℓvℓτ
[

∂28

∂τ 2
(v, τ)

]

= −r2 ⊙ φ
(

r1,0
)

⊖
(

−r22 ⊙ φ (r1, r2)
)

⊖
∂φ

(

r1,0
)

∂τ
.

4. If 8 and
∂8

∂τ
(v, τ) both are differentiable of type (2), we have

ℓvℓτ
[

∂28

∂τ 2
(v, τ)

]

= r22 ⊙ φ (r1, r2)⊖r2 ⊙ φ (r1, 0)−
∂φ

(

r1,0
)

∂τ
.
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Theorem 3.4. For a fuzzy-valued function differentiable with respect to v and τ , fuzzy double
Laplace transform is

1. When 8(v, τ) is differentiable of type (1) with respect to v and τ , we have

ℓvℓτ
[

∂28

∂v∂τ
(v, τ )

]

= r1r2 ⊙ φ (r1, r2)⊖r1 ⊙ φ (r1, 0)⊖r2 ⊙ φ (0, r2)+8(0, 0) .

2. When 8(v, τ) is differentiable of type (2) with respect to v and τ , we have

ℓvℓτ
[

∂28

∂v∂τ
(v, τ )

]

= 8(0, 0)⊖r2 ⊙ φ (0, r2)− ⊖ [(−r2 ⊙ φ (r1, 0)− ⊖r1r2 ⊙ φ (r1, r2))] .

3. When 8(v, τ) is differentiable of type (1) with respect to v and differentiable of type (2) with
respect to τ , we have

ℓvℓτ
[

∂28

∂v∂τ
(v, τ )

]

= [−⊖r1r2 ⊙ φ (r1, r2)− r1 ⊙ φ (r1, 0)]⊖ − r2 ⊙ φ (0, r2)− ⊖8(0, 0) .

4. When 8(v, τ) is differentiable of type (2) with respect to v and differentiable of type (1) with
respect to τ , we have

ℓvℓτ
[

∂28

∂v∂τ
(v, τ )

]

= −⊖ [r1r2 ⊙ φ (r1, r2)⊖r1 ⊙ φ (r1, 0)] − [r2 ⊙ φ (0, r2)− ⊖8(0, 0)] .

Proof. We provide proof for case (2) here. Other cases are similar.

Since 8 is differentiable of type (2) with respect to v, then

ℓv
[

∂8

∂v
(v, τ)

]

= −8(0, τ)− ⊖r1 ⊙ φ (r1, τ) . (4)

If
∂8

∂v
is differentiable of type (2) with respect to τ , then

ℓvℓτ
[

∂28

∂v∂τ
(v, τ)

]

= ℓτ
[

∂

∂τ
(−8(0, τ))− ⊖

∂

∂τ
(r1 ⊙ φ (r1, τ))

]

. (5)

Now, apply the Laplace transform for τ , we have

ℓvℓτ
[

∂28

∂v∂τ
(v, τ)

]

= 8(0, 0)⊖r2 ⊙ φ (0, r2)− ⊖ [(−r2 ⊙ φ (r1, 0)− ⊖r1r2 ⊙ φ (r1, r2))] .

This completes the proof.

Theorem 3.5. For a fuzzy-valued function, whose fuzzy double Laplace transform exists, we have

ℓvℓτ
[

eαv+βτ ⊙8(v, τ )
]

= φ (r1 − α, r2 − β) .

Proof. Using the definition of fuzzy double Laplace transform, we have

ℓvℓτ
[

eαv+βτ ⊙8(v, τ )
]

=

∫ ∞

0

∫ ∞

0

e−r2τe−r1veαv+βτ ⊙8(v, τ) dvdτ .

This results in

ℓvℓτ
[

eαv+βτ ⊙8(v, τ )
]

=

∫ ∞

0

∫ ∞

0

e−(r2−β)τe−(r1−α)v ⊙8(v, τ) dvdτ .

Thus, we obtain our required result.
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Theorem 3.6. For a fuzzy-valued function, whose fuzzy double Laplace transform exists, we have

ℓvℓτ [vτ ⊙8(v, τ )] = (−1)1+1
⊙
∂2φ

(

r1,r2
)

∂r1∂r2
.

Proof. If we take the strongly generalized partial derivative with respect to r1 and r2, we have

∂2φ
(

r1,r2
)

∂r1∂r2
= (−1) (−1)

∫ ∞

0

∫ ∞

0

e−r2τe−r1v ⊙8(v, τ) dvdτ .

This can be written as

∂2φ
(

r1,r2
)

∂r1∂r2
= (−1)1+1

⊙ ℓvℓτ [vτ8 (v, τ)] ,

or we can write

ℓvℓτ [vτ8 (v, τ )] = (−1)1+1
⊙
∂2φ

(

r1,r2
)

∂r1∂r2
.

In general, we have

ℓvℓτ [vpτ q8(v, τ)] = (−1)p+q ⊙
∂p+qφ

(

r1,r2
)

∂r
p

1∂r
q

2

.

Theorem 3.7. (Second translation theorem). For a fuzzy-valued function, whose fuzzy double
Laplace transform exists, the second translation theorem in the fuzzy sense has the form

ℓvℓτ [8(v− η, τ − µ)⊙U (v− η, τ − µ)] = e−r1η−r2µ ⊙ φ (r1, r2) ,

where U (v, τ) is the Heaviside unit step function defined by

U (v− η, τ − µ) = 1, when v > η, and τ > µ,
U (v− η, τ − µ) = 0, when v < η and τ < µ.

Proof. Using the definition of fuzzy double Laplace transform, we have

ℓvℓτ [8(v− η, τ − µ)⊙U (v− η, τ − µ)] =

∫ ∞

0

∫ ∞

0
e−r1v−r2τ ⊙8(v− η, τ − µ)⊙U (v− η, τ − µ) dvdτ ,

=

∫ ∞

η

∫ ∞

µ

e−r1v−r2τ ⊙8(v− η, τ − µ) dvdτ .

Put v− η = a, τ − µ = b, we get

ℓvℓτ [8(v− η, τ − µ)⊙U (v− η, τ − µ)] = e−r1η−r2µ ⊙

∫ ∞

0

∫ ∞

0

e−r1a−r2b ⊙8(a, b) dadb,

= e−r1η−r2µ ⊙ φ (r1, r2) .

Definition 3.4. If 8(v, τ ) is a fuzzy-valued function and ψ (v, τ) is a real-valued function, then
convolution in fuzzy sense is defined as

(8◦◦ψ) (v, τ ) =

∫ v

0

∫ τ

0

8(q, r)⊙ ψ (v− q, τ − r) dqdr.

Theorem 3.8. For fuzzy double Laplace transform, the Convolution theorem is given by

ℓvℓτ [(8◦◦ψ) (v, τ)] = ℓvℓτ [8(v, τ)] ⊙ ℓvℓτ [ψ (v, τ)] .
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3.2 Fuzzy Conformable Double Laplace Transform

Now, we generalized the concept of fuzzy double Laplace transform to fuzzy conformable double
Laplace transform.

Definition 3.5. Fuzzy conformable double Laplace transform for a fuzzy-valued function 8(v, τ)
is

ℓv
9
ℓτ
δ
[8(v, τ)] = φ (r1, r2) =

∫ ∞

0

∫ ∞

0

e−r2
τδ

δ e−r1
v9

9 ⊙8(v, τ ) v9−1τ δ−1dvdτ ,

where the integral in the definition should converge.

We can write the above definition in the form

ℓv
9
ℓτ
δ
[8(v, τ)] =

[

ℓv
9
ℓτ
δ
[8∗ (v, τ)] , ℓ

v

9
ℓτ
δ
[8∗ (v, τ)]

]

.

Fuzzy conformable double Laplace transform is linear. i.e., for constants α and β and fuzzy-
valued functions 8(v, τ) and ψ (v, τ) , we have

ℓv
9
ℓτ
δ
[α ⊙8(v, τ)+ β ⊙ ψ (v, τ)] = α ⊙ ℓv

9
ℓτ
δ
[8(v, τ)] + β ⊙ ℓv

9
ℓτ
δ
[ψ (v, τ)] .

Definition 3.6. Fuzzy conformable inverse double Laplace transform is defined as

ℓv−1
9
ℓτ−1
δ

[φ (r1, r2)] = 8(v, τ) =
1

4π 2

∫ α+ι∞

α−ι∞

∫ β+ι∞

β−ι∞

er1
v9

9 ⊙ er2
τδ

δ ⊙ φ (r1, r2) v
9−1τ δ−1dr1dr2.

Although the fuzzy conformable double Laplace transform exists for a large variety of fuzzy-
valued functions, it does not always exist. For example, fuzzy conformable double Laplace for

8(v, τ) = η ⊙ e
v29
29 + τ2δ

2δ does not exist because the integral does not converge.

Here we give the criteria for the existence of fuzzy conformable double Laplace transform.

Definition 3.7. A fuzzy-valued function 8(v, τ) is of exponential order, if for some real constants

α,β, we obtain supv,τ>0 |8(v, τ)| ≤ Meα v
9

9
+β τ

δ

δ .

Theorem 3.9. Let 8(v, τ) be of exponential order and continuous on the interval [0,∞), then the
fuzzy conformable double Laplace transform of 8 exists.

Proof. Since 8 is of exponential order, so we have

|8(v, τ)| ≤ Meα v
9

9
+β τ

δ

δ ,

Now, we have

∫ ∞

0

∫ ∞

0
e

−r2

τ δ

δ e
−r1

v9

9 ⊙ |8(v, τ )| v9−1τ δ−1dvdτ ≤ M
∫ ∞

0

∫ ∞

0
e− v9

9 (r1−α)e− τδ

δ (r2−β)v9−1τ δ−1dvdτ .

Now, after performing fuzzy conformable integration and taking limr1→∞,.r2→∞, we have
∫ ∞

0

∫ ∞

0

e−r1
v9

9 e−r2
τδ

δ ⊙ |8(v, τ)| v9−1τ δ−1dvdτ ≤
M

(r1 − α) (r2 − β)
, for r1 > α, r2 > β.

So we have

lim
r1→∞,.r2→∞

φ (r1, r2) = 0.

Thus proved.
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Relation between fuzzy double Laplace transform and fuzzy conformable double Laplace trans-
form is

Lemma 3.1. ℓv
9
ℓτ
δ
[8(v, τ )] = ℓvℓτ

[

φ

(

(9v)
1
9 , (δτ )

1
δ

)

(r1, r2)
]

.

Proof. From Definition 3.5, we have

ℓv
9
ℓτ
δ
[8(v, τ)] =

∫ ∞

0

∫ ∞

0

e−r2
τδ

δ e−r1
v9

9 ⊙8(v, τ ) v9−1τ δ−1dvdτ .

Substitute τδ

δ
= t, v9

9
= u, we have

ℓv
9
ℓτ
δ
[8(v, τ)] =

∫ ∞

0

∫ ∞

0
e−r2te−r1u ⊙8

(

(u9)
1
9 , (tδ)

1
δ

)

dtdu,

= ℓvℓτ
[

φ

(

(9v)
1
9 , (δτ )

1
δ

)

(r1, r2)
]

.

Theorem 3.10. Fuzzy conformable double Laplace transform, when applied to a strongly general-
ized conformable partial differentiable function 8(v, τ ) , we have four cases.

Case 1: With respect to v, we have two cases, which are

1. When 8 is differentiable of the type (9−1), then

ℓv
9
ℓτ
δ

[

∂98

∂v9
(v, τ)

]

= r1 ⊙ φ (r1, r2)⊖φ (0, r2) .

2. If 8 is differentiable of the type (9−2), then

ℓv
9
ℓτ
δ

[

∂98

∂v9
(v, τ)

]

= ⊖ [φ (0, r2)− r1 ⊙ φ (r1, r2)] .

Case 2: With respect to τ , we have two cases, which are

1. If 8 is differentiable of type (δ−1), then

ℓv
9
ℓτ
δ

[

∂ δ8

∂τ δ
(v, τ)

]

= r2 ⊙ φ (r1, r2)⊖φ (r1, 0) .

2. If 8 is differentiable of type (δ−2), then

ℓv
9
ℓτ
δ

[

∂ δ8

∂τ δ
(v, τ)

]

= ⊖
[

φ
(

r1,0
)

− r2 ⊙ φ (r1, r2)
]

.

Theorem 3.11. When we apply fuzzy conformable double Laplace on a fuzzy-valued function,
which is a strongly generalized conformable partial differentiable, we have two cases.

Case 1: When we apply fuzzy conformable double Laplace transform on a strongly generalized
conformable partial differentiable of order 29 with respect to v, we have four cases, which are

1. If both 8 and
∂98

∂v9
are differentiable of type (9−1), then we have

ℓv
9
ℓτ
δ

[

∂298

∂v29
(v, τ)

]

= r21 ⊙ φ (r1, r2)⊖r1 ⊙ φ (0, r2)⊖
∂9φ (0, r2)

∂v9
.
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2. If 8 is differentiable of type (9−1) and
∂98

∂v9
is differentiable of type (9−2), then

ℓv
9
ℓτ
δ

[

∂298

∂v29
(v, τ)

]

= −
∂9φ (0, r2)

∂v9
⊖

(

−r21 ⊙ φ (r1, r2)
)

⊖r1 ⊙ φ (0, r2) .

3. If 8 is differentiable of type (9−2) and
∂98

∂v9
is differentiable of type (9−1), then

ℓv
9
ℓτ
δ

[

∂298

∂v29
(v, τ)

]

= −r1 ⊙ φ (0, r2)⊖
(

−r21 ⊙ φ (r1, r2)
)

⊖
∂9φ (0, r2)

∂v9
.

4. If both 8 and
∂98

∂v9
are differentiable of type (9−2), then we have

ℓv
9
ℓτ
δ

[

∂298

∂v29
(v, τ)

]

= r21 ⊙ φ (r1, r2)⊖r1 ⊙ φ (0, r2)−
∂9φ (0, r2)

∂v9
.

Case 2: When we apply fuzzy conformable double Laplace transform on a strongly generalized
conformable partial differentiable of order 29 with respect to v, we have four cases, which are

1. When both 8 and
∂ δ8

∂τ δ
are differentiable of type (δ−1), we have

ℓv
9
ℓτ
δ

[

∂2δ8

∂τ 2δ
(v, τ)

]

= r22 ⊙ φ (r1, r2)⊖r2 ⊙ φ (r1, 0)⊖
∂ δφ (r1, 0)

∂τ δ
.

2. If 8 is differentiable of type (δ−1) and
∂ δ8

∂τ δ
is differentiable of type (δ−2), then

ℓv
9
ℓτ
δ

[

∂2δ8

∂τ 2δ
(v, τ)

]

= −
∂ δφ

(

r1,0
)

∂τ δ
⊖

(

−r22 ⊙ φ (r1, r2)
)

⊖r2 ⊙ φ
(

r1,0
)

.

3. If 8 is differentiable of type (δ−2) and
∂ δ8

∂τ δ
is differentiable of type (δ−1), then

ℓv
9
ℓτ
δ

[

∂2δ8

∂τ 2δ
(v, τ)

]

= −r2 ⊙ φ
(

r1,0
)

⊖
(

−r22 ⊙ φ (r1, r2)
)

⊖
∂ δφ

(

r1,0
)

∂τ δ
.

4. If both 8 and
∂ δ8

∂τ δ
are differentiable of type (δ−2), then we have

ℓv
9
ℓτ
δ

[

∂2δ8

∂τ 2δ
(v, τ)

]

= r22 ⊙ φ (r1, r2)⊖r2 ⊙ φ
(

r1,0
)

−
∂ δφ

(

r1,0
)

∂τ δ
.

Theorem 3.12. For a fuzzy-valued function, whose fuzzy conformable double Laplace transform
exists, the first translation theorem in the fuzzy conformable sense has the form

ℓv
9
ℓτ
δ

[

eα v
9

9
+β τ

δ

δ ⊙8(v, τ)
]

= φ (r1 − α, r2 − β) .

Theorem 3.13. For a fuzzy-valued function, whose fuzzy conformable double Laplace transform
exists, the second translation theorem in the fuzzy conformable sense has the form

ℓv
9
ℓτ
δ
[8(v− η, τ − µ)⊙U (v− η, τ − µ)] = e−r1

η9

9
−r2

µδ

δ ⊙ φ (r1, r2) ,
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where U (v, τ) is the Heaviside unit step function defined by

U (v− η, τ − µ) = 1, when v > η, and τ > µ,
U (v− η, τ − µ) = 0, when v < η and τ < µ.

Now, we define convolution in fuzzy conformable sense and then we will state the convolution
theorem.

Definition 3.8. For a fuzzy-valued function 8 and a real-valued function ψ , convolution in the
fuzzy conformable sense is defined as

(8◦◦ψ) (v, τ ) =

∫ v

0

∫ τ

0

8(q, r)⊙ ψ (v− q, τ − r) q9−1dqrδ−1dr.

Remark 3.2. If we substitute w = v− q, u = τ − r in the above Definition 3.8, we obtain the form

(8◦◦ψ) (v, τ ) =

∫ v

0

∫ τ

0

ψ (w, u)⊙8(v− w, τ − u)w9−1dwuδ−1du,

= (ψ ◦◦8) (v, τ) .

Thus the fuzzy conformable convolution possesses the commutative property.

Theorem 3.14. Convolution theorem in the fuzzy conformable sense is given by

ℓv
9
ℓτ
δ
[(8◦◦ψ) (v, τ)] = ℓv

9
ℓτ
δ
[8(v, τ )] ⊙ ℓv

9
ℓτ
δ
[ψ (v, τ)] .

4 Fuzzy Conformable PDEs

4.1 Of Order 9

First, we solve fuzzy conformable partial differential equations of order9 which have the general
form given by

∂98(v, τ)

∂v9
+ α ⊙

∂ δ8(v, τ)

∂τ δ
= ̥ (v, τ ,8(v, τ)) ,

8(v, 0) = g (v) ,8(0, τ) = h (τ ) ,
(6)

where α ∈ R, 8(v, τ) is fuzzy-valued function, h (τ ) and g (v) are fuzzy numbers and ̥ is a fuzzy-
valued function which is linear with respect to 8(v, τ ) .

To solve Eq. (6) with fuzzy conformable double Laplace transform, the procedure is as follows:

First, take fuzzy conformable double Laplace transforms on both sides of the Eq. (6), we obtain

ℓv
9
ℓτ
δ

[

∂98(v, τ)

∂v9
+ α ⊙

∂ δ8(v, τ)

∂τ δ

]

= ℓv
9
ℓτ
δ
[̥ (v, τ ,8)] .

Now, we have the following four cases.

Case 1: If8 is differentiable of type (δ−1) with respect to τ and differentiable of type (9−1) both
with respect to v, then

ℓv
9
ℓτ
δ

[

∂98∗ (v, τ , γ )

∂v9
+ α

∂ δ8∗ (v, τ , γ )

∂τ δ

]

= ℓv
9
ℓτ
δ
[̥∗ (v, τ ,8)] ,

ℓv
9
ℓτ
δ

[

∂98∗ (v, τ , γ )

∂v9
+ α

∂ δ8∗ (v, τ , γ )

∂τ δ

]

= ℓv
9
ℓτ
δ
[̥∗ (v, τ ,8)] .
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It implies that

r1φ∗ (r1, r2, γ )+ α (r2φ∗ (r1, r2, γ )) = G∗ (r1)+ αH∗ (r2)+ ℓv
9
ℓτ
δ
[̥∗ (v, τ ,8)] ,

r1φ
∗ (r1, r2, γ )+ α (r2φ

∗ (r1, r2, γ )) = G∗ (r1)+ αH∗ (r2)+ ℓv
9
ℓτ
δ
[̥∗ (v, τ ,8)] .

Case 2: If8 is differentiable of type (9−2) with respect to v and differentiable of type (δ−1) with
respect to τ , then

ℓv
9
ℓτ
δ

[

∂98∗ (v, τ , γ )

∂v9
+ α

∂ δ8∗ (v, τ , γ )

∂τ δ

]

= ℓv
9
ℓτ
δ
[̥∗ (v, τ ,8)] ,

ℓv
9
ℓτ
δ

[

∂98∗ (v, τ , γ )

∂v9
+ α

∂ δ8∗ (v, τ , γ )

∂τ δ

]

= ℓv
9
ℓτ
δ
[̥∗ (v, τ ,8)] .

It implies that

r1φ
∗ (r1, r2, γ )+ α (r2φ∗ (r1, r2, γ )) = G∗ (r1)+ αH∗ (r2)+ ℓv

9
ℓτ
δ
[̥∗ (v, τ ,8)] ,

r1φ∗ (r1, r2, γ )+ α (r2φ
∗ (r1, r2, γ )) = G∗ (r1)+ αH∗ (r2)+ ℓv

9
ℓτ
δ
[̥∗ (v, τ ,8)] .

Case 3: If8 is differentiable of type (δ−2) with respect to τ and differentiable of type (9−1) with
respect to v, then

ℓv
9
ℓτ
δ

[

∂98∗ (v, τ , γ )

∂v9
+ α

∂ δ8∗ (v, τ , γ )

∂τ δ

]

= ℓv
9
ℓτ
δ
[̥∗ (v, τ ,8)] ,

ℓv
9
ℓτ
δ

[

∂98∗ (v, τ , γ )

∂v9
+ α

∂ δ8∗ (v, τ , γ )

∂τ δ

]

= ℓv
9
ℓτ
δ
[̥∗ (v, τ ,8)] .

It implies that

r1φ∗ (r1, r2, γ )+ α (r2φ
∗ (r1, r2, γ )) = G∗ (r1)+ αH∗ (r2)+ ℓv

9
ℓτ
δ
[̥∗ (v, τ ,8)] ,

r1φ
∗ (r1, r2, γ )+ α (r2φ∗ (r1, r2, γ )) = G∗ (r1)+ αH∗ (r2)+ ℓv

9
ℓτ
δ
[̥∗ (v, τ ,8)] .

Case 4: If 8 is differentiable of type (9−2) both with respect to v and τ , then

ℓv
9
ℓτ
δ

[

∂98∗ (v, τ , γ )

∂v9
+ α

∂ δ8∗ (v, τ , γ )

∂τ δ

]

= ℓv
9
ℓτ
δ
[̥∗ (v, τ ,8)] ,

ℓv
9
ℓτ
δ

[

∂98∗ (v, τ , γ )

∂v9
+ α

∂ δ8∗ (v, τ , γ )

∂τ δ

]

= ℓv
9
ℓτ
δ
[̥∗ (v, τ ,8)] .

It implies that

r1φ
∗ (r1, r2, γ )+ α (r2φ

∗ (r1, r2, γ )) = G∗ (r1)+ αH∗ (r2)+ ℓv
9
ℓτ
δ
[̥∗ (v, τ ,8)] ,

r1φ∗ (r1, r2, γ )+ α (r2φ∗ (r1, r2, γ )) = G∗ (r1)+ αH∗ (r2)+ ℓv
9
ℓτ
δ
[̥∗ (v, τ ,8)] .

Solving the above system of equations and taking fuzzy conformable double Laplace inverse, we
obtain the solution in the form 8(v, τ , γ ) = [8∗ (v, τ , γ ) ,8∗ (v, τ , γ )] .

Now, we present an example to demonstrate the feasibility of our method.
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Example 4.1. Consider the fuzzy conformable partial differential equation of order 9

∂98(v, τ)

∂v9
=
∂ δ8(v, τ)

∂τ δ
,

8(v, 0) = (1, 2, 3) ,8(0, τ) = (−1, 0, 1) .

Applying fuzzy conformable double Laplace transform, we have the four cases.

Case 1: If8 is differentiable of type (δ−1) with respect to τ and differentiable of type (9−1) both
with respect to v, then

r2 ⊙ φ (r1, r2)⊖φ (r1, 0) = r1 ⊙ φ (r1, r2)⊖φ (0, r2) .

Now, we have

r2φ∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) = r1φ∗ (r1, r2, γ )− φ∗ (0, r2, γ ) ,
r2φ

∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) = r1φ
∗ (r1, r2, γ )− φ∗ (0, r2, γ ) .

Now, after solving and using boundary and initial condition, we have

φ∗ (r1, r2, γ ) =
(1 + γ )

r1 (r1 − r2)
−

γ − 1

r2 (r1 − r2)
,

φ∗ (r1, r2, γ ) =
3 − γ

r1 (r1 − r2)
−

1 − γ

r2 (r1 − r2)
.

Case 2: If8 is differentiable of type (δ−1) with respect to τ and differentiable of type (9−2) with
respect to v, then

−φ (r1, 0)⊖ (−r2 ⊙ φ (r1, r2)) = −φ (0, r2)⊖ (−r1 ⊙ φ (r1, r2)) .

Now, we have Now

r2φ∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) = r1φ
∗ (r1, r2, γ )− φ∗ (0, r2, γ ) ,

r2φ
∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) = r1φ∗ (r1, r2, γ )− φ∗ (0, r2, γ ) .

After solving and using boundary and initial condition, we have

φ∗ (r1, r2, γ ) =
r2 (1 + γ )

r1
(

r22 − r21
) −

(1 − γ )

r22 − r21
+
(3 − γ )

r22 − r21
−

r1 (γ − 1)

r2
(

r22 − r21
) ,

φ∗ (r1, r2, γ ) =
1 + γ

r22 − r21
−

r21 (1 − γ )

r2
(

r22 − r21
) +

r2 (3 − γ )

r1
(

r22 − r21
) −

r2 (γ − 1)
(

r22 − r21
) .

<?TeX ?>
Case 3: When 8(v, τ) is differentiable of type (9−1) with respect to v and differentiable of type

(δ−2) with respect to τ , we have

−φ (r1, 0)⊖ (−r2 ⊙ φ (r1, r2)) = r1 ⊙ φ (r1, r2)⊖φ (0, r2) .

Now, we have

r2φ
∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) = r1φ∗ (r1, r2, γ )− φ∗ (0, r2, γ ) ,

r2φ∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) = r1φ
∗ (r1, r2, γ )− φ∗ (0, r2, γ ) .
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Now, after solving and using boundary and initial condition, we have

φ∗ (r1, r2, γ ) =
(3 − γ )

r22 − r21
−

r1 (γ − 1)

r2
(

r22 − r21
) + r2

(1 + γ )

r1
(

r22 − r21
) +

(1 − γ )

r22 − r21
,

φ∗ (r1, r2, γ ) =
r2 (3 − γ )

r1
(

r22 − r21
) −

γ − 1

r22 − r21
+

1 + γ

r22 − r21
+

r1 (1 − γ )

r2
(

r22 − r21
) ,

Case 4: When 8(v, τ) is differentiable of type (9−2) with respect to v and differentiable of type
(δ−2) with respect to τ , we have

−φ (r1, 0)⊖ (−r2 ⊙ φ (r1, r2)) = −φ (0, r2)⊖ (−r1 ⊙ φ (r1, r2)) .

Now, we have

r2φ
∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) = r1φ

∗ (r1, r2, γ )− φ∗ (0, r2, γ ) ,
r2φ∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) = r1φ∗ (r1, r2, γ )− φ∗ (0, r2, γ ) .

Now, after solving the above system of equations and using boundary and initial condition, we
have

φ∗ (r1, r2, γ ) =
(1 + γ )

r1 (r1 − r2)
−

γ − 1

r2 (r1 − r2)
,

φ∗ (r1, r2, γ ) =
3 − γ

r1 (r1 − r2)
−

1 − γ

r2 (r1 − r2)
.

Now solving the above systems of equations, and applying the fuzzy conformable double Laplace
inverse, we get the solution.

Example 4.2. Consider the following fuzzy conformable partial differential equation:


















∂98(v, τ , γ )

∂v9
= 3

∂ δ8(v, τ , γ )

∂τ δ
+ v,

8(v, 0, γ ) = 3v [γ − 1, 1 − γ ] +
v2

2
,

8(0, τ , γ ) = τ [γ − 1, 1 − γ ] .

We have the four cases.

Case 1: If8 is differentiable of type (δ−1) with respect to τ and differentiable of type (9−1) with
respect to v.

Case 2: If8 is differentiable of type (δ−1) with respect to τ and differentiable of type (9−2) with
respect to v.

Case 3: If8 is differentiable of type (9−1) with respect to v and differentiable of type (δ−2) with
respect to τ .

Case 4: If8 is differentiable of type (9−2) with respect to v and differentiable of type (δ−2) with
respect to τ .

From fuzzy conformable double Laplace transform, we can get the analytical solutions for all the
above cases, as discuss in last example. Here, we consider the graphical representation of case 1, rest
are the same. For δ = 9 = 1, we obtain
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8∗ (v, τ , γ ) =
v2

2
+ 3 (γ − 1) v+ (γ − 1) τ ,

8∗ (v, τ , γ ) =
v2

2
+ 3 (1 − γ ) v+ (1 − γ ) τ .

Then 8(v, τ , γ ) = [8∗ (v, τ , γ ) ,8∗ (v, τ , γ )] for all 0 ≤ γ ≤ 1. For γ = 0, we have the following:

8(v, τ , γ ) =

[

v2

2
− 3v− τ ,

v2

2
+ 3v+ τ

]

and its graph is given in Fig. 1.

Figure 1: Graph of 8(v, τ , γ ) = [8∗ (v, τ , γ ) ,8∗ (v, τ , γ )] with γ = 0

For γ = 0.5, we have the following:

8(v, τ , γ ) =

[

v2

2
+ 3 (−0.5) v+ (−0.5) τ ,

v2

2
+ 3 (0.5) v+ (0.5) τ

]

and its graph is given in Fig. 2.

Figure 2: Graph of 8(v, τ , γ ) = [8∗ (v, τ , γ ) ,8∗ (v, τ , γ )] with γ = 0.5

For γ = 0.7, we have the following

8(v, τ , γ ) =

[

v2

2
+ 3 (−0.3) v+ (−0.3) τ ,

v2

2
+ 3 (0.3) v+ (0.3) τ

]

and its graph is given in Fig. 3.
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Figure 3: Graph of 8(v, τ , γ ) = [8∗ (v, τ , γ ) ,8∗ (v, τ , γ )] with γ = 0.7

For γ = 1, we have the following:

8(v, τ , γ ) =

[

v2

2
,
v2

2

]

and its graph is given in Fig. 4.

Figure 4: Graph of 8(v, τ , γ ) = [8∗ (v, τ , γ ) ,8∗ (v, τ , γ )] with γ = 1

4.2 Of Order 29

In this subsection, we solve fuzzy conformable heat equation and fuzzy conformable wave
equation using fuzzy conformable double Laplace transform.

4.2.1 Heat Equation

Fuzzy conformable heat equation in one dimension has many forms such as

∂ δ

∂τ δ

(

∂ δ8

∂τ δ

)

= α
∂28

∂v2
.

Also, this form has been used by some researchers

∂ δ8

∂τ δ
=
∂28

∂v2
.

We use the fuzzy conformable heat equation in the form

∂ δ8

∂τ δ
= α ⊙

∂298

∂v29
,

8(v, 0) = ̥ (v) ,8(0, τ) = h (τ ) ,8(a, τ) = g (τ ) ,
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where 8 is a temperature of a rod of a constant-cross section and homogeneous material, lying along
the axis, and α is a constant of diffusion. We have taken initial and boundary conditions as fuzzy
numbers. For simplicity, we take α = 1.

To solve fuzzy conformable heat equation with fuzzy conformable double Laplace transform, the
procedure is as follows:

First, apply fuzzy conformable double Laplace transform on both sides of the fuzzy conformable
heat equation.

ℓv
9
ℓτ
δ

[

∂298(v, τ)

∂v29

]

= ℓv
9
ℓτ
δ

[

∂ δ8(v, τ)

∂τ δ

]

.

The fuzzy conformable heat equation is changed into the conformable boundary value problem.

1. When 8(v, τ ) is differentiable of the type (δ−1), we have four cases associated with the four
types of derivatives with respect to order 29.

Case 1: If 8 and
∂98(v, τ)

∂v9
are the strongly generalized conformable partial differentiable of

the type (9−1), then we obtain the following system of equations

r21φ∗ (r1, r2)− r1φ∗ (0, r2)−
∂9φ∗ (0, r2)

∂v9
= r2φ∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) ,

r21φ
∗ (r1, r2)− r1φ

∗ (0, r2)−
∂9φ∗ (0, r2)

∂v9
= r2φ

∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) .

Case 2: If 8 and
∂98(v, τ)

∂v9
are the strongly generalized conformable partial differentiable of

the type (9−2), then we obtain the following system of equations

r21φ∗ (r1, r2)− r1φ∗ (0, r2)−
∂9φ∗ (0, r2)

∂v9
= r2φ∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) ,

r21φ
∗ (r1, r2)− r1φ

∗ (0, r2)−
∂9φ∗ (0, r2)

∂v9
= r2φ

∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) .

Case 3: If 8 is the strongly generalized conformable partial differentiable of the type (9−2)

and
∂98(v, τ)

∂v9
is differentiable of the type (9 -1), then by applying fuzzy conformable double

Laplace transform on both sides, we obtain the following system of equations

r21φ∗ (r1, r2)− r1φ∗ (0, r2)−
∂9φ∗ (0, r2)

∂v9
= r2φ

∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) ,

r21φ
∗ (r1, r2)− r1φ

∗ (0, r2)−
∂9φ∗ (0, r2)

∂v9
= r2φ∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) .

Case 4: If 8 is the strongly generalized conformable partial differentiable of the type (9−1)

and
∂98(v, τ)

∂v9
is differentiable of the type (9−2), then by applying fuzzy conformable double

Laplace transform on both sides, we obtain the following system of equations

r21φ∗ (r1, r2)− r1φ∗ (0, r2)−
∂9φ∗ (0, r2)

∂v9
= r2φ

∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) ,

r21φ
∗ (r1, r2)− r1φ

∗ (0, r2)−
∂9φ∗ (0, r2)

∂v9
= r2φ∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) .

2. When 8(v, τ) is strongly generalized conformable partial differentiable of the type (δ−2), we
again have four cases associated with the four types of derivatives with respect to order 29.
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Case 1: If 8 and
∂98(v, τ)

∂v9
are the strongly generalized conformable partial differentiable of

the type (9−1), then we obtain the following system of equations

r21φ∗ (r1, r2)− r1φ∗ (0, r2)−
∂9φ∗ (0, r2)

∂v9
= r2φ

∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) ,

r21φ
∗ (r1, r2)− r1φ

∗ (0, r2)−
∂9φ∗ (0, r2)

∂v9
= r2φ∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) .

Case 2: If 8 and
∂98(v, τ)

∂v9
are the strongly generalized conformable partial differentiable of

the type (9−2), then we obtain the following system of equations

r21φ∗ (r1, r2)− r1φ∗ (0, r2)−
∂9φ∗ (0, r2)

∂v9
= r2φ

∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) ,

r21φ
∗ (r1, r2)− r1φ

∗ (0, r2)−
∂9φ∗ (0, r2)

∂v9
= r2φ∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) .

Case 3: If 8 is the strongly generalized conformable partial differentiable of the type (9−2)

and
∂98(v, τ)

∂v9
is differentiable of the type (9−1), then by applying fuzzy conformable double

Laplace transform on both sides, we obtain the following system of equations

r21φ∗ (r1, r2)− r1φ∗ (0, r2)−
∂9φ∗ (0, r2)

∂v9
= r2φ∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) ,

r21φ
∗ (r1, r2)− r1φ

∗ (0, r2)−
∂9φ∗ (0, r2)

∂v9
= r2φ

∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) .

Case 4: If 8 is the strongly generalized conformable partial differentiable of the type (9−1)

and
∂98(v, τ)

∂v9
is differentiable of the type (9−2), then by applying fuzzy conformable double

Laplace transform on both sides, we obtain the following system of equations

r21φ∗ (r1, r2)− r1φ∗ (0, r2)−
∂9φ∗ (0, r2)

∂v9
= r2φ∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) ,

r21φ
∗ (r1, r2)− r1φ

∗ (0, r2)−
∂9φ∗ (0, r2)

∂v9
= r2φ

∗ (r1, r2, γ )− φ∗ (r1, 0, γ ) .

Now, solving the above systems of equations and applying boundary conditions, and then
implementing fuzzy conformable double Laplace inverse transform, we get the solution in the
form 8(v, τ , γ ) = [8∗ (v, τ , γ ) ,8∗ (v, τ , γ )] .

Now, we interpret the benefits of our method with an example.

Example 4.3. Consider fuzzy conformable heat equation

∂ δ8

∂τ δ
=
∂298

∂v29
,

8(v, 0) = 0,8(0, τ) = (−1, 0, 1) ,
∂98(0, τ)

∂v9
= (1, 2, 3) .

Fuzzy conformable double Laplace transform implies eight cases of the above system. Here, we
consider four nontrivial cases for the solution.

Case 1: If8 and
∂98

∂v9
are differentiable of the type (9−1) with respect to v, and8 is differentiable

of the type (δ−1) with respect to τ , then by applying fuzzy conformable double Laplace transform on
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both sides, we obtain

φ∗ (r1, r2, γ ) =
−r1

r2
(

r2 − r21
) (γ − 1)−

(1 + γ )

r2
(

r2 − r21
) ,

φ∗ (r1, r2, γ ) =
−r1

r2
(

r2 − r21
) (1 − γ )−

(3 − γ )

r2
(

r2 − r21
) .

Case 2: If8 and
∂98

∂v9
are differentiable of the type (9−1) with respect to v, and8 is differentiable

of the type (δ−2) with respect to τ , then by applying fuzzy conformable double Laplace transform on
both sides, we obtain

φ∗ (r1, r2, γ ) =
−r31

r2
(

r22 − r41
) (γ − 1)−

r21 (1 + γ )

r2
(

r22 − r41
) −

r1 (1 − γ )
(

r22 − r41
) −

(3 − γ )
(

r22 − r41
) ,

φ∗ (r1, r2, γ ) =
−r1

r22 − r41
(γ − 1)−

r2 (1 + γ )

r1
(

r22 − r41
) −

r31 (1 − γ )

r2
(

r22 − r41
) −

r21 (3 − γ )

r2
(

r22 − r41
) .

Case 3: When 8 and
∂98

∂v9
are differentiable of type (9 − 2) with respect to v, and 8 is

differentiable of the type (δ−1) with respect to τ , then by applying fuzzy conformable double Laplace
transform on both sides, we obtain

φ∗ (r1, r2, γ ) =
−r1 (1 − γ )

r22 − r41
−

1 + γ

r22 − r41
−

r31 (γ − 1)

r2
(

r22 − r41
) −

r21 (3 − γ )
(

r22 − r41
) ,

φ∗ (r1, r2, γ ) =
−r31 (1 − γ )

r2
(

r22 − r41
) −

r21 (1 + γ )

r2
(

r22 − r41
) −

r1 (γ − 1)

r22 − r41
−
(3 − γ )

r22 − r41
.

Case 4:When8 is differentiable of type (9 − 1)with respect to v and
∂98

∂v9
is differentiable of type

(9 − 2) with respect to v and 8 is differentiable of the type (δ−1) with respect to τ , then by applying
fuzzy conformable double Laplace transform on both sides, we obtain

φ∗ (r1, r2, γ ) =
−r31 (γ − 1)

r2
(

r22 − r41
) −

r21 (1 + γ )

r2
(

r22 − r41
) −

r1 (γ − 1)

r22 − r41
−

3 − γ

r22 − r41
,

φ∗ (r1, r2, γ ) =
−r1 (1 − γ )

r22 − r41
−

1 + γ

r22 − r41
−

r31 (1 − γ )

r2
(

r22 − r41
) −

r21 (3 − γ )

r2
(

r22 − r41
) .

Fuzzy conformable double Laplace inverse can yield the required solutions.

4.2.2 Wave Equation

Let us consider the following 1D fuzzy conformable wave equation

∂2δ8

∂τ 2δ
= α2 ⊙

∂298

∂v29
,

8(v, 0) = ψ (v) ,
∂ δ8(v, 0)

∂τ δ
= ̥ (v) ,

8(0, τ) = g (τ ) ,
∂98(0, τ)

∂v9
= h (τ ) .

To solve the fuzzy conformable wave equation with the fuzzy conformable double Laplace
transform, the procedure is as follows:

First, apply fuzzy conformable double Laplace transform on both sides of the fuzzy conformable
wave equation. As a result, we have possible sixteen cases.
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1. First, we take 8(v, τ) and
∂9 (v, τ)

∂v9
as differentiable of the type (9−1) with respect to v. It

implies four associated cases.

Case 1: When 8 and
∂ δ8

∂τ δ
are strongly generalized conformable partial differentiable of

the type (δ−1), then we obtain the form

r22φ∗ (r1, r2)− r2φ∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ∗ (r1, r2)− r1φ∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
,

r22φ
∗ (r1, r2)− r2φ

∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ

∗ (r1, r2)− r1φ
∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
.

Case 2:When 8 and ∂δ8

∂τδ
are strongly generalized conformable partial differentiable of the

type (δ−2), then we obtain the form

r22φ∗ (r1, r2)− r2φ∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ∗ (r1, r2)− r1φ∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
,

r22φ
∗ (r1, r2)− r2φ

∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ

∗ (r1, r2)− r1φ
∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
.

Case 3:When8 is strongly generalized conformable partial differentiable of the type (δ−1)

and
∂ δ8

∂τ δ
is strongly generalized conformable partial differentiable of the type (δ−2), then we

obtain the form

r22φ∗ (r1, r2)− r2φ∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ

∗ (r1, r2)− r1φ
∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
,

r22φ
∗ (r1, r2)− r2φ

∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ∗ (r1, r2)− r1φ∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
.

Case 4:When8 is strongly generalized conformable partial differentiable of the type (δ−2)

and
∂ δ8

∂τ δ
is strongly generalized conformable partial differentiable of the type (δ−1), then we

obtain the form

r22φ∗ (r1, r2)− r2φ∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ

∗ (r1, r2)− r1φ
∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
,

r22φ
∗ (r1, r2)− r2φ

∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ∗ (r1, r2)− r1φ∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
.

2. Now, we take 8(v, τ) and
∂98(v, τ)

∂v9
as differentiable of the type (9−2), then we have four

associated cases.

Case 1: When 8 and
∂ δ8

∂τ δ
are strongly generalized conformable partial differentiable of

the type (δ−1), then we obtain the form

r22φ∗ (r1, r2)− r2φ∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ∗ (r1, r2)− r1φ∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
,

r22φ
∗ (r1, r2)− r2φ

∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ

∗ (r1, r2)− r1φ
∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
.
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Case 2: When 8 and
∂ δ8

∂τ δ
are strongly generalized conformable partial differentiable of

the type (δ−2), then we obtain the form

r22φ∗ (r1, r2)− r2φ∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ∗ (r1, r2)− r1φ∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
,

r22φ
∗ (r1, r2)− r2φ

∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ

∗ (r1, r2)− r1φ
∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
.

Case 3:When8 is strongly generalized conformable partial differentiable of the type (δ−1)

and
∂ δ8

∂τ δ
is strongly generalized conformable partial differentiable of the type (δ−2), then we

obtain the form

r22φ∗ (r1, r2)− r2φ∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ

∗ (r1, r2)− r1φ
∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
,

r22φ
∗ (r1, r2)− r2φ

∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ∗ (r1, r2)− r1φ∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
.

Case 4:When8 is strongly generalized conformable partial differentiable of the type (δ−2)

and
∂ δ8

∂τ δ
is strongly generalized conformable partial differentiable of the type (δ−1), then we

obtain the form

r22φ∗ (r1, r2)− r2φ∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ

∗ (r1, r2)− r1φ
∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
,

r22φ
∗ (r1, r2)− r2φ

∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ∗ (r1, r2)− r1φ∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
.

3. As a third option, we take 8 as strongly generalized conformable partial differentiable of

the type (9−2) and
∂98

∂v9
as strongly generalized conformable partial differentiable of the type

(9−1), which enables us to have four cases associated with the four types of derivative for τ ,
which are given by

Case 1: When 8 and
∂ δ8

∂τ δ
are strongly generalized conformable partial differentiable of

the type (δ−1), then we obtain the form

r22φ
∗ (r1, r2)− r2φ

∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ∗ (r1, r2)− r1φ∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
,

r22φ∗ (r1, r2)− r2φ∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ

∗ (r1, r2)− r1φ
∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
.

Case 2: When 8 and
∂ δ8

∂τ δ
are strongly generalized conformable partial differentiable of

the type (δ−2), then we obtain the form

r22φ
∗ (r1, r2)− r2φ

∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ∗ (r1, r2)− r1φ∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
,

r22φ∗ (r1, r2)− r2φ∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ

∗ (r1, r2)− r1φ
∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
.
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Case 3:When8 is strongly generalized conformable partial differentiable of the type (δ−1)

and
∂ δ8

∂τ δ
is strongly generalized conformable partial differentiable of the type (δ−2), then we

obtain the form

r22φ∗ (r1, r2)− r2φ∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ∗ (r1, r2)− r1φ∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
,

r22φ
∗ (r1, r2)− r2φ

∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ

∗ (r1, r2)− r1φ
∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
.

Case 4:When8 is strongly generalized conformable partial differentiable of the type (δ−2)

and
∂ δ8

∂τ δ
is strongly generalized conformable partial differentiable of the type (δ−1), then we

obtain the form

r22φ∗ (r1, r2)− r2φ∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ∗ (r1, r2)− r1φ∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
,

r22φ
∗ (r1, r2)− r2φ

∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ

∗ (r1, r2)− r1φ
∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
.

4. In the fourth case, we take 8 as strongly generalized conformable partial differentiable of

the type (9−1) and
∂98

∂v9
as strongly generalized conformable partial differentiable of the type

(9−2), which enables us to have four cases associated with the four types of derivative for τ ,
which are given by

Case 1: When 8 and
∂ δ8

∂τ δ
are strongly generalized conformable partial differentiable of

the type (δ−1), then we obtain the form

r22φ
∗ (r1, r2)− r2φ

∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ∗ (r1, r2)− r1φ∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
,

r22φ∗ (r1, r2)− r2φ∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ

∗ (r1, r2)− r1φ
∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
.

Case 2: When 8 and
∂ δ8

∂τ δ
are strongly generalized conformable partial differentiable of

the type (δ−2), then we obtain the form

r22φ
∗ (r1, r2)− r2φ

∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ∗ (r1, r2)− r1φ∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
,

r22φ∗ (r1, r2)− r2φ∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ

∗ (r1, r2)− r1φ
∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
.

Case 3:When8 is strongly generalized conformable partial differentiable of the type (δ−2)

and
∂ δ8

∂τ δ
is strongly generalized conformable partial differentiable of the type (δ−1), then we

obtain the form

r22φ∗ (r1, r2)− r2φ∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ∗ (r1, r2)− r1φ∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
,

r22φ
∗ (r1, r2)− r2φ

∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ

∗ (r1, r2)− r1φ
∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
.

Case 4:When8 is strongly generalized conformable partial differentiable of the type (δ−1)

and
∂ δ8

∂τ δ
is strongly generalized conformable partial differentiable of the type (δ−2), then we
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obtain the form

r22φ∗ (r1, r2)− r2φ∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ∗ (r1, r2)− r1φ∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
,

r22φ
∗ (r1, r2)− r2φ

∗ (r1, 0)−
∂ δφ∗ (r1, 0)

∂τ δ
= r21φ

∗ (r1, r2)− r1φ
∗ (0, r2)−

∂9φ∗ (0, r2)

∂v9
.

Solving the above systems of equations, and apply the fuzzy conformable double Laplace
inverse, we can get the solution in the form 8(v, τ , γ ) = [8∗ (v, τ , γ ) ,8∗ (v, τ , γ )] .

Now, we present an example of the fuzzy conformable wave equation to demonstrate the validity
of our results.

Example 4.4. Consider fuzzy conformable wave equation in one dimension is

∂2δ8

∂τ 2δ
=
∂298

∂v29
,

8(0, τ) = (0, 1, 2) ,
∂98(0, τ)

∂v9
= (1, 2, 3) ,

∂ δ8

∂τ δ
(v, 0) = 0,8(v, 0) = 0.

Fuzzy conformable double Laplace transform implies sixteen possibilities. We consider here only
nontrivial four cases for the solution.

Case 1: When both 8 and
∂ δ8

∂τ δ
are strongly generalized conformable partial differentiable of the

type (δ−1) and 8(v, τ ) ,
∂98

∂v9
are differentiable of the type (9−1), then we obtain

φ∗ (r1, r2, γ ) =
−r2

r1
(

r21 − r22
) (γ )−

(1 + γ )

r1
(

r21 − r22
) ,

φ∗ (r1, r2, γ ) =
−r2

r1
(

r21 − r22
) (2 − γ )−

(3 − γ )

r1
(

r21 − r22
) .

Case 2: When 8 and
∂ δ8

∂τ δ
is differentiable of type (δ−1) with respect to τ and 8(v, τ) ,

∂98

∂v9
are

differentiable of the type (9−2), then we obtain

φ∗ (r1, r2, γ ) = − (γ )
r22

r1
(

r41 − r42
) − (1 + γ )

r22

r1
(

r41 − r42
) −

r1r2

r41 − r42
(2 − γ )+

r1

r41 − r42
(3 − γ ) ,

φ∗ (r1, r2, γ ) = γ
r1

r41 − r42
− (1 + γ )

r1

r41 − r42
+

r32

r1
(

r41 − r42
) (2 − γ )−

r22

r1
(

r41 − r42
) (3 − γ ) .

Case 3: When 8 and
∂ δ8

∂τ δ
are differentiable of type (δ−2) and 8(v, τ) ,

∂98

∂v9
are differentiable of

the type (9−1), then we obtain

φ∗ (r1, r2, γ ) = − (2 − γ )
r1r2

r41 − r42
− (3 − γ )

r1

r41 − r42
−

r32

r1
(

r41 − r42
) (γ )−

r22

r1
(

r41 − r42
) (1 + γ ) ,

φ∗ (r1, r2, γ ) = − (2 − γ )
r32

r1
(

r41 − r42
) − (3 − γ )

r22

r1
(

r41 − r42
) −

r1r2

r41 − r42
(1 + γ )−

r1

r41 − r42
(1 + γ ) .
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Case 4: When 8 is differentiable of type (δ−1) and
∂ δ8

∂τ δ
is differentiable of type (δ−2) and

8(v, τ) ,
∂98

∂v9
are differentiable of the type (9−1), then we obtain

φ∗ (r1, r2, γ ) = − (2 − γ )
r22

r1
(

r41 − r42
) − (3 − γ )

r22

r1
(

r41 − r42
) −

r1r2

r41 − r42
(γ )+

r1

r41 − r42
(1 + γ ) ,

φ∗ (r1, r2, γ ) = (2 − γ )
r1

r41 − r42
− (3 − γ )

r1

r41 − r42
+

r32

r1
(

r41 − r42
) (γ )−

r22

r1
(

r41 − r42
) (1 + γ ) .

After solving the above system, and applying the fuzzy conformable double Laplace inverse, we
can get the required solution.

5 Conclusion

We have introduced the fuzzy double Laplace transform and fuzzy conformable double Laplace
transform. Also, related properties and theorems for derivatives and integrals of the transform are
presented. We apply the fuzzy conformable double Laplace transform in this manuscript to obtain
the solutions of fuzzy conformable PDEs (both in 1D and 2D). The fuzzy conformable PDEs are
solved using this approach without transforming into conformable partial differential equations,
so it is not important to find a solution to the partial differential equation. This is the greatest
benefit of this system. The double Laplace transformation technique, therefore, is very convenient
and effective. However, explicit solutions for each system require inverse double Laplace transform,
which is complicated to solve. In future work, we will obtain numerical solution methods to overcome
these complications.
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