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ABSTRACT: Polymers, particularly those susceptible to undergoing biodegradation under physiological environments, 
can be considered the materials of choice for biomedical applications such as tissue engineering, regenerative medicine, and 
controlled and targeted drug delivery. The development of these relatively new fi elds of biomedical research represents the 
driving force towards the exploitation of renewable resources for the obtainment of biobased polymeric biomaterials. 

 This perspective article reports on the biomedical applications of three major categories of biobased polymeric materials 
obtained from renewable resources, namely, polysaccharides, proteins and polyesters of natural origins. Particular emphasis 
is given to biobased polymers that display only minor modifi cation of their structure, thus maintaining most of their natural 
connotations. The advantages and major drawbacks related to their use for biomedical purposes are critically discussed. 
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1 INTRODUCTION

Biomedical sciences comprise the research and devel-

opment of materials suitable for improving the lifestyle 

and life expectancy of diseased people. It encompasses 

several disciplines and requires the interdisciplinary 

efforts of researchers active in different scientifi c fi elds. 

The three main areas constituting biomedical sciences 

can be summarized as follows: (i) tissue engineering 

and regenerative medicine aimed at repairing, substi-

tuting or improving pathological tissues, (ii) delivery 

of low and high molecular weight therapeutic agents 

such as drugs, proteins, and genes to improve the ben-

efi cial effects of conventional therapies and to decrease 

their side effects, (iii) development of medical devices 

comprising, among others, medical textiles, sutures, 

screws, extracorporeal devices, biosensors and diag-

nostic tools. The materials conventionally used in 

the mentioned applications, named biomaterials, are 

usually ceramics, metals or polymers. Metallic and 

ceramic materials are conventionally applied in pros-

theses and composites and their use is not suitable 

for many biomedical applications. Indeed, polymers 

represent a versatile platform of biomaterials whose 

use has been widely investigated in all the aforemen-

tioned biomedical fi elds. According to recent statistics, 

polymers comprise a higher percentage of utilization 

as biomaterials [1] and their exploitation is expected 

to increase markedly in the future. The chemical and 

physical versatility of polymers allows for matching 

the requirements needed for the envisaged biomedical 

applications with an appropriate choice of the dedi-

cated material. Tissue engineering involves the in vitro 

seeding and proliferation of cells in a support (scaf-

fold) that should degrade consistently within the time, 

allowing new tissue formation. Accordingly, suitable 

scaffolds possessing biocompatibility and mechani-

cal properties matching those of the damaged tissue 

and displaying the envisaged biodegradability, can 

be easily molded through the proper choice of the 

polymeric material. In drug delivery applications, 

the role of polymers covers multiple aspects, from the 

enhancement of the physical-chemical stability of the 

drug to the regulation of the drug-release profi le and 

targeting. The biocompatibility and biodegradability 

of polymers often combine with the presence of func-

tional reactive groups that allow for their biofunction-

alization with targeting molecules such as antibodies 

or peptides, enabling the development of micro-nano-

structured drug vehicles that are at the basis of the 

new and effective therapeutic regimes commonly 

included under the heading of nanomedicine. Many 

polymers displaying a well-assessed biocompatibility 
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are also major components of medical devices such as 

sutures, screws, pins, etc. For these types of applica-

tions the possibility to tune the biodegradation profi le 

represents the added value of polymers [2].

Despite the wide availability of known polymers, 
they are decisively the proper choice for successful use 
in biomedical applications. However, they must not 
induce adverse effects and must be able to be safely 
removed from the host organisms. For example, a 
molecular mass comprised between 30,000 and 40,000 
Daltons is required for the renal clearance of polymers. 
If the administered polymer’s size is larger than this 
threshold, then the polymer must undergo degrada-
tion into nontoxic fragments. To this end the poly-
mers obtained from natural resources can fulfi l strict 
requirements that are hardly matched by polymers 
of petrochemical origins. Moreover, nowadays there 
has been an upsurge of interest in polymeric materi-
als obtained from natural and sustainable resources 
to limit the depletion of fossil resources. At the pres-
ent time the demand for polymeric materials is con-
tinuously increasing. However, the substitution of 
petroleum-based polymers with biobased materials 
undoubtedly represents a challenge that will not be 
amenable to satisfy all the needs for commodity items 
that are increasing with the increase of world popu-
lation [3]. The indiscriminate exploitation of renew-
able resources such as biomasses to fully replenish 
the current applications of petroleum-based poly-
mers, although noteworthy, is hardly feasible and 
might deplete these resources irreversibly through 
unsustainable processes. Renewable resources would 
be, however, perfectly suitable for providing suf-
fi cient materials to match the biomedical demand 
as the relevant market represents only a niche of the 
global polymer market. The exploitation of polymers 
obtained from renewable resources is a must for bio-
medical purposes since they possess unique features 
(not found in many polymers from fossil fuel feed-
stocks) that perfectly match the strict requirements 
of biomedical applications. Biocompatibility, biode-
gradability and bioactivity inherently constitute the 
genome of these renewable materials since they are 
obtained from natural resources, and their structure is 
similar to that of the biopolymers that constitute liv-
ing organisms. Although there are not yet universally 
recognized standards and guidelines for evaluating 
the sustainability of a product [4], the environmental 
impact resulting from their production, use, and dis-
posal are generally taken into account when evaluating 
their sustainability [5]. Accordingly, the exploitation of 
renewable resources for the obtainment of polymeric 
materials suited for biomedical applications is much 
more sustainable than the exploitation of petrochemi-
cal resources. Indeed, their exploitation and disposal 

cause minor environmental concerns since most bio-
polymers are wholly biocompatible and biodegrad-
able, and are purifi ed and processed in water with 
limited use of toxic agents due to their consequent 
application in biomedical fi elds. The sustainability is 
even more accentuated if the biopolymers are obtained 
from waste materials whose exploitation allows con-
verting low-value biomass, often harmful for the envi-
ronment, to high-value biomaterials. Accordingly, the 
exploitation of food resources for the production of 
biomaterials should be limited if not sustainable and 
ethically unfair. Indeed, the exploitation of resources 
that do not compete with food and food chain produc-
tions should be ethically imperative. Sustainability is 
also decreased if biomaterials are obtained from ani-
mal resources, due to their limited availability and to 
the intensive treatments required for their purifi cation 
in order to limit the risks of viral contamination and 
immunogenicity. 

Although biopolymers can be obtained from renew-
able and sustainable resources, and have a less negative 
effect on our environment compared to petroleum-
based materials, they show some minor limitations 
in terms of performance (thermal resistance, barrier 
and mechanical properties) as well as associated costs. 
Their mean compositions and molecular weights are 
not easily reproducible on a large-scale production 
since they depend strongly on the biological variabil-
ity of the biomass resources [6]. These drawbacks have 
been overcome in the case of biopolymers obtained 
from bacterial resources. Indeed, these organisms 
are nowadays employed as renewable and sustain-
able bioreactors for the exploitation of polymers that 
are naturally produced for their life maintenance and 
development, as in the case of polyhydroxyalkanoates 
(PHAs) and bacterial cellulose (BC). Biotechnologies 
and genetic engineering allow optimization of the 
product yield and quality of the polymeric material, 
thus obtaining high reproducibility.

This review will summarize the biomedical appli-
cations of three major categories of biopolymers 
obtained from renewable resources, namely, polysac-
charides, proteins and polyesters of natural origins, 
pointing out the advantages and major drawbacks 
related to their use. It is noteworthy to stress that these 
biopolymers are very often modifi ed or functionalized 
with bioactive molecules to impart to them structural 
features specifi cally designed for biomedical applica-
tions. Indeed, the biopolymers usually employed as 
biomaterials are better defi ned as biobased materials. 
The biobased materials described in this review pos-
sess only a minor modifi cation of their native struc-
tural features, thus maintaining most of their natural 
connotations. Polyurethanes have always found wide 
applications in biomedicine and nowadays there is 
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an increasing interest in the development of poly-
urethanes from renewable resources as reported in 
the literature [7]. Nevertheless, their description has 
been intentionally omitted in this review because 
the claimed renewability of this material is at least 
questionable due to heavy contamination of the pet-
rochemical-based components usually constituting 
these polymers.

2 POLYSACCHARIDES

Polysaccharides undoubtedly represent the materials 

of choice for applications in the biomedical fi eld mainly 

due to their widely ascertained biocompatibility and 

high chemical versatility given by the huge number 

of functional groups present in their structural units. 

Indeed, this last feature allows for a wide plethora of 

post-modifi cation reactions to provide the material 

with the properties required for the envisaged applica-

tions. Biocompatibility, biodegradability and physical 

properties of the polysaccharide-based materials could 

be fi nely tuned by simply designing suitable chemical 

functionalizations. This opportunity cannot be found 

in most polymers of petrochemical origins often due 

to the overall lack of functional groups in their chemi-

cal structure. The renewability of polysaccharides 

strengthened by their huge abundance in nature pro-

vides the material with a high degree of sustainability.

2.1 Starch and Cellulose

Starch and cellulose represent, by far, the most appeal-

ing candidates in terms of availability. Starch is found 

mainly as short-term energy stores in plants, and 

cellulose is the most abundant organic molecule on 

earth since it represents the main component of plant 

cell walls. Both polymers constituted of D-glucose res-

idues as monomeric units but differ in the confi gura-

tion of their glycosidic bond (Fig. 1).

This subtle chemical difference deeply affects the 
properties of the aforementioned polysaccharides, 
whose biomedical applications would consequently 
differ. Indeed, their aptitude for biodegradation is 
markedly determined by the enzymatic recogni-
tion of the confi guration of their glycosidic bond. In 
humans, starch is easily degraded by the host enzymes 
α-amylase, while the lack of specifi c enzymes for cel-
lulose undoubtedly hampers its degradation in vivo 
[8]. The different confi guration of the glycosidic bond, 
as well as the different reciprocal spatial arrangement 
of the polymeric chains, strongly determines a marked 
difference in the chemical stability and mechanical 
properties of the two materials. Accordingly, the supe-
rior strength of cellulose is mainly determined by its 
β-linked units that allow for the arrangement of the 
polymeric chains in a straight fashion, supported by 
the occurrence of many interchain hydrogen bonds. 
This highly ordered structure confers on cellulose high 
cristallinity and inertness towards water, thus further 
limiting its in vivo biodegradability, and it also deter-
mines unique mechanical properties that allow for its 
use as reinforcing material in tissue engineering appli-
cations [9–12]. 

The modern biotechnologies allow the exploitation 
of the natural work done by microorganisms for the 
production of polymeric materials through sophisti-
cated biorefi ning techniques and genetic manipula-
tions. To this end, bacteria-derived polysaccharides 

OH

OH

OH

OH

OH OH OH

OHOH OH

OH

OH OH

OH

OH

HO

a-1, 4 glycosidic bond

(a)

(b)

HO
HO

HO HO

β-1, 4 glycosidic bond

Cellulose

HO

HO

Amylose

HO

HO HO

HO

HO

HO

HO O

OO

O

O O

O O
O

O O O
O

O

O

O

O

O

O

O

Amylopectin

O

OOO

Figure 1 Chemical structure of (a) starch and (b) cellulose.



Andrea Morelli et al.: Polymers from Renewable Resources: Perspectives in Biomedical Applications DOI: 10.7569/JRM.2012.634106 

86  J. Renew. Mater., Vol. 1, No. 2, April 2013  © 2013 Scrivener Publishing LLC

could meet the criteria required for being successfully 
interfaced with living host organisms. Indeed, their 
ease of purifi cation and lack of biogenic contaminants 
typically found in polymers extracted from animal 
and vegetable biomasses [13], and the possibility of 
obtaining them without any seasonal constraint, make 
them amenable especially for biomedical issues. In 
such high-value applications, criteria regarding purity, 
homogeneity and quality consistency are very strict. 
For this purpose, cellulose obtained from bacteria 
represents a valuable candidate, especially as rein-
forcing material in composites for tissue engineering 
applications. Bacterial cellulose (BC) is synthesized by 
Gluconacetobacter bacterial strains such as G. xylinus 
(e.g., DSMZ 14666) in aqueous culture media during a 
time period of days or up to two weeks. These bacteria 
are found everywhere fermentation of sugars and plant 
carbohydrates takes place, such as on damaged fruits 
and fl owers, and in unpasteurized or nonsterilized 
juice, beer, and wine, thus representing a wide renew-
able resource of cellulose-based biomaterials [14]. 
Although chemically indistinguishable from cellulose 
of vegetable origins, BC differs signifi cantly from it as 
it is characterized by a typical nanoscale fi ber network 
architecture. Fibril diameters are typically in the range 
of 30 nanometers, which are a hundred times thinner 
than the diameter of cellulose fi bers found in common 
plants [14]. The main effect of the nanosized arrange-
ment of the fi brils is an increase in surface area of the 
BC network, so that the structure stabilized by exten-
sive hydrogen bonding confers high crystallinity, high 
water holding capacity and high tensile strength to 
the material [15]. BC purity is overwhelmingly higher 
compared to that of cellulose obtained from plants, 
thus resulting in its being more suitable for biomedi-
cal purposes. Indeed, it is free of functional groups 
(carbonyl, carboxyl), which are partially introduced 
in plant celluloses during their rigorous isolation and 
purifi cation steps, and it is free of other polymers such 
as lignin, hemicelluloses, and pectin—typical com-
ponents that commonly contaminate plant-derived 
cellulose. Since it has good biocompatibility, BC has 
been investigated for different biomedical applica-
tions, including wound healing [16] and engineering 
of various tissues, such as blood vessels [17], corneas 
[18], cartilage [19] and bone [20,21]. The most promis-
ing results were obtained by using BC membranes in 
wound dressing, and as composite materials in tissue 
engineering for inducing bone regeneration. Indeed, 
the gelatinous BC membranes (containing up to 99% of 
water) obtained directly from bacterial culture, other 
than displaying the aforementioned unique proper-
ties, mostly provided by their nanometric 3D struc-
ture, proved to be very effective as a barrier against 
microorganisms in wounds and burns, accelerating 

the healing process, providing pain relief and reduc-
ing scar formation [22–24]. Moreover, the results from 
the literature revealed that BC-based membranes pro-
mote effective bone formation at the site, besides being 
a low-cost treatment [25,26]. To this aim, BC-based 
nanocomposites have been developed by incorporat-
ing hydroxyapatite (Hap) nanoparticles into BC matri-
ces in order to enhance their osteoconductivity and 
mechanical properties [21,27]. In vitro studies showed 
that the presence of Hap in the polymer phase favored 
the proliferation and differentiation of human bone 
marrow mesenchimal stem cells (MSCs) [21]. BC-Hap 
composite membranes composed of Hap nanocrys-
tals with low crystallinity and having a Ca/P molar 
ratio similar to that of physiological bone, proved to 
be effective for bone regeneration in bone defects of rat 
tibiae, since the membranes accelerated new bone for-
mation at the defect sites [28]. The addition of Hap to 
the bacteria culture medium during the formation of 
cellulose fi brils was also investigated as an alternative 
method for obtaining BC-Hap composites [29]. 

The major drawbacks related to the use of cellulose 
in biomedicine are given as poor processability and 
limited in vivo degradability. On the other hand, the 
exploitation of bacterial cellulose could partially over-
come the problems related to the processing of the 
material since BC can be directly shaped in the cul-
ture medium. BC hydrogels adopt the dimension of 
the cultivation vessel, and the fi ber network architec-
ture can be controlled by modulating the experimental 
parameters in a very reproducible fashion [15].

In vivo degradability does not represent a limit in 
the case of starch-based materials, since starch can be 
enzymatically degraded mainly by α-amylase and 
phagocytozed by macrophages, and the degradation 
products (glucose or glucose derivatives) are reported 
to be safe for the host organisms [30–32]. Abundance 
and ascertained in vivo degradability represent the 
properties that prompt scientifi c attention towards 
the exploitation of starch for biomedical applications. 
Indeed, starch represents the major form of carbohy-
drate storage in plants and is ubiquitously found in 
nature. Its chemical structure consists of a mixture of 
linear poly(1,4-α-D-glucopyranose) (amylose) and 
branched poly(1,4-α-D-glucopyranose) with branches 
of (1,6-α-D-glucopyranose) (amylopectin) (Fig. 1b) 
occurring nearly every 25 glucosidic moieties. It is nat-
urally produced in the form of semicrystalline granules 
of different sizes and compositions depending upon 
the source [33]. Amylose has a typical molecular weight 
of several hundred thousands, whereas the molecular 
weight of amylopectin is much higher and is in the 
order of tens of millions. Depending on the botanic ori-
gin of starch and on the relevant growth conditions, the 
ratio of amylase to amylopectin can vary considerably.
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Disadvantages such as the relatively low tensile 
strength and high water absorbency of starch, and 
its poor solubility and processability, usually com-
pel the use of starch in combination with additives. 
Plasticizers, such as water and low molecular weight 
alcohols, are thus often employed to enhance starch 
processability [33]. In addition, various starch-based 
materials developed by blending starch with ther-
moplastic polymers, showed improved thermal sta-
bility, mechanical properties and melt processability. 
In particular, blends of starch with ethylene vinyl 
alcohol (SEVA-C), cellulose acetate (SCA), poly(ε-
caprolactone) (SPCL) and poly(lactic acid) (SPLA) 
have shown suitable properties for a wide range of 
biomedical applications. Indeed, the aforementioned 
starch-based materials are totally biodegradable, inex-
pensive, processable by different techniques and can 
be formed into diverse shapes; they have been pro-
posed as engineered bone scaffolds, bone cements 
and microparticles or hydrogels for controlled drug 
delivery [34–37]. A number of studies by Reis and 
coworkers have investigated starch-based scaffolds 
for bone and cartilage tissue engineering, showing 
how their structure and functional properties can be 
tailored over a wide range through a proper choice of 
the blend component, material processing technique 
and possible additives or reinforcement fi llers [38–43]. 
In addition, the incorporation of Hap in SEVA-C, SCA, 
and SPLC blends has been investigated for enhancing 
scaffold mechanical properties, as well as its bioactiv-
ity in infl uencing cell adhesion and behavior [41,44]. 
SPCL was also processed by melt spinning followed 
by fi ber bonding to fabricate non-woven fi brous scaf-
folds for cartilage engineering that allowed coloniza-
tion of bovine articular chondrocytes in the inner parts 
of the scaffold after 6 weeks of culture under dynamic 
conditions [45]. Starch-based products have also been 
successfully applied in vascular regeneration [46,47].

Starch has been extensively exploited as a car-
rier for drug delivery due to its biodegradability and 
long tradition as an excipient in drug formulations 
[48]. Micro- and nanoformulations based on starch 
alone [49–57], or blended with biodegradable poly-
meric materials such as poly(ε-polycaprolactone) 
(PCL) [58] or pectin [59], are widely reported by the 
literature, and the applications range from delivery of 
drugs such as dexamethasone [58], diclofenac sodium 
[49], fl ufenamic acid [53], doxorubicin [55] and folate 
[56], to growth factors [57], proteins [54] and cells 
[51]. Although the use of starch as material interfac-
ing with living organisms is historically fascinating 
since it is popularly accepted as the safest biomaterial, 
and as such, is commercially appealing, some ethi-
cal and practical questions arise from its use. Indeed, 
the additives usually added to starch to improve its 

processability, mechanical properties and to decrease 
its hydrophilicity can compromise its safety profi le. 
Moreover, the current global food crisis has raised 
serious questions about the use of agricultural land 
to grow crops for applications different from food 
purposes. Starch obtained from waste or non-edible 
resources could yet represent a valuable resource of 
biomaterials. Indeed, new and economically advanta-
geous resources of non-edible starch, such as wasted 
and spoiled grain, are currently exploited for the prep-
aration of biobased plastics [60]. 

2.2 Alginate and Ulvan

Algae undoubtedly represent an ideal renewable 

resource of biomaterials since they are very abundant 

and cheap, do not interfere with the food chain and 

are often involved in detrimental processes in the 

environment [61]. Indeed, their natural uncontrolled 

proliferation is responsible for the death of marine and 

aquatic organisms, and most of this huge biomass is 

left to decompose on the shore creating waste prob-

lems [62]. The exploitation of these aquatic organisms 

is still limited, but their potential as renewable and 

sustainable feedstock for energy and material pro-

duction is gaining more and more attention. Indeed, 

microalgae are considered to be an excellent source 

for biodiesel production since they are characterized 

by high growth rates and high population densities, 

are ideal for intensive agriculture, and may contain 

huge lipid amounts needed for fuel production [63]. 

Macroalgae (seaweed) can produce a huge amount of 

carbohydrates per year [64] that when suitably pro-

cessed through specifi c fermentation processes would 

provide renewable and sustainable biofuel. These 

materials are gaining particular attention due to their 

abundance, renewability and to their peculiar chemi-

cal composition not found in any other organisms. 

Moreover, they match perfectly the basic requirement 

of biocompatibility that materials should have to be 

interfaced with living organisms. Indeed, they do not 

require the accurate purifi cation steps necessary for 

the exploitation of polysaccharides of animal origins 

due to their lower risks of immunogenicity and dis-

ease transmission [65].

Nowadays alginate represents the most represen-
tative polysaccharide material of algal origin inves-
tigated and used for biomedical purposes due to its 
biocompatibility, low toxicity and relatively low cost 
[66]. Commercial alginates are extracted primar-
ily from three species of brown algae (i.e. Laminaria 
hyperborea, Ascophyllum nodosum and Macrocystis pyr-
ifera), in which alginate comprises up to 40% of the 
dry weight [67]. Alginates are naturally-derived linear 
unbranched polysaccharides constituted of varying 
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amounts of (1-4)-linked β−D-mannuronic acid and 
α-L-guluronic acid (Fig. 2), whose composition and 
sequence is variable along the polymer chain. 

Physical properties of alginates depend on the 
molecular weight, composition and extent of the 
sequences. The native alginates are mainly present 
as insoluble Ca2+ crosslinked gels, but they can form 
relatively stable hydrogels in the presence of other 
multivalent cations (i.e. Sr, Ba). These hydrogels are 
formed through ionotropic gelation given by interac-
tion between carboxylic acid groups of the polymer 
and chelating cation [68]. Currently Ca2+ is preferred 
to crosslink alginate for biomedical applications 
because of the mild reaction conditions and the lack 
of cellular toxicity typical of both Ba2+ and Sr2+ [69]. 
Nevertheless, calcium crosslinked alginate materials 
suffer from a non-reproducible in vivo degradation 
and mechanical properties, due to the unpredictable 
dissolution rate of the individual chains in the fl uids 
of the host organisms determined by the exchange of 
the binding cations with the monovalent cations pres-
ent in the physiological environment. This uncontrol-
lable disintegration presents signifi cant limitations 
for the biomedical applications of this material [70]. 
Another major drawback related to the use of alginate 
in the biomedical fi eld derives from the inherently 
non-degradability of this material in mammals due 
to the lack of specifi c enzymes (alginate lyases) [71]. 
Moreover, the average molecular weights of many 
commercially available alginates are higher than the 
renal clearance threshold of the kidneys, and likely 
will not be completely removed from the body [72]. 
An attractive approach to make alginate degradable in 
physiological conditions includes partial oxidation of 
alginate chains. Slightly oxidized alginate can degrade 
in aqueous media, and these materials have demon-
strated potential as a delivery vehicle of drugs and 
cells for various applications [73]. 

Although the biocompatibility of alginate has been 
extensively evaluated in vitro as well as in vivo, there 
is still debate regarding its actual safety. Indeed, stud-
ies have been addressed to evaluate the impact of the 

alginate composition to the overall safety of the mate-
rial [74,75], but the immunogenicity and infl ammatory 
responses accidentally found during these studies were 
more likely attributed to impurities (heavy metals, 
endotoxins, proteins and polyphenolic compounds). 
Indeed, alginates purifi ed according to very accurate 
protocols were not reported to induce any immuno-
genic response in animals [76,77]. Accordingly, algi-
nate can be considered inherently biocompatible, but 
it requires accurate purifi cation to be safely interfaced 
with living organisms.

The marked hydrophilic character of alginate 
mainly imparted by its carboxylic groups minimizes 
protein absorption, thus discouraging all the events 
mediated by this process such as immunogenicity 
and cell adhesion, therefore improving on one-side 
biocompatibility but also decreasing cell affi nity 
[78]. Indeed, the chemical versatility of the carbox-
ylic groups provides alginate with the possibility of 
covalently linking the oligopeptide containing the 
arginine-glycine-aspartic acid (RGD) sequences that 
are usually used in tissue engineering applications 
to promote cell adhesion [79,80]. This strategy, easily 
accomplished by straightforward chemical reactions 
mediated by carbodiimide-based reagents, has been 
widely utilized to make alginate suitable for cell inter-
facing applications [81–84]. Indeed, the incorporation 
of the RGD containing sequence into alginate proved 
to successfully affect the cell affi nity towards this 
material [83, 85–88], and the amount [83] and chemi-
cal nature, such as spacer length and cyclic conforma-
tion [89] and spatial disposition [84, 90], of the RGD 
peptide proved to positively affect cell adhesion and 
spreading. 

Covalent crosslinking of alginate is needed in those 
applications, such as scaffolding in tissue engineering, 
where mechanical and degradation stabilities of the 
materials require more reproducibility and improved 
performances in comparison with those typically 
obtained by ionic crosslinking. Although the use of 
low-molecular-weight crosslinkers might decrease 
the biocompatibility of the obtained materials unless 
thoroughly purifi ed, their stiffness and mechanical 
stability results were highly improved and the biodeg-
radation more easily controlled. 

Alginate gels have been widely explored over the 
past several decades as vehicles for delivering proteins 
or cell populations that can direct the regeneration or 
engineering of various tissues and organs in the body. 
The various applications depended upon the gelling 
approach that ultimately defi ned the physical and bio-
degradation properties of the fi nal materials. Indeed, 
the release of most proteins and cells would need the 
degradation of the supporting gel due to the unsuit-
able pore diameters of the original matrix [91,92].

HO
HO

OH

OH

OH

OH

OH

OH

O
O

O

O
O

––

–

–

O
O

O
O

O
O

C

C

C

C

O

O

Guluronate residues Mannuronate residues

Alginate

O

O
O

O

Figure 2 Representative chain portion of alginate.



DOI: 10.7569/JRM.2012.634106  Andrea Morelli et al.: Polymers from Renewable Resources: Perspectives in Biomedical Applications

J. Renew. Mater., Vol. 1, No. 2, April 2013  © 2013 Scrivener Publishing LLC  89

Alginate gels have been successfully exploited in 
tissue engineering to induce neovascularization by 
the delivery of angiogenic molecules such as recombi-
nant proteins or genes, or by transplantation of cells. 
A successful strategy was obtained by the sequen-
tial release of various growth factors involved in the 
early and late stages of angiogenesis in order to pro-
mote the formation of new vessels. Indeed, sequen-
tial delivery of the vascular endothelial growth 
factor (VEGF) followed by platelet-derived growth 
factor-BB (PDGF-BB) using alginate gels resulted in 
enhanced blood vessel formation, maturation and 
function when injected into ischemic hindlimbs of 
mice [93] and sites of myocardial infarction [94]. In 
general, VEGF plays an important role in initiat-
ing angiogenesis and forming new capillaries, while 
PDGF promotes the maturation of the resulting capil-
laries into larger functional vessels.

Transplantation of endothelial cells for the formation 
of new blood vessels was reported to be not effective 
in clinical trials unless integrated with the sustained 
release of specifi c growth factors such as VEGF and 
monocyte chemotactic protein-1 (MCP-1) [95,96]. 

The exploitation of alginate gels in bone regenera-
tion has been investigated mainly due to the inherent 
advantages linked to their ability to be introduced into 
the body in a minimally invasive manner, and to fi ll 
irregularly shaped defects through physically induced 
gelling, combined with the ease of chemical modifi ca-
tion with adhesion ligands (e.g., RGD) and controlled 
release of tissue induction factors (e.g., bone morpho-
genetic proteins [BMP]). 

Several strategies have been successfully investi-
gated using alginate hydrogels for bone regeneration, 
such as the delivery of suitable growth factors (BMP) 
either in combinations [97,98] or sequentially [99] for 
cell transplantation, especially using RGD-containing 
matrices [100, 101] and hybrid materials contain-
ing inorganic calcium compounds, such as calcium 
hydroxyapatites, to enhance bone tissue formation 
[102,103]. However, the low stiffness and inherent in 
vivo dissolution of alginate gels are representative of 
the severe limitations that might hamper their use for 
bone regeneration. 

Considering the soft nature of alginate hydrogels, 
soft tissue engineering represents a more suitable 
fi eld of application. To this end, alginate gels are also 
being actively investigated for their ability to medi-
ate the regeneration and engineering of a variety of 
soft tissues and organs, including skeletal muscles, 
nerves, pancreas, and liver. As seen for vascular and 
bone regeneration, the two major strategies cur-
rently followed to induce soft tissue formations rely 
on the loading and release of specifi c growth factors 
[104, 105] and cell transplantation [106–110]. Alginate 

hydrogels had particularly promising results in the 
encapsulation of hepatocytes for the development of 
a bioartifi cial liver [106–109], and in the encapsulation 
and transplantation of encapsulated pancreatic islet 
allografts and xenografts for the treatment of diabetes 
type I in animal models [110,111].

Due to the historical role of alginate in medicine as 
a component in many pharmaceutical formulations as 
a thickening and stabilizing agent [112], its subsequent 
involvement in drug delivery applications naturally 
resulted. Indeed, many types of alginate hydrogels 
in the form of micro- and nanoformulations vari-
ously crosslinked by physical [113,114] and covalent 
[115] mechanisms have been investigated to impart 
sustained release of different drugs. To modulate the 
kinetics of drug release, alginate has been combined 
covalently with hydrophobic polymeric component 
(e.g., poly ε-caprolactone) [113], or by electrostatic 
interactions with cationic polyelectrolytes (chitosan) 
[116–118], or by covalent conjugation of the drug onto 
the polymeric matrix [73].

Alginate-based products, commercially available 
on the biomedical market, are mostly related to their 
use in wound dressing applications. Examples are 
Nu-Derm® commercialized by Johnson & Johnson 
in the USA, Curasorb® by Kendall or AlgiSite® by 
Smith & Nephew in the USA. Their main advantage 
is related to their role in keeping a moist environment 
around the wound, thus facilitating wound healing 
[119]. The improved healing properties are mostly 
related to the double functions of the dried calcium 
crosslinked alginate dressings to absorb fl uid from the 
wound environment to re-gel and, as a swollen gel, to 
maintain a physiologically moist microenvironment, 
thus minimizing bacterial infection at the wound site 
[112]. Functional wound dressings containing bio-
active compounds have also been investigated for 
wound healing promotion and prevention of bacterial 
infections [120–123], thus further improving the afore-
mentioned performances. 

Although nowadays alginate represents the algal 
polysaccharide most widely investigated in the fi eld 
of biomedicine, a new class of polysaccharide is gain-
ing growing scientifi c attention due to its unique 
chemical-physical and biological properties. Indeed, 
a relevant percentage of the polysaccharide fraction 
that composes most algal biomasses is constituted by 
sulphated components. These unique sulphated poly-
saccharides, not found in any other natural resources, 
are reported to possess benefi cial biological activity 
whose exploitation could bring added value to the 
envisaged biomedical application. Indeed, the pres-
ence and the distribution of sulphate groups in these 
polysaccharides are reported to play an important role 
in the antiviral [124], anticoagulant [125], antioxidant 
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[126] and anticancer [127] activity of these materials. 
The chemical composition of sulphated polysaccha-
rides, including the degree and the distribution of the 
sulphate groups, varies according to the species and 
the ecophysiological origin of the algal sources [128]. 
Anyhow, a structural differentiation depending on the 
different taxonomic classifi cation of the algal origin 
has been found. According to the aforementioned clas-
sifi cation, the major sulphated polysaccharides found 
in marine algae include fucoidan from brown algae, 
carrageenan from red algae and ulvan obtained from 
green algae (Fig. 3).

All the aforementioned polysaccharides are bio-
medically appealing since they share a common 
chemical structure very similar to those of extracel-
lular glycosaminoglycan. In our research group we 
have been extensively investigating the sulphated 
polysaccharide Ulvan, a polymer that is abundant, 
easily obtainable from algal resources [129] and that 
displays numerous benefi cial biological properties 
[130]. Ulvan is a complex sulphated polysaccharide 
extracted from the cell-walls of the green seaweeds 
belonging to Ulvales (Ulva and Enteromorpha sp.). 
These algae are the major components of the so-called 
Green Tides, a vast accumulation of unattached green 
macroalgae that are found on the shores of eutrophi-
cated marine environments. Green tides represent 
a major concern worldwide from an ecological and 
economical point of view, thus their exploitation as a 
renewable resource for biomaterials is gaining increas-
ing attention from the scientifi c community. Although 
Ulvan chains are shown to assemble in aqueous solu-
tions into micro-domains whose organizations vary 
according to the different pH of the media [129], they 
are wholly soluble in water, and as such, not suitable 

for biomedical applications. To this purpose Ulvan can 
be gelled thermoreversibly in the presence of calcium 
ions and boric acid in slight basic conditions [131], but 
the obtained gels lack mechanical stability, especially 
in physiological conditions where the exchange of cal-
cium ions with the surrounding monovalent cations 
unavoidably disrupt their integrity. Mechanical insta-
bility represents a major drawback commonly found 
in hydrogels made of polysaccharides due to their 
high water up-taking capability, and it is even more 
accentuated in the case of sulphated polysaccharides 
due to their enhanced hydrophilicity. Covalent cross-
linking undoubtedly represents the optimum strategy 
for providing mechanical stability even to very hydro-
philic polymeric supports by tightly joining their con-
stituting chains. Research carried out in our group led 
to the preparation of stable Ulvan-based hydrogels 
by covalent means [132]. Covalent crosslinking was 
obtained through UV irradiation in the presence of a 
cytocompatible initiator after proper chemical func-
tionalization of Ulvan with radical polymerizable 
groups. UV mediated crosslinking undoubtedly rep-
resents a smart technique perfectly suitable for bio-
medical purposes since it does not require the use of 
toxic additives and can be used easily in situ and in 
physiological conditions, thus improving the biocom-
patibility and reducing the costs of preparations [133]. 
Although ongoing research is, as of now, focused on 
identifying the optimum biomedical application of 
Ulvan whose inherent high hydrophilicity would 
likely limit its cell affi nity, the reported preparation 
of Ulvan hydrogels undoubtedly represents a valu-
able example of sustainable process for the conversion 
of renewable and abundant waste material to high-
added-value applications (Fig. 4).
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Figure 3 Representative chemical structure of three prominent sulphated polysaccharides obtained from different algal sources: 

(a) Ulvan from green algae, (b) Fucoidan from brown algae, (c) Carrageenan from red algae.
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2.3 Chitosan

When taking into account the global market of renew-

able materials mostly devoted to biomedical applica-

tions, chitosan is certainly one of the most important 

representatives. Chitosan is derived from deacetyla-

tion of chitin, a naturally occurring material that com-

poses the exoskeleton of insects, fungi and crustaceans. 

The exoskeletons of crustaceans represent the most 

exploited resources of chitosan, since they are abun-

dant and sustainable. When chitin is deacetylated to 

a certain degree (~ 60% deacetylation) it is referred to 

as chitosan. Chitosan is a linear copolymer of β-(1–4) 

linked 2-acetamido-2-deoxy-β-D-glucopyranose and 

2-amino-2-deoxy-β-D-glycopyranose (Fig. 5). The 

amine groups in chitosan are mostly found in the free 

form, although a 100% degree of deacetylation is not 

often practically achieved. 

Its chemical structure makes chitosan unique among 
polysaccharides since it behaves as a polycationic base 
in solution due to the presence of many amino groups 
along its backbone. Almost all other renewable poly-
saccharides result neutral (starch) or acidic (alginate, 
ulvan, carrageenan, fucoidan) in solution due to the 
exclusive presence of hydroxyl and acid groups along 
their structure. The higher chemical reactivity of the 
amino groups usually allows chitosan to be more 
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photopolymerized under UV irradiation to provide suitable hydrogels.
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easily functionalized with respect to other polysac-
charides, thus enhancing its versatility. The presence 
of amino groups also provides chitosan’s antibacte-
rial properties due to its positive charge character in 
aqueous solutions even at physiological conditions. A 
tremendous amount of literature supports the essen-
tial importance of polycationic structure in antimicro-
bial activity [134]. Chitosan is also widely reported to 
be highly biocompatible and to display low immu-
nogenicity when interfaced with living organisms 
[135–139]. Moreover, it is susceptible to in vivo degrad-
ability since it has been shown to be degraded mainly 
by lysozyme (EC 3.2.1.17), which commonly exists in 
various human body fl uids and tissues [140]. Many 
investigations have been reported on the degradation 
of chitosan by lysozyme [141–143]. All showed that 
the degree of deacetylation (DD) of chitosan is one 
of the key factors controlling its degradation [144]. 
Indeed, the DD is reported to affect both the chemical 
and physical properties of chitosan, such as reactivity, 
crystallinity, and viscosity, and the biological proper-
ties as well. Biocompatibility is reported to increase as 
the DD of the polymer increases and as the interac-
tions between chitosan and the cells increase due to 
the presence of free amino groups [145].

Excellent features such as its biocompatibility, 
safe in vivo biodegradability (degradation products 
of chitosan are nontoxic, nonimmunogenic and non-
carcinogenic), low toxicity and biological properties 
(antimicrobial activity and low immunogenicity), 
recommend this biopolymer as the perfect candidate 
for biomaterials applications. Indeed, a wide plethora 
of publications, most of which are summarized in a 
recent comprehensive review [146], have reported on 
the extensive investigations on the use of chitosan in 
almost every biomedical fi eld of applications. 

In virtue of its biocompatibility and biodegradabil-
ity, chitosan was extensively used in developing drug 
delivery systems [147–152]. Different techniques have 
been employed for the preparation of the micro- and 
nanoformulations according to the needs of the envis-
aged applications [146]. In particular, chitosan par-
ticulate systems have been successfully prepared by 
emulsion crosslinking for intranasal systemic delivery 
of pentazocine [153], by coacervation/precipitation 

for gene delivery [154], by spray-drying for delivery 
of betamethasone disodium phosphate [155], by ionic 
gelation [156], by reverse micellar method for tumor 
targeted delivery of encapsulated dextran-doxoru-
bicin conjugates [157] and by sieving method for the 
controlled release of clozapine [158].

Chitosan has been extensively investigated in tis-
sue engineering applications as well. Chitosan was 
shown to be osteoconductive, enhancing bone forma-
tion both in vitro and in vivo, but its mechanical weak-
ness and instability, together with its incapacity to 
maintain a predefi ned shape, narrow its applications 
[159]. Therefore, chitosan has been combined with a 
variety of materials, such as alginate, Hap, hyaluronic 
acid, calcium phosphates, poly(methylmethacrylate), 
and poly(L-lactic acid) (PLLA) for the development 
of osteogenic bone substitutes [160]. By incorporat-
ing either calcium phosphate [161] or natural coral-
line, the compression properties of chitosan implants 
were greatly improved. Hap inclusion into chitosan 
matrices has been shown to favor adhesion and pro-
liferation of osteoblasts and osteoblast-like cells [162–
164]. Chitosan/alginate hybrid scaffolds displayed 
improved mechanical strength and were shown to 
stimulate new bone formation and rapid vasculariza-
tion during in vivo experiments [165]. Chitosan–Hap 
[166] and chitosan-PLLA/Hap [167] nanocomposites 
have also been proposed as tissue engineering scaf-
folds. A further successful strategy was developed by 
loading chitosan scaffolds with growth factors, such as 
PDGF [168] and BMP2 [169], in order to improve the 
ability of chitosan-based constructs to promote bone 
formation. 

Chitosan has been widely exploited in cartilage 
tissue engineering mostly due to its chemical resem-
blance to cartilage-specifi c extracellular matrix (ECM) 
components such as type II collagen and glycosamino-
glycans (GAGs). These structure similarities prompted 
scientists to investigate the aptitude of chitosan in 
mimicking these biological components in their native 
environment since they are known to play a criti-
cal role in regulating expression of the chondrocytic 
phenotype and in supporting chondrogenesis in vitro 
and in vivo [93]. Chitosan has been mostly employed 
in the form of hybrid materials in order to enhance 

OH OH OHOH

HO HO HO

OHOH

HO
O O

O
O O

O
O

O
O

O
O

O

C = OC = O C = O

O

NH NH NH
O

HO

Chitosan Chitin

HONH2 NH2

CH3
CH3 CH3

NH2

Figure 5 Representation of the major chemical structural units present in chitin and chitosan.



DOI: 10.7569/JRM.2012.634106  Andrea Morelli et al.: Polymers from Renewable Resources: Perspectives in Biomedical Applications

J. Renew. Mater., Vol. 1, No. 2, April 2013  © 2013 Scrivener Publishing LLC  93

its physical and mechanical properties. Indeed, its 
use combined with alginate [170], poly (L-lactic acid) 
(PLLA) [171] and alginate-hyaluronan complexes 
[172] showed increased cell adhesion, proliferation 
and biosynthetic activity of seeded chondrocytes. The 
incorporation of specifi c growth factors, such as trans-
forming growth factor (TGF)-β1, was revealed to be 
promising for promoting chondrocyte proliferation 
and matrix formation [173, 174] on chitosan supports. 
Chondrocyte cell encapsulation and transplantation 
have been successfully carried out on chitosan scaf-
folds as well. An injectable chitosan gel encapsulat-
ing primary chondrocytes resulted, which was able to 
support in vitro and in vivo accumulation of cartilage 
ECM [175]. Thermosensitive chitosan–pluronic hydro-
gels were developed as injectable cell delivery carriers, 
and in vitro experiments using bovine chondrocytes 
showed a substantial increase in cell proliferation and 
glycoaminoglycan synthesis during 28 days of cell cul-
turing [176].

Exploitation of chitosan in soft tissue engineering is 
even more appealing due to the typical soft mechani-
cal properties of the obtained hydrogels that usually 
match those required by the envisaged application. 
In particular, chitosan is selected as an appropriate 
scaffold material for hepatocytes culture mostly due 
to its chemical resemblance to GAGs, biological com-
ponents of liver ECM that are very important for the 
maintenance of hepatocytes viability and differentia-
tion functions [177].

Chitosan also proved to be suitable for nerve regen-
eration due to its biocompatibility and biodegradabil-
ity. Indeed, neurons cultured on chitosan membranes 
were able to grow well and be active in promoting 
repairs of the peripheral nervous system [178]. Hybrid 
composites of chitosan with poly (L-lysine) [179] and 
gelatin [180] proved suitable for the regeneration of 
neural tissues as demonstrated by their benefi cial 
cooperating effect in promoting cell adhesion and 
differentiation. 

Chitosan-based materials, produced in varying 
formulations, have been used in a number of wound-
healing applications. Many studies have reported on 
the use of chitosan as a wound-healing accelerator, 
and in fact, there is good evidence that chitosan can 
benefi cially infl uence every separate stage of wound 
healing. Chitosan and its derivatives could accelerate 
wound healing by enhancing the functions of infl am-
matory cells, such as polymorphonuclear leukocytes 
(PMN), macrophages and fi broblasts, and increase the 
tensile strength of wounds [181]. Moreover, its anti-
bacterial activity would prevent wound infections. 

The numerous studies devoted to the biomedical 
applications of chitosan, exhaustively summarized in 
a dedicated review [146], confi rm that chitosan would 

undoubtedly represent the perfect candidate to inter-
face with living organisms. Other than its excellent 
biocompatibility and proven biodegradability, the 
possibility of obtaining chitosan from abundant and 
renewable waste materials also makes it suitable from 
an ecological and ethical point of view.

This section is intentionally dedicated to polysac-
charides of plant and algal origins or obtainable from 
waste products, due to their abundance and ascer-
tained biocompatibility and because their exploitation 
in biomedical fi elds does not require unsustainable 
processes. Indeed, many polysaccharides of animal 
origins cannot be included in this category since they 
cannot be obtained on a large scale given the limited 
animal tissue sources, and their recovery and purifi ca-
tion are high cost due to the risk of viral contamination 
and immunogenicity. 

3 PROTEINS

Proteins are important naturally occurring polymers 

produced by animals, plants, and bacteria [182]. 

Collagen, gelatin and silk fi broin represent relevant 

fi brous proteins that are fi nding an increased inter-

est in the biomedical fi eld due to their mechanical 

strength and biodegradability in physiological envi-

ronments [7,33]. 

3.1 Collagen 

Collagen is a protein found in the extra cellular matrix 

(ECM) of many biological tissues (skin, bone, cartilage, 

tendons, blood vessels, teeth) that provides structural 

and mechanical support. It is mainly composed of gly-

cine (Gly) (nearly 33%) found in the polypeptide chain 

as every third residue forming a (Gly-X-Y)
n
 repeating 

pattern, where X and Y are often proline (Pro) and 

hydroxyproline (Hyp). The polypeptide chain adopts a 

left-handed helical structure (α chain) longer than 1000 

amino acids and with three residues per turn. Collagen 

fi brils are composed of three α chains wrapped around 

one another with a right-handed twist in a tightly 

packed triple helix, and are bonded by specifi c cova-

lent crosslinks (Fig. 6) [183–185]. More than twenty-

two different types of collagen have been identifi ed so 

far in the human body, with the most common being 

Types I–IV, and Type I is the single most abundant pro-

tein present in mammals. Commercially available col-

lagen for biomedical applications is obtained mainly 

from bovine or porcine skin, and bovine or equine 

Achilles tendons. However, these collagen-based bio-

materials show mild immunogenicity, are high cost, 

have variable physical-chemical properties and pre-

sent a risk of infectious disease transmission [186]. 
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For this reason, recombinant systems are currently 

under development to produce human sequence 

 collagen [187].

Due to its biodegradability, relatively low antige-
nicity, cell-binding properties and tensile strength, col-
lagen has been extensively investigated for different 
biomedical applications, especially in the engineering 
of several types of tissues (e.g., skin, blood vessels 
and bone) [185,188]. However, once implanted in the 
human body, collagen undergoes fast degradation via 
enzymes, such as collagenases and metalloprotein-
ases, that leads to a rapid loss of its mechanical prop-
erties thereby compromising its employment in many 
applications [186,189]. Different studies proposed its 
combination with different materials, such as min-
eral crystals [190], natural polymers (e.g., elastin and 
glycoaminoglycans [191] or hyaluronic acid [192]) 
and synthetic polymers (e.g., methacrylate deriva-
tives [193,194]) to enhance its degradation behavior. 
In addition, different crosslinking methods involving 
covalent bonding between amine side groups of dif-
ferent polypeptide chains have been explored [195]. 
However, the employed crosslinking agents (e.g., 
glutaraldehyde [196], 1-ethyl-3-(3-dimethyl amino-
propyl) carbodiimide [197] and hexamethylene diiso-
cyanate [198]) are not suffi ciently cytocompatible 
[199]. Another strategy involves the formation of dou-
ble bonds on collagen molecule side chains followed 
by crosslinking through free radical polymerization 
[200] or by enzymatic crosslinking [201]. 

A growing body of literature has investigated col-
lagen as dermal matrices for the topical release of 
antibiotic and skin repair. This has led to different 
marketed products, such as gentamicin-loaded colla-
gen sponges or membranes (e.g., Sulmycin®-Implant, 
Collatamp®-G, Septocoll [202]), and bi-layered living 
skin substitutes consisting of a dermis and a well-dif-
ferentiated epidermis (APLIGRAF® [203–205]). 

A number of studies have investigated electrospin-
ning as a suitable technique for the development of 
collagen-based nanofi brous substitutes for the engi-
neering of different tissues, such as skin and blood 
vessels [206–209]. Good adhesion and proliferation 
of human dermal fi broblasts were achieved on bilay-
ered scaffolds coupling collagen and PCL nanofi brous 
matrices [210], as well as on PCL-collagen composite 
nanofi ber meshes [211]. Powell et al. [212] developed 
electrospun collagen-based engineered skin with cel-
lular organization similar to the clinically employed 
skin substitute models, achieving reduced wound 
contraction. An electrospun tubular scaffold made of a 
collagen/elastin blend mimicking the composition of 
natural blood vessel walls was shown to be suitable 
for vascular cells colonization [208]. Boland et al. [209] 
developed a collagen/elastin three-layered tissue 
engineered construct and seeded the outer layer with 
fi broblast, the medial layer with smooth muscle cells 
(SMCs) and the lumen with endothelial cells (ECs) to 
resemble the structure of native wall vessels. Collagen-
coated PCL matrices by electrospinning were shown 
to be suitable for SMCs adhesion and migration inside 
the nanofi brous matrix [213], as well as for cardio-
myocytes population [214]. An electrospun tubular 
scaffold, composed of a blend of type I collagen, elas-
tin from ligamentum nuchae and poly(D-lactic acid) 
(PDLA), was seeded with ECs on the inner surface and 
SMCs on the outer surface showing after cell culture 
tissue composition and mechanical properties similar 
to native wall vessels [215]. Electrospun meshes of col-
lagen type II from chicken sternae were investigated 
for cartilage tissue engineering, showing good adhe-
sion and proliferation in vitro of human articular chon-
drocytes [216].

Due to the thrombogenicity of collagen and the role 
that it plays in the coagulation process, various collagen-
based haemostats are currently on the market, including 
Sulzer-Spine® Tech, a sealant employed in cardiovascu-
lar and spinal surgical procedures consisting of bovine 
collagen and thrombin, CoStasis® Surgical Hemostat, 
composed of bovine microfi brillar collagen and bovine 
thrombin combined with autologous plasma, and 
Floseal®, a gel composed of collagen-derived particles 
and topical bovine-derived thrombin [186].

Collagen sponges have attracted interest for bone 
tissue engineering thanks to their ability to favor cell 
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attachment and growth [217, 218] and support cell 
differentiation into osteoblasts [219, 220]. In 1994, 
Wakitani et al. reported that mesenchymal stem cell 
(MSC)-seeded collagen gels implanted into rabbit 
osteochondral defects promoted the formation of 
both bone and hyaline cartilage with no evidence of 
tissue degeneration [221]. Bioactive glass nanofi ber-
collagen nanocomposites, in the form of either a thin 
membrane or a macroporous scaffold, were recently 
developed and investigated for their in vitro bioactiv-
ity. They showed rapid formation of bone-like apatite 
minerals on their surfaces when incubated in simu-
lated body fl uid, and good osteoblastic cell adhesion 
and proliferation [222]. 

3.2 Gelatin 

Gelatin is a protein obtained through hydrolysis of 

the amide groups of collagen into carboxyl groups by 

applying either an alkaline process, yielding a high 

density of carboxyl groups, or an acid process, with 

limited conversion of amide groups [223]. This allows 

gelatin to be obtained with different isoelectric points, 

and is therefore either positively or negatively charged 

at physiological pH. For this reason crosslinked gela-

tin has been extensively investigated as a carrier of 

charged biomolecules, such as proteins and plasmid 

DNA, in various biomedical applications, including 

therapeutic angiogenesis, gene therapy, drug delivery 

and tissue engineering [224]. In order to make it insol-

uble in water and to improve its mechanical stability, 

different crosslinking methods have been developed 

showing that the crosslinking density infl uences its 

degradation by matrix metalloproteinases such as col-

lagenase [225].

Gelatin is commonly employed for different phar-
maceutical and medical applications because of its bio-
compatibility since the harsh acidic or basic conditions 

used for its preparation eliminate the antigenicity 
associated with collagen. Several gelatin-based bio-
medical products are currently on the market, such 
as Gelfoam®, a sponge for haemostatic applications, 
Gelfi lm®, a fi lm used in neurosurgery and thoracic and 
ocular surgery, and CultiSpher-G®, gelatine microcar-
riers for cell culture [226]. 

Thanks to its haemostatic properties, like collagen, 
gelatin has been investigated for the development of 
biological glues and topical haemostatic agents [227]. 
In addition, there is a large volume of published stud-
ies on gelatin as a carrier for the delivery of growth 
factors (e.g., basic fi broblast growth factor (bFGF), 
transforming growth factor-beta 1 (TGF-β1) and bone 
morphogenetic protein 2 (BMP-2)), either in the form 
of disks [228] or microparticles [229–231]. Gelatin car-
riers have also been studied for the encapsulation of 
different types of cells, including osteoblasts [232], 
chondrocytes [233,234], MSCs [235,236] and preadipo-
cytes [237]. A few studies have recently reported the 
development of electrospun composite membranes 
coupling biodegradable polyesters giving mechanical 
stability and gelatin to promote cellular attachment 
and growth [238–240]. For instance, our group has 
recently developed novel polymeric micro-nanostruc-
ture meshes as a blood vessel substitute by combining 
ultra-fi ne fi bers of a commercial elastomeric polyure-
thane (Tecofl ex®) and gelatin by means of co-electros-
pinning techniques (Fig. 7) [241].

3.3 Silk Fibroin

Silks are fi brous proteins with remarkable tensile 

properties produced in fi ber form by silkworms 

and spiders. Silks of different species and within 

a species present functional differences as a result 

of different structures due to a variety of primary 

amino acid sequences, processing and the impact of 

(a) (b)

Figure 7 Tecofl ex®/gelatin composite meshes [241]. (a) Representative scanning electron microscopy micrograph of composite 

mesh obtained by co-electrospinning; gelatin fi bers (smaller) and Tecofl ex fi bers (larger) create a well-integrated network. 

(b) Confocal Laser Scanning Micrograph of ECs after 6 days of culture on composite mesh.



Andrea Morelli et al.: Polymers from Renewable Resources: Perspectives in Biomedical Applications DOI: 10.7569/JRM.2012.634106 

96  J. Renew. Mater., Vol. 1, No. 2, April 2013  © 2013 Scrivener Publishing LLC

environmental factors [242,243]. Silk fi bers from the 

fi laments of native silkworm (Bombyx mori) cocoons 

have been successfully used as suture material for 

centuries [242,244,245]. They consist of a core struc-

tural protein fi broin, composed of repetitive protein 

sequences, coated with sericin, a family of glue-like 

proteins that hold fi broin fi bers together [246]. Silk fi b-

ers contain at least two major structural fi broin pro-

teins, light and heavy chains (25 and 325 kDa, respec-

tively). Fibroin fi bers consist of layers of antiparallel 

β sheets forming the crystalline region of polypep-

tide chains dominated by the hydrophobic sequence 

GAGAGSGAAG[SG(AG)
2
]

8
Y [244,247].

The increased interest of the biomedical fi eld in silk 
fi bers is due to their slow degradability, high tensile 
strength and fl exibility, genetically tailorable compo-
sition and sequence, and permeability to water and 
oxygen. Moreover, they can be processed in aqueous 
solutions into different forms   (e.g., g el, sponge, pow-
der, membrane and electrospun fi bers), and can be eas-
ily modifi ed because of the availability of amine and 
acid side chains [242]. However, their application as 
biomaterial requires complete removal of contaminat-
ing sericin, which can cause adverse immune reaction; 
but properly purifi ed silk fi broin exhibits low immu-
nogenicity and elicits in vivo foreign body response 
comparable to the most popular synthetic biomateri-
als [244,248–250]. 

Silk fi broin has found interest for many applica-
tions in the biomedical fi eld, such as wound dressing 
[251], antithrombogenesis [252] and tissue engineering 
[242,244,253–260]. 

Sugihara et al. [251] tested silk fi lms for healing 
full-thickness skin wounds in rats, observing that 
after 7 days of implantation there was faster healing 
and lower infl ammatory response compared to tradi-
tional porcine-based wound dressings. Non-woven 
silk fi broin meshes produced from Bombyx mori were 
shown to support the growth of various human cell 
types, such as astrocyte, epithelial, fi broblast, kerati-
nocyte and osteoblast cells [242,261,262], that colo-
nized the fi ber surface and spread across gaps in the 
net. In addition, it was shown that fi broin meshes sup-
port the growth and angiogenesis of human ECs [263], 
and microvessel-like structures were observed when 
meshes were cultured in combination with outgrowth 
ECs [264].

Silk fi ber matrices have been investigated for 
ligament engineering [242,244], and different stud-
ies showed that silk sponges support osteogenesis 
or chondrogenesis of bone marrow-derived MSCs 
[254–257,265]. Compared to commercial poly(lactic-
co-glycolic acid) (PLGA) slurry-gel, silk fi broin hydro-
gels showed improved in vivo bone remodelling and 
maturation when implanted in critical-size defects in 

trabecular bone of rabbits [260]. Moreover, an in vivo 
study showed that electrospun silk fi broin mats led 
to the complete healing of a calvarial defect with new 
bone at 12 weeks [266]. Electrospun fi broin meshes 
were also shown to support in vitro MSCs attachment, 
spreading and growth [267]. A recent study demon-
strated that electrospinning aligned fi broin fi bers 
could guide the morphology and orientation of human 
MSCs [268]. In addition, the loading of BMP-2 and 
Hap into electrospun fi broin scaffolds were shown to 
signifi cantly enhance in vitro bone formation as shown 
by measures of mineralization and transcripts for 
genes involved in osteogenesis [269].

4 POLYESTERS

The possibility of exploiting renewable resources for 

the production of biodegradable poly(esters) for bio-

medical applications is nowadays considered a real-

istic strategy that can potentially replace their obtain-

ment from petroleum derivates. In particular, this is 

true for polyhydroxyalkanoates and poly(lactic acid)-

based polymers that are currently employed for dif-

ferent biomedical applications. In comparison to other 

classes of materials from renewable resources (i.e. 

polysaccharides and proteins), they are easily process-

able into desired shapes and sizes, and their physical, 

chemical, degradation and mechanical properties can 

be easily modifi ed to meet the specifi c requirements of 

different applications [7,33]. 

4.1 Polyhydroxyalkanoates

Polyhydroxyalkanoates (PHAs) are a class of aliphatic 

polyesters (Fig. 8) produced as intracellular carbon 

and energy storage compounds by many gram-pos-

itive and gram-negative bacteria under unbalanced 

growth conditions [245,270–273]. They comprise 

a large variety of homopolymers and copolymers 

(around 150 different types) offering a broad range of 

physical-chemical properties. In addition, a number 

of studies have shown the possibility to further vary 

the properties of PHAs by surface modifi cation or by 

their combination with other polymers, enzymes or 

inorganic materials [271,274,275]. For instance, poly(3-

hydroxybutyrate) (PHB) mechanical properties can be 

improved by the addition of plasticizer or by blend-

ing with other PHAs [272,276]. However, two of the 

major shortcomings of PHAs are their limited avail-

ability and the time consuming procedure for their 

extraction from bacterial cultures [276]. Therefore, 

the investigation of PHAs for biomedical applica-

tions has been mainly restricted to a few polymers, 

mainly PHB, copolymers of 3-hydroxybutyrate and 
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3-hydroxyvalerate (PHBV), poly(3-hydroxyoctanoate) 

(PHO) and copolymers of 3-hydroxybutyrate and 

3-hydroxyhexanoate (PHBHHx). Indeed, the oper-

ating cost of an industrial-scale extraction process 

might present a challenge for large-scale production of 

PHAs. However, the intensive research and develop-

ment activity in both academic and industrial sectors 

on the production of PHAs from different renewable 

sources, and mainly wastes therefrom, is expected to 

overcome these shortcomings [7].

Due to their biodegradability, biocompatibility 
and tuneable mechanical properties, different PHAs, 
such as PHB and PHBV, have been largely investi-
gated for biomedical applications. PHB has found 
interest as temporary stent, bone plate, patch, nails 
and screws [277,278], besides being widely investi-
gated for drug release and tissue engineering appli-
cations [275,279,280]. PHB and PHBV were proposed 
in the form of matrix for localized delivery of antibi-
otics [281–283] and anticancer drugs [284]. Retinoic 
acid-loaded PHB nanoparticles were recently devel-
oped showing good cytocompatibility and prolonged 
release of the loaded agent [285]. Moreover, PHB and 
PHBHHX nanoparticles loaded with antineoplastic 
agents were conjugated with tumor-specifi c ligands 
for targeted delivery to cancer cells [286,287].

PHB biocompatibility to various cell lines, includ-
ing osteoblasts, epithelial cell and ovine chondrocytes, 
has been reported by recent research articles [288,289]. 
Thanks to their piezoelectric properties, PHB and 
PHBV have been particularly investigated for the 
engineering of bone tissue. Materials based on PHB 

were shown to produce a consistently favorable in 
vivo bone tissue adaptation response with no evidence 
of an undesirable chronic infl ammatory response, as 
well as no conclusive evidence of extensive structural 
breakdown after implantation periods up to 12 months 
[290]. Bone was rapidly formed close to the material 
and subsequently became highly organized, with up 
to 80% of the implant surface lying in direct apposi-
tion to new bone. PHBV foams implanted in defects 
created in rat femurs have shown regenerative poten-
tial eliciting minimal infl ammation, as well as reduced 
fi brous tissue formation, throughout 6 weeks [291]. 
In addition, the incorporation of bioceramics, such 
as hydroxyapatite and bioactive glasses, into PHAs-
matrices has been proven to enhance their mechani-
cal strength and bioactivity performance [280,292,293]. 
Indeed, PHB and PHBV composite scaffolds loaded 
with hydroxyapatite particles exhibited compression 
mechanical strength of the same order of magnitude of 
several human bones, and in vivo studies showed that 
they can integrate well with the host tissue to promote 
bone growth [276,292,294].

Due to their good elasticity and mechanical strength 
in comparison to other PHAs, PHBHHx-based materi-
als have been recently investigated for cartilage tissue 
engineering. In vitro studies showed improved prolif-
eration and ECM synthesis of chondrocytes seeded on 
PHBHHx scaffolds in comparison with PHB scaffolds 
[295–297]. PHBHHx scaffolds seeded with chondro-
cytes and cultured in vitro for 10 days were implanted 
in rabbit articular cartilage defect, and after 16 weeks 
achieved successful full-thickness cartilage repair 
with white cartilaginous tissue showing histologically 
good subchondral bone connection [298]. As shown 
in Figure 9, a current research activity of our group 
is focused on the development of three-dimensional 
PHBHHx scaffolds for tissue engineering applications 
fabricated layer-upon-layer by means of a novel rapid 
prototyping technique based on the computer-con-
trolled wet-spinning of polymeric solutions.

PHBHHx fi lms were also shown to support the 
proliferation and differentiation of smooth muscle 
cells (SMCs) derived from rabbit aorta [299]. In addi-
tion, surface modifi cation by silk-fi broin coating was 
shown to signifi cantly improve the hydrophilicity 
of PHBHHx, and therefore, its ability to support the 
adhesion and proliferation of fi broblast and endothe-
lial-like cells for vascular tissue engineering [300,301]. 
In addition, PHBHHx scaffolds implanted into the 
tarsal defects of rats were proven to be suitable can-
didates for eyelid engineering, leading to full defect 
repair after 8 weeks, although they elicited infl amma-
tion in the fi rst 2 weeks [302].

A growing body of literature has investigated differ-
ent PHAs for the repair of blood vessels. For instance, 
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tubular poly(4-hydroxybutyrate) (P4HB) scaffolds 
seeded with SMCs were dynamically cultured in a pul-
satile fl ow bioreactor achieving confl uent-layered tis-
sue formation and mechanical properties comparable 
to those of native aorta [303]. After that, P4HB blood 
vessel scaffolds, after in vitro co-culture with SMCs 
and endothelial cells for 14 days, were implanted in 
the descending aorta of sheep resulting in full func-
tionality for up to 3 months [304]. In addition, anatom-
ically-shaped PH4B and PHO scaffolds fabricated by 
rapid prototyping techniques have been investigated 
both in vivo and in vitro for the engineering of heart 
valves [305–307].

4.2 Poly(lactic acid)

Poly(lactic acid) (PLA), together with poly(glycolic 

acid) (PGA) and their copolymers, are poly(α-hydroxy 

acids), a versatile class of biodegradable polyesters 

that have found great interest in the biomedical fi eld 

due to their biocompatibility, good mechanical prop-

erties, convenient processing, and also their high and 

safe biodegradability since their degradation products 

can be resorbed through normal metabolic pathways 

[7]. They have been approved by the FDA for various 

applications, resulting in a great variety of biomedical 

products currently on the market, particularly in the 

orthopedic fi eld, that include fi xation screws, suture 

anchors, meniscal darts, suture reinforcements, skin 

replacement materials and duramater substitutes 

[186,308,309].

PLA is commonly synthesized on an industrial 
scale, with an effi cient process in terms of yield and 
energy, by ring-opening polymerization of dilactide, 
the dimerization product of lactic acid. Considering 
that lactide is generally obtained by carbohydrates 
fermentation and that the macromolecule in turn 
degrades down easily back to lactic acid, PLA com-
plies with the concept of renewable and sustainable 
development and is classifi ed as an environmentally 
friendly material [310].

Lactide is a chiral molecule existing in two optically 
active forms, D-lactide and the naturally occurring 
isomer L-lactide, which can be produced in bacterial 
systems, whereas mammalian organisms only pro-
duce the D isomer. Therefore, the stereochemical 
structure of related polymers can be varied by polymer-
izing a controlled mixture of L and/or D isomers [311]. 
Poly(L-lactic acid) (PLLA) is a semicrystalline poly-
mer with good mechanical strength and toughness, 
while poly(D,L-lactic acid) (PDLLA) obtained from the 
polymerization of racemic lactide is a fully amorphous 
polymer (Fig 10).

Thanks to its good mechanical properties, PLLA 
has been widely investigated for load-bearing applica-
tions leading to a wide range of biodegradable products 
such as long-lasting sutures, as well as orthopedic fi xa-
tion screws, suture anchors, meniscal darts and suture 
reinforcements [227]. PDLLA, on the contrary, displays 
much lower mechanical strength and thus fi nds applica-
tion mainly in drug delivery systems [186]. PLA and the 
other poly(α-hydroxy acids) are degraded in the human 
body mainly through hydrolysis into monomeric acids 
and oligomers that are excreted via respiratory routes 

(a) (b)

Figure 9 Picture (a) and scanning electron microscopy micrograph (b) of 3D PHBHHx microstructured scaffold by rapid 

prototyping.
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and renal fi ltration [312]. PLA, having a methyl-pending 
group in the repeating unit, is more hydrophobic than 
PGA (no pending group), showing, in general, a slower 
degradation. In addition, the hydrolysis of amorphous 
PDLLA is faster than that of PLLA due to the absence 
of crystalline domains [274]. The fi rst degradation phase 
involves a nonspecifi c, bulk hydrolysis of ester bonds 
that can be catalyzed by the carboxylic acid end groups 
and degradation products leading in some cases to unde-
sired effects, such as premature failure of the implant, 
adverse tissue reactions, denaturation of loaded agents 
and worsening of control over drug release kinetics 
[313,314]. Inclusion of bioceramics (e.g., hydroxyapa-
tite nanopowder) into PLA matrices, besides enhancing 
material osteoconductivity [315,316], can represent a 
strategy to counteract the acidic degradation by stabiliz-
ing the pH of the environment surrounding the degrad-
ing polymer [317,318].

A number of studies have reported the employ-
ment of PLA for the development of tissue engineer-
ing scaffolds often in combination with stem cells, and 
different strategies have been explored to enhance its 
bioactivity [319–324]. For instance, Wei et al. [325] in a 
study demonstrated that in vivo release of BMP-7 from 
PLGA nanospheres immobilized onto PLLA scaffolds 
induced signifi cant ectopic bone formation through-
out the tissue-engineered construct. Due to PLLA’s 
hydrophobic nature, surface modifi cation techniques 
(e.g., plasma treatment) or its combination with other 
polymers such as collagen, chitosan or N-succinyl-
chitosan were explored in order to enhance PLLA 
scaffolds wettability and improve cellular attachment 
[326]. In addition, PLLA nanofi brous structuring has 
been proven to signifi cantly favor the adhesion and 
differentiation of different cell lines, such as MSCs 
[327], neural stem cells [328] and cardiomyocytes [329].

Thanks to the possibility of varying their biodeg-
radation, mechanical and processing properties by 
adjusting the lactide/glycolide molar ratio or the lac-
tide isomeric form (L- or D,L-), poly(lactic-co-glycolic 
acid) (PLGA) copolymers have been extensively inves-
tigated for their applicability in drug delivery [330-338] 

and tissue engineering [7,215,339-342] applications.  
This has led to marketed products, such as a PLGA 
drug delivery vehicle for prostate cancer and endo-
metriosis (LUPRON DEPOT®), and a PLGA-collagen 
membrane for tissue regeneration (CYTOPLAST 
Resorb®) [186]. Our group has consistently investi-
gated the possibility of incorporating therapeutic and 
bioactive agents into PLGA micro- and nanocarriers as 
reported in Figure 11 illustrating a study on retinoic 
acid (RA)-loaded PLGA ultra-fi ne fi ber meshes that 
were able to maintain a sustained, controlled release 
for more than 3 months [343].

Several other copolymers starting from PLA or 
lactide dimer, such as PLLA-co-PCL [344,345], PLLA-
co-trimethylene carbonate [346], poly(L-lactide-co-
1,5dioxepan-2-one) [347], and PLLA-co-propylene 
glycol-co-PLLA [348], have been recently developed 
as biomaterials for tissue engineering applications. 
However, these materials are beyond the scope of this 
article since they cannot be wholly classifi ed as renew-
able materials due to the heavy presence of petro-
chemical-origin components in their structure.

5 CONCLUSIONS

Biobased polymers, as attained from their natural 

counterparts often with no heavy chemical modifi ca-

tion, represent an actual reality for biomedical appli-

cations, as witnessed by several biomedical products 

already present in the market. Polymers from renew-

able resources are characterized by important distinc-

tive structural features that impart susceptibility to the 

biodegradability and biocompatibility attributes of 

the relevant items, which are of utmost signifi cance 

in biomedical applications. It is clear, however, that 

in order to further strengthen the use of biobased 

polymeric materials in the biomedical fi eld, research 

institutions should focus their attention on the devel-

opment of biotechnological strategies aimed at 

increasing the materials batch-to-batch reproducibility 

in terms of composition and molecular mass, which 

Figure 11 RA-loaded PLGA meshes by electrospinning [343]: (a) Picture of RA-loaded mesh; (b) scanning electron microscopy 

micrograph of RA-loaded mesh; (c) Confocal Laser Scanning Micrograph of MC3T3-E1 cells grown on RA-loade d PLGA mesh. 

(a) (b) (c)
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are determinant parameters in affecting the biocom-

patibility and biodegradability of the relevant items. 

Finally, another important aspect that should be taken 

into account when proposing biobased polymers for 

biomedical applications is the sustainability of the 

renewable resources exploited for their obtainment, 

which should be considered a compulsory stringent 

requirement.
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