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ABSTRACT:  This paper reviews a part of the rich fi eld of oleochemicals, their synthesis and applications as precursors 
for polymers by referring to published data rather than discussing details of different reactions. The hope 
is to help readers in fi nding leads in the vast research area carried out over a long period of time, to avoid 
traps and to inspire new ideas for oil-based products and processes.
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1 INTRODUCTION

Vegetable oils and fats have been used for centuries in 

different non-food applications such as paints, soaps, 

lubricants, or as a glycerin source. Today, a wide spec-

trum of oleochemicals is generated from oils and fats 

including fatty acids, fatty esters, glycerin, fatty amines 

and fatty alcohols [1–4]. Oils have been studied exten-

sively for applications in food, biofuels,  cosmetics etc., 

but this review will cover only their use in polymeric 

materials. 

Oils are an excellent substrate for different chem-
istries, with reactive sites being ester groups, double 
bonds and allyl hydrogens [5–8]. Catalytic cracking, 
like in the petroleum industry, can be applied to pro-
duce gasoline and light olefi ns such as propane and 
butane [9–12]. 

Biological oils and fats include triglycerides from 
plants, animals, fi sh and algae, the latter offering 
some new economic advantages. Utilization of oils 
and fats is often justifi ed in various publications by 
depletion of petroleum. This is not a valid argument 
since only about 7% of petroleum is used for chemicals 
and these volumes will be available for a foreseeable 
future. Another argument often used is that natural 
products give biodegradable materials which is not 
always the case, since even biodegradable oils when 
chemically transformed, polymerized or crosslinked, 
lose biodegradability. Biodegradability is often touted 

as a desirable property, which is true if materials are 
used for some short-term applications such as packag-
ing, but not if the materials are intended for long-term 
applications such as coatings, thermal insulation in 
houses, electrical insulation (transformers, insulators), 
etc. Utilization of vegetable oils for industrial products 
is warranted from the standpoint of availability, stable 
prices, sustainability, ecological reasons (sequestration 
of carbon dioxide by plants), better properties and 
economics.

2 NATURE OF BIOLOGICAL OILS

The composition of biological oils is discussed in 

many books and papers and we will not analyze it 

further here [1, 5, 13–16]. When considering oils and 

fats for designing new materials one has to bear in 

mind their heterogeneity. Typical edible oils (soybean, 

corn, canola, sunfl ower, peanut and palm) consist of 

about fi ve major fatty acids with 0–3 double bonds 

and 18 carbons (stearic, oleic, linoleic and linolenic), 

except palmitic oil which has 16 carbons and no dou-

ble bonds. Other fatty acids may be present at less than 

a few percent and will not be further considered here. 

Five fatty acids can build around 36 combinations of 

triglycerides even when we ignore positional isomers. 

For example, oleic-O and linoleic-L can give these 

 triglycerides: OOO, OLO, LOL and LLL, but OLO is 

considered equivalent to OOL, and LOL is equiva-

lent to LLO. Each combination is characterized by the 

number of double bonds, which may vary from 0–9. 

Another source of heterogeneity is the double bond 

position in components with the same number of 
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double bonds. Variations in oil composition are also 

related to climate conditions. The effect of composition 

on properties of polyols is discussed in several papers 

[17, 18]. High saturated fatty acids content (usually 

stearic and palmitic) is characteristic for fats—they are 

solid at room temperature. Fish oil and algal oils are 

often characterized by a higher content of saturated 

fatty acids, some longer fatty acids with 20–24 car-

bons, but also with four, fi ve or even six double bonds. 

One double bond in many fatty acids (oleic, linoleic, 

linolenic, ricinoleic) is positioned between the 9th and 

10th carbon. This is signifi cant for producing fatty 

acids with 9 carbons by ozonolysis, but also infl uences 

crosslinking density when functionalized oils are used 

to make polymer networks. Triglycerides with regular 

spacing of double bonds, such as triolein, give desir-

able network structures and better properties [17, 19]. 

Vegetable oils are aliphatic in nature with signifi -
cant chain fl exibility giving generally soft and not 
very strong materials even at a relatively high cross-
linking density. Increasing glass transition and rigid-
ity can be accomplished by introducing aromatics in 
the structure. Triglycerides do not have aromatic rings 
but non-triglyceride oil such as cashew nut shell liquid 
does, which opens new opportunities [20, 21]. When 
crosslinked polymers are made through crosslinks at 
the 9th carbon, the tail from the 10th to 18th carbon is 
left as the side chain. This “dangling chain” acts as a 
plasticizer in many applications. Saturated fatty acids 
from triglycerides are even longer dangling chains in 
crosslinked networks

Molecular weight of triglycerides can be precisely 
calculated from the fatty acid composition as obtained 
by GC/MS [22]. However, additional method is 
required if free fatty acids, mono- and diglycerides are 
present. Most edible oils with predominantly C18 fatty 
acids have molecular weights close to 870 (tristearin-
M = 891; trilinolein M = 879). Palm oil with dominant 
palmitic acid is an exception with a lower value (palm 
kernel oil M~680). Vapor pressure osmometry is a 
good method for determination of Mn of oils and mod-
ifi ed oils, but it is sensitive to low molecular weight 
impurities. Size exclusion chromatography (SEC) is 
often used for reporting molecular weights but the 
measurements are usually very inaccurate, especially 
when calibrated with polystyrene standards. Mass 
spectrometry allows identifi cation of the molecular 
weights present, but quantifi cation may not be satis-
factory. Soybean oil has on average 4.5 double bonds 
per triglyceride. This is the number average value, 
whereas the weight average (second moment of dis-
tribution) is about 5 [18]. Most oils crystallize at low 
temperature but those with a signifi cant amount of 
saturates are solid at room temperature. Triglycerides 
form coils in solution which are smaller in molecules 

with more unsaturated fatty acids. They are even 
smaller in epoxidized oils although epoxidation 
increases molecular weight, but larger when converted 
to polyols by ring opening of epoxidized oils, which 
is easily observed by size exclusion chromatography. 
Because of the presence of unsaturation, oil and oil-
based products are prone to oxidation which may lead 
to the break-up of the fatty acid chains to off-smelling 
short aldehydes, acids, ketones and alcohols, which is 
a concern in applications [23]. Products from oils and 
fats have ester bonds which are sensitive to hydroly-
sis, especially in coating applications. Although long 
fatty acids shield ester bonds to a degree, it should be 
reckoned that long-term exposure to moisture and an 
alkaline environment will cause some deterioration of 
properties.

3 DIRECT POLYMERIZATION OF OILS

Some oils with conjugated double bonds (tung, 

calendula) self-polymerize easily when exposed to 

air. High linoleic oils like linseed have been used for 

centuries as drying paints. According to their dry-

ing abilities vegetable oils were categorized as dry-

ing (linseed, tung, poppyseed, perilla, and walnut 

oils) with an arbitrary iodine value of IV above 140, 

semi-drying (IV ~ 125–140) and non-drying (IV below 

125) [1]. Direct polymerization of oils is carried out on 

an industrial scale to obtain specifi c products such as 

“blown oils” and “bodied oils.” Crosslinking oils with 

sulfur (sulfur chloride) produces “factice” (or Faktis) 

[24, 25]. Internal 1,2 disubstituted nonconjugated dou-

ble bonds have low reactivity and do not polymerize 

readily. Thermal polymerization (heat bodied polym-

erization) is carried out by simple heating of linseed or 

soybean oil at 290–330°C in the absence or in the pres-

ence of catalysts such as antraquinone [26–28]. The 

products are viscous polymeric oils accompanied by 

a weight loss of 20–25% due to volatile organic com-

pounds resulting from thermal degradation [29]. The 

proposed mechanism involves the migration of dou-

ble bonds at high temperature and formation of con-

jugated double bonds, which are then involved in the 

Diels-Alder type of reactions with neighboring chains 

[28, 30–34]. This mechanism was recently challenged 

[35]. The second industrial process for “air blown oils” 

[36, 37] consists of bubbling air through soybean oil at 

temperatures of 100–110°C for a relatively long time 

(30–50 hours). The result is a viscous liquid oligomer 

mixture. Unfortunately, the resulting oils have a range 

of oxidation products such as hydroxyl, carboxyl, alde-

hydes, ketones and hydroperoxides. The mechanism 

of radical oxidation of vegetable oils involves forma-

tion of highly reactive allylic hydroperoxides, which 
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generate low molecular compounds or oligomers 

[2, 38–40]. Because of the 1,2 substitution with electron 

releasing substitutents, the internal double bonds are 

rich in electrons and thus susceptible to the attack of 

electron defi cient species such as organic radicals and 

cations [41]. Cationic polymerization of natural oils in 

the presence of 2–2.8% of BF
3
 is described in patents 

and papers [42–44]. Cationic homopolymerization of 

soybean oil and copolymerization of soybean, fi sh 

and tung oils with vinyl monomers, such as styrene, 

divinyl benzene, norbornene, dicyclopentadiene in 

the presence of 4–7% of BF
3
*Et

2
O at 110°C, was pub-

lished recently [45–51]. Polymerization of fatty acids 

or of fatty acid methyl esters in the presence of BF
3
 was 

described in the literature [52–54]. Oligomerization 

of fatty acids to dimeric and trimeric acids catalyzed 

by acidic clays at higher temperatures (230–240°C) 

is described in several patents [55–60]. Cationic 

polymerization of soybean oil catalyzed by superac-

ids (HBF
4
, CF

3
SO

3
H, HSbF

6
,
 
etc.) under mild reaction 

conditions (temperature below 100°C, atmospheric 

pressure, at 1% catalyst concentration, over several 

hours) leads to viscous liquids or solids depending on 

the  reaction time [41, 61]. The presence of a superacid 

leads to almost quantitative conversion of cis to trans 

double bonds. The postulated mechanism is similar to 

that proposed for thermal polymerization, i.e., forma-

tion of conjugated double bonds in the fi rst step, fol-

lowed by a Diels-Alder addition of diene to a double 

bond from a neighboring fatty acid. Viscosity of the 

polymerized oils increases with the reaction time and 

would eventually lead to a solid product. Polymerized 

oils were tested as plasticizers in rubbers with very 

good results [62]. Since retention of double bonds in 

polymerized oils is high, these oils are useful for print-

ing inks [26]. 

4  EPOXIDIZED OILS AS A PLATFORM 
FOR NEW MATERIALS

Epoxidation is a controlled oxidation of double bonds 

to form three member cyclic ethers. Epoxidation of oils 

and fatty acids was widely studied because of its prac-

tical signifi cance [63–88]. Standard systems for epoxi-

dation of fatty acid derivatives involve oil, solvent or 

no solvent, an acid catalyst, an organic acid, usually 

acetic or formic, which are coverted to peracids when 

hydrogen peroxide is added [65, 89–91]. 

Conversion in solution is usually higher than in 
bulk. Mechanisms in homogeneous and heteroge-
neous epoxidation catalysis were treated in a book [92]. 
Epoxidized soybean and linseed oils are well estab-
lished secondary plasticizers for PVC. Epoxidized 
vegetable oils (soybean and linseed) is one of the 

largest industrial applications of vegetable oils, with 
an annual production of about 200,000 tons [2]. 

5 EPOXY RESINS

Epoxidized oils are biobased epoxy resins when cured 

with proper curing agents. They have internal epoxy 

groups which are not as reactive as terminal epoxy 

groups. As a consequence, amines, which are good cur-

ing agents for resins with terminal epoxy groups, do 

not work with epoxidized oils, but rather easily attack 

ester bonds in triglycerides. Internal epoxy groups can 

be polymerized directly in the presence of acid cata-

lysts such as Lewis acids [93, 94] or superacids [95, 96] 

and anhydrides [97–99]. The study of polymerization 

of a model compound with an internal epoxy group 

in the presence of methyl trifl uoromethanesulfonate 

revealed the complexity of the process and number 

of reaction products [100]. Cationic photoinitiated UV 

cured epoxidized oils were used as matrix resins for 

composites with relatively low glass transition and 

with moderate strength [74, 101]. Effi cient crosslinking 

compounds for epoxidized vegetable oils are boron 

compounds [102, 103]. 

Anhydride-cured epoxy resins from vegetable oils 
are slow reacting and may require long curing times 
but produce strong thermoset materials [98, 104]. 
Sometimes they are co-cured with petrochemical 
epoxy resins to elevate properties [105]. They require 
aromatic curing agents such as phthalic anhydride 
in order to elevate glass transition and strength to an 
acceptable level [98]. Epoxidized oils cured with aro-
matic and cycloaliphatic anhydrides are used in the 
production of artifi cial stone [106]. Epoxidized oils with 
terminal epoxy groups were prepared by co-metathesis 
of triolein with ethylene with subsequent epoxidation 
of double bonds [19], or by epoxidation of triglycer-
ide of undecenoic acid [107] or allyl modifi ed oils and 
fatty acids. Epoxidized oils are generally not miscible 
with aromatic dianhydrides, which are required to 
boost Tg and properties.

6  RING OPENING OF EPOXY GROUPS 
TO GENERATE DIFFERENT 
PRODUCTS

Epoxy rings can be opened with a range of com-

pounds. A major part of ring opening is carried out 

to produce polyols for polyurethanes. Opening with 

inorganic acid such as HCl, and HBr gives polyols with 

chlorine and bromine in their structure. Epoxidized 

soybean oil gave solid (grease) brominated and chlo-

rinated polyols of lower reactivity [22]. Ring opening 
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of epoxy groups is the same process used to polym-

erize epoxidized vegetable oils and fatty acids, but 

to obtain polyols of relatively low molecular weight 

a large excess of alcohols (methanol, ethanol) in the 

presence of acid catalysts must be used. Commercial 

polyols are also obtained by ring opening with acetic 

acid [108]. Polyols resulting from ring opening with 

formic [109], fatty [110] and lactic [111] acids have 

been reported. Reacting epoxidized rapeseed oil with 

monobutylamine at 180°C at stoichiometric ratio is 

claimed to produce a polyol with amine value 100–110, 

OH value 300–330 and viscosity of 5000–7000 mPa.s. 

However, partial aminolysis of ester bonds took place 

[112]. Ring opening of epoxy group with amides gives  

hydroxyalkylamides, with H
2
S hydroxymercaptans, 

with secondary amines hydroxylamines, with HCN 

hydroxynitriles, with NaHSO
3 

hydroxysulfonates 

[113]. Azides with vicinal OH groups are generated 

by ring opening of epoxidized oil with NaN
3
 [8, 114, 

115]. A family of monomers polymerizable by radical 

initiation useful for biobased polyesters is obtained by 

epoxy ring opening with acrylic acid and methacrylic 

acid [116–122]. Ring opening results in the formation 

of a secondary OH group and an adjacent group or 

hydrogen. Thus, an epoxidized oil would give a pol-

yol with functional or nonfunctional groups which 

may be used in a dual curing mechanism. Epoxidized 

oils and fatty acids ring opened with allyl alcohol were 

cured with maleic anhydride using esterifi cation and 

radical polymerization mechanisms to give excellent 

thermosetting materials [123, 124]. Polyols are the 

most important group of industrial products obtained 

from vegetable oils used for urethane foams, coatings, 

adhesives, sealants and elastomers [113, 125–127]. 

7 HYDROFORMYLATION

Hydroformylation is a high pressure catalytic reac-

tion of carbon monoxide and hydrogen with double 

bonds to produce aldehydes, which can be subse-

quently oxidized to acids or reduced by hydrogena-

tions to alcohols or amines by reductive amination 

[128–130]. Hydroformylation is catalyzed by transi-

tion metal carbnyls whose activities vary from very 

active rhodium to low activity iron and nickel. A gen-

erally accepted series of the activities of the unmodi-

fi ed metal is as follows [131]: Rh » Co > Ir, Ru > Os > 

Pt > Pd » Fe > Ni.

The catalysts of industrial importance are rhodium 
carbonyls (very effi cient but expensive) and cobalt car-
bonyls (less effi cient, requiring higher temperatures 
and pressures but catalyzing both hydroformylation 
and hydrogenation) [132]. Vegetable oils and fatty 
acids can be directly converted to polyols without 

any by-products and with high atom economy (all the 
reactants end up in the product without by-products). 
Hydroformylation of oils was studied extensively for 
the preparation of polyols [132–138] but even more 
for fatty acid derivatives [139–150]. Polyols prepared 
by this method have all primary OH groups and 
are thus very reactive unlike epoxidation polyols. 
Hydroformylation polyols produce softer polyure-
thanes than polyols by epoxidation because of higher 
molecular weights at the same functionality and an 
extra CH2 group per double bond [18, 151].

8 POLYURETHANES 

Polyurethanes are the most versatile type of polymers 

since they allow tailoring of properties by the end user 

by a simple combination of components and their 

ratios [152–155]. Two essential components for prepa-

ration of polyurethanes are polyols and isocyanates, 

but major efforts in the fi eld of renewable materials is 

in the area of polyols. Isocyanates for foams must be 

aromatic in order to have the high reactivity necessary 

for the process, but aliphatic isocyanates are used in 

coatings, adhesives and elastomers. The only commer-

cial oil-based diisocyanate (Dimeryl@) known to us 

is prepared by Cognis (now part of BASF). DDI 1410 
diisocyanate is prepared from dimerized fatty acids 

and has low viscosity at 25°C and NCO content 14.4%. 

One of the aplications is in coatings. A new linear satu-

rated terminal diisocyanate derived from azelaic acid 

via Curtius rearrangement was synthesized and used 

to prepare polyurethanes [156]. Polyisocyanates from 

plant oil triglycerides were prepared by bromination 

of triglycerides at the allylic positions by a reaction 

with N-bromosuccinimide, and in the second step, 

these brominated species were reacted with AgNCO 

to convert them to isocyanate-containing triglycerides 

[157]. In a similar fashion isothiocyanate derivatives of 

soybean oil triglycerides were prepared, but the result-

ing polyurethanes displayed poor properties [158]. 

A number of companies produce polyols from 
vegetable oils [127, 159]. Several reviews on oil-based 
polyurethanes were published recently [15, 23, 127, 
160, 161]. Oil-based polyols are prepared by meth-
ods including but not limited to epoxidation and 
ring opening as discussed earlier, esterifi cation/
transesterifi cation [110, 162–167], hydroformylation 
[132, 136, 137, 147, 168–172], ozonolysis [173–179], 
hydrogenation of acids [96, 180], glycerolysis and 
glycolysis, and oxidation. Oxidation of oils to polyols 
can be carried out in the presence of osmium tetrox-
ide. It is used mainly for the cis-hydroxylation of ole-
fi nic double bonds to give glycols. For this purpose 
it is the smoothest and most effi cient general reagent 
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known [181–183]. Of course, castor oil is a natural 
triol used widely in the polyurethane industry for 
various products [154, 166, 184–200]. 

Polyols can be multifunctional, suitable for adhe-
sives, coatings and foams, or they can be diol prepoly-
mers which are used in thermoplastic polyurethane 
elastomers. The latter are usually polyesters with 
molecular weights from 1000–5000 and terminal OH 
groups. They are synthesized from hydroxy fatty acids 
obtained by hydroxylation of oleic acid or ricinoleic 
acid, or products of ozonolysis such as hydroxynon-
anoic acid [179, 201–205]. A special form of polyols 
having hyperbranched structure were tried in foams 
but their natural application is in coatings [164, 165, 
167, 206, 207]. Alkoxylation of monomers or oil-based 
polyols is often used to alter reactivity or decrease vis-
cosity. Ethoxylation converts secondary hydroxyls to 
primary hydroxyls, while propoxylation may be used 
to increase molecular weight to the desired range and 
decrease viscosity [125, 208, 209]. Catalysts used are 
usually cationic or DMC (double metal catalyst) since 
anionic catalysts would destroy ester bonds [210, 211]. 

9 POLYESTERS

Esterifi cation is often used for the preparation of 

different types of precursors for polymers [212]. 

Transesterifi cation was used to obtain polyols and pol-

yesters [162, 179, 213–216]. Enzyme-catalyzed esteri-

fi cation works well for low molecular compounds 

[217–221]. “Transesterifi cation of Vegetable Oils: A 

Review” discusses acid and base catalysts [222]. 

An interesting esterifi cation reaction is the prepa-
ration of estolides. Estolides are a special class of 
fatty acid esters in which the carboxyl from a fatty 
acid reacts with a double bond on a second fatty acid 
to form an ester. In fact, the formation of estolides is 
the result of the addition of carboxyl group of one 
fatty acid to the double bond of the second fatty acid 
[223–231]. Estolides are also products of self-conden-
sation of hydroxy-fatty acids such as ricinoleic acid. 
They are characterized by the estolide number (EN) 
defi ned as the average number of fatty acids (n) added 
to a base fatty acid (EN = n + 1) [228]. Estolides are 
found naturally in some plant and fungus oils [229, 
230]. Intense studies were carried out on estolides 
prepared from oleic acid in the presence of acid cata-
lysts (H2SO4, HClO4, p-toluene sulfonic acid, acidic 
clays, methanesulfonic acid, etc.) [223–228]. The best 
catalyst for the synthesis of estolides from oleic acid 
is HClO4, leading at 50°C to an estolide number of 
n=10 in and yield of 76% (the highest from all the acid 
catalysts mentioned) [228]. The formation of estolides 
from unsaturated fatty acids and hydroxy fatty acids 

is catalyzed effi ciently by some enzymes (lipase) [232–
235]. The ester linkages of estolides are more resistant 
to hydrolysis than the triglyceride ester bonds. When 
compared to petroleum-based fl uids, soy-based fl u-
ids and petroleum oils’ estolides have superior bio-
degradability and superior lubricating properties 
[228]. Estolides are used fi rst as biodegradable lubri-
cants. They are also used for preparation of special 
surfactants used in cosmetics and coatings [218, 228, 
236]. Oleic acid estolides show a very good stabil-
ity toward oxidation, having better oxidative stabil-
ity than petroleum and vegetable oil-based fl uids 
[237]. Hydrogenation of estolides produces saturated 
estolides, which are much more oxidatively stable 
than the unsaturated ones [228, 237]. It is interesting 
that the synthesis of estolides from oleic acid generates 
as side products two lactones: delta-stearolactone (a 
six-membered ring) and gamma-stearolactone (a fi ve-
membered ring) [238, 239]. 

Lactones are an interesting class of compounds 
with many possibilities as industrial intermediates. 
Reacting lactones with amines produces hydroxyl 
amides, which serve as intermediates for biodegrad-
able detergents [240]. 

Oil-based alkyd resins have been used extensively 
in coatings [82, 241–247]. They are a special group 
of polyesters, generated from mono- and diglycer-
ides and diacids or diisocyanates (urethane alkyds) 
[152, 155] and will not be discussed further here.

10  CARBONATES FOR 
NON-ISOCYANATE 
POLYURETHANES 

Organic carbonates (esters of carbonic acid, H
2
CO

3
), 

are an important class of compounds. Low molecular 

weight linear or cyclic carbonates such as dimethyl-, 

diethyl-, ethylene and propylene carbonate, and glyc-

erol carbonate, are commercial products characterized 

by high boiling and fl ash points, low odor, low evapora-

tion rates and toxicity, good biodegradability and high 

solvent power. They are used in a number of applica-

tions [248] as inert solvents and/or reactive intermedi-

ates [249], components in lubricants [250–252], cosmet-

ics [253], plasticizers [254] and fuel additives [255, 256]. 

In contrast, oleochemical carbonates from animal- and 

plant-based feedstocks, are not currently used in large 

quantities in many commercial applications. Only in the 

last decade have they earnestly been examined as poten-

tially useful materials in lubricants, cosmetics, plastics 

or as starting materials for new chemicals [257–259]. 

Hyperbranched polyglycerol containing a terminal fi ve-

membered cyclic carbonate groups was used for modifi -

cation of the bisphenol A-based epoxy resin [260].
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A number of different routes can be used for prepar-
ing carbonates [257, 261]. The phosgenation reaction 
is a very important industrial method for producing 
carbonic acid esters, although phosgene is a highly 
toxic and corrosive reagent [254]. The reaction between 
phosgene and hydroxy compounds proceeds readily, 
it can be run continuously, and provides high yields 
of carbonates. To avoid the toxicity of phosgenation, 
new environmentally friendly processes were devel-
oped, such as oxidative carbonation [262, 263]. In this 
process dimethyl carbonate is produced from metha-
nol, carbon monoxide and oxygen, in the presence of a 
copper chloride catalyst. Dimethyl carbonate is a good 
starting compound for the synthesis of different car-
bonates by carbonate interchange reaction, i.e., trans-
esterifi cation between a low molecular weight dialkyl 
carbonate and an alcohol [258]. Reaction between 
alkylammonium hydrogen carbonates and halohy-
drins is an interesting route for cyclic carbonate synthe-
sis. Aliphatic halohydrins react with alkylammonium 
hydrogen carbonate (obtained from alkylammonium 
hydroxide and carbon dioxide) and produce fi ve-
membered cyclic carbonate compounds [264, 265]. The 

reaction between epoxides and carbon dioxide under 
pressure in the presence of various catalysts produces 
fi ve-membered cyclic carbonates, and it is of interest 
because of the direct use of carbon dioxide [266, 267]. 
This method is very well suited for cyclic carbonate 
synthesis from epoxidized vegetable oils, which are 
inexpensive starting materials. Direct reaction of CO2 
with epoxidized oils or epoxidized fatty acids can be 
carried out under both atmospheric and elevated pres-
sure [268, 270]. The catalyst mixture of tin(IV) chloride 
pentahydrate/tetrabutylammonium bromide was 
found to improve conversion of epoxidized oil to the 
cyclic carbonate [271]. When supercritical CO2 is used, 
the tetrabutylammonium bromide catalyst system 
shows the highest reactivity and yield of nearly 100%. 
Tetrabutylammonium hydroxyl, LiBr and KBr show 
little or no activity, probably due to their poor solubil-
ity in both ESBO and supercritical CO2 [272, 273]. 

A silica-supported ionic liquid was found to be an 
effi cient heterogeneous catalyst for solventless syn-
thesis of cyclic carbonates from epoxides and carbon 
dioxide under supercritical conditions [274]. This 
reaction does not require organic solvents and a high 
purity product is obtained. One possible way for car-
bonate synthesis is oxidative carboxylation of olefi ns 
in ionic liquids [275]. Organic carbonates can be pre-
pared enzymatically using lipases [276, 277]. 

Five-membered cyclic carbonates react relatively 
easily with most hydrogen donor compounds [248]. 
Aromatic hydrogen donor compounds, such as phe-
nol and phenolic resins [278], thiophenols [279], and 
aniline [280], produce alkylated aromatics. Aliphatic 

hydrogen donor compounds react differently than their 
aromatic analogues. Alcohols produce carbonate esters 
as a result of transesterifi cation carbonates [281–283]. 
The reaction of cyclic carbonates with amines is 
 utilized for the synthesis of polyurethanes by a non-
isocyanate route [284–289]. 

This reaction also forms a hydroxyl group at the 
ß-carbon atom of the polyurethane chain that is 
hydrogen bonded to the urethane carbonyl. Materials 
containing intramolecular hydrogen bonds display 
resistance to organic chemicals that is 1.5 to 2 times 
higher than the materials of the similar chemical struc-
ture without such bonds [286]. These materials have 
better thermal stability than regular polyurethanes 
because of the absence of thermally unstable biurets 
and allophanates. Due to the presence of hydroxyls, 
they absorb water much more than isocyanate-based 
polyurethanes, and may have applications where 
water absorption and retention is desirable. Non-
isocyanate polyurethanes derived from vegetable oils 
have ester groups, and in a chemical sense they are 
polyester-polyurethane-polyhydroxyl compounds. 

Non-isocyanate polyurethanes prepared from 
carbonated SBO and aliphatic diamines: 1,2-ethyl-
enediamine, 1,4-butylene-diamine, and 1,6-hexa-
methylenediamine, had tensile strength in the range 
of 0.5–6 MPa and elongation at break of 71–219% [24]. 
One of the possible ways to increase strength and 
rigidity is to utilize diamines with rigid aromatic or 
cyclic structures. The samples prepared with carbon-
ated soybean oil and m-xylylene diamine, p-xylylene 
diamine, and isophorone diamine displayed tensile 
strength up to 11.1 MPa, and elongation up to 433% 
[290]. Triglyceride or fatty acid cyclic carbonates are 
relatively stable and the reaction with amines is slow, 
limiting their application in polyurethanes. Lithium 
salts were among the most effective catalysts, but their 
insolubility in vegetable oil carbonate systems and 
solvent requirement make their application inconve-
nient. Tin and titanium organic compounds showed 
a catalytic effect and improved reactivity of amines 
[270]. Linseed and soybean oil-based polyurethanes, 
prepared via the non-isocyanate route by reacting the 
seed oil carbonates with 1,2-ethane diamine (EDA), 
1,4-butane diamine (BDA) and isophorone diamine 
(IPDA), displayed glass transition temperatures from 
17°C to 60°C. Polyurethanes obtained from linseed 
oil had higher crosslink density, higher stiffness and 
reduced water swelling and toluene uptake [291]. 
A terpene-based, cyclic limonene dicarbonate does not 
contain ester groups. It is an interesting starting mate-
rial for different applications and for non-isocyanate 
polyurethane synthesis. With increasing amine func-
tionality of the curing agent, it was possible to increase 
both stiffness and glass transition temperatures [292]. 
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11 OZ ONOLYSIS

Ozonolysis was already mentioned as an oxidative 

method for precise cutting of double bonds and gen-

erating ozonides, which can be further oxidized to car-

boxylic acids or reduced to aldehydes or alcohols [175, 

293, 294]. Cutting fatty acids with one double bond 

would give two components, one being hydroxy acid 

or aldehyde-terminated acid after reduction, or diacid 

after oxidation. The second component under the same 

conditions would be a monol, monoaldehyde or mono 

acid. Fatty acids with two double bonds would in addi-

tion generate a diol, dialdehyde or diacid. Fatty acids 

with three double bonds would generate one more 

diol, dialdehyde and diacid, which are useful compo-

nents for a range of new polymeric products [175]. The 

beauty of ozonolysis is that it is a fast and precise, low 

temperature process. However, because the reaction 

is highly exothermic, it must be run slowly to main-

tain low temperature. Ozonolysis is a rather expensive 

process and the size of the reactors is limited because 

of the explosive nature of the process. The applicabil-

ity for large-scale industrial products is limited to high 

value products such as azelaic acid or hydroxynona-

noic acid. Dilactone from hydroxynonanoic acid was 

polymerized to a high molecular weight polyester 

[205]. The main factor in the price of the products is the 

cost of electricity for ozone generation. Triglycerides 

of unsaturated fatty acids are produced by ozonolysis 

and reduction of ozonides, solid triols and by-products 

[176]. Oxidation of trglyceride ozonides would give 

triacids as well as useful by-products. Triacids can be 

very good fl exibilizing curing agents for epoxy resins. 

Aldehydes generated by this process are intermediates 

for other products. Ozonolysis of oils in the presence of 

diols and NaOH leads to aldehydes and acids, which 

after esterifi cation, result in terminal OH groups [295]. 

Ozonolysis was used to prepare 9-aminononanoic acid 

from  soybean oil in four steps [296]. 

12  VINYL PRECURSORS FOR RADICAL 
POLYMERIZATION

As was stated earlier, direct polymerization of oils in 

the presence of cationic initiators is not fast enough for 

many applications and requires strong acid catalysts. 

Oils are often used for electrical insulation because of 

their high dielectric strength, low dielectric constant 

and low dielectric losses. However, they tend to dete-

riorate with time due to oxidation and partial polym-

erization. Instead, polyurethanes are used as casting 

and embedding compounds for solid insulation trans-

formers, but the reactive systems are sensitive to mois-

ture producing bubbles in the cured materials [188]. 

Preparation of solid electrical insulation by radical 

polymerization would solve many of these problems. 

The process can be carried out at room temperature or 

slightly above, the compounds are stable in storage for 

a long time, they are insensitive to moisture and the 

material would retain a low dielectric constant and die-

lectric losses. Such compounds should have terminal 

double bonds as obtained by allylation, cross-metathe-

sis with ethylene, ring opening of epoxidized oils with 

acrylates, or simultaneous addition of bromine and 

acrylate to the double bonds [297] or maleinization 

[298, 299] of oils. Only acrylated oils have suffi cient 

reactivity for radical polymerization due to the pres-

ence of carboxyl groups. Allyl double bonds and higher 

olefi ns have low reactivity due to the presence of allyl 

hydrogens which are good transfer agents. However, 

copolymerization of terminal olefi ns with maleic anhy-

dride (MA) is viable because of the absence of homopo-

lymerization of MA. The degree of polymerization of 

allyl groups in allylated oils was low and the product 

was very soft [123]. Hard polymers were obtained 

with MA participating in radical copolymerization 

and esterifi cation reactions with hydroxyls, resulting 

from the epoxy group ring opening with allyl alcohol 

[123, 124]. Radical copolymerization of acrylated oils 

with styrene is used for the production of unsaturated 

polyesters and composites [122, 300–306]. The amine 

derivatives of acrylated epoxidized soybean oil, which 

is the reaction product of epoxidized soybean oil with 

acrylic acid or methacrylic acid, are produced by the 

reaction of acrylated epoxidized soybean oil with an 

organic amine. They are useful alone or in conjunction 

with a photosensitizer and/or a pigment as inks and 

coatings. The compositions can be cured by UV radi-

ation [117, 307]. Compositions of urethane derivatives 

of acrylated epoxidized soybean oil, which are the reac-

tion products of an organic isocyanate with the reac-

tion product of epoxidized soybean oil with acrylic 

acid or methacrylic acid, and an acrylic compound, are 

useful as coatings and inks. Photosensitizers and/or 

pigments can optionally be present. The compositions 

can be cured by UV radiation [120, 308]. Acrylated ure-

thanized oils were prepared by reacting castor oil with 

acryloil chloride, ring opening of epoxidizd soybean 

oil with acrylic acid [309]. The authors have also intro-

duced terminal double bonds reacting castor oil with 

an isocyanate derivative of α-methyl styrene. Both 

acrylated ansd styrenated oils were successfully cured 

with UV radiation.

The acrylamide derivative of SBO and sunfl ower oils 
was obtained by the Ritter reaction with acrylonitrile in 
the presence of sulfuric acid. Free-radical copolymer-
ization of the product with styrene produced semi-
rigid polymers [310]. Since vegetable oils are rich with 
allyl hydrogens, considerable chain transfer is expected 
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during radical polymerization of acrylated oils. The 
extent of chain transfer in radical co-polymerization of 
vegetable oil macromonomers with butyl acrylate and 
methyl methacrylate in solution has been determined 
[311]. Acrylated high oleic sunfl ower oils with 2.5 acry-
late groups per triglyceride were prepared by esterifi -
cation of polyols by acryloyl chloride in the presence 
of triethylamine [312]. The products were polymerized 
in the presence of dicumylperoxide and copolymerized 
with pentaerithritol tetraacrylate to give soft products 
with glass transitions up to 31°C. Copolymer networks 
of acrylated oils and styrene with different crosslinking 
density were analyzed [313]. It was found that 0.5 acry-
lates per triglyceride were lost to intramolecular cycli-
zation for homopolymerized triglyceride-acrylates and 
0.8 for triglycerides copolymerized with styrene. Tg of 
networks varied from −50°C to 90°C.

13  PHENOLATION OF VEGETABLE 
OILS AND OF UNSATURATED 
FATTY ACIDS

It is well known that phenols are easily alkylated with 

olefi ns in the presence of strong Bronsted or Lewis 

acids [314–319]. By analogy, the double bonds of 

unsaturated vegetable oils can alkylate the aromatic 

rings of phenols in the presence of strong acids as cata-

lyst, generating oils containing phenolic rings chemi-

cally linked to the fatty acid chains of the triglyceride 

structure [320–323]. These compounds are called phe-

nolated oils. The phenolation of oils in the presence of 

strong protonic acids is carried out in three steps. In 

the fi rst step, organic cations are formed in the reaction 

of catalyst protons with the double bonds of fatty acid 

chains. In the second step, the formed cations react 

with the most nucleophilic group in the reaction sys-

tem, the phenolic group, generating phenyl ethers. In 

the third step, the phenyl ethers isomerize to alkylated 

phenols (Claisen rearrangement) [314–316, 318, 319]. 

Phenolation of soybean oil with superacids as cata-

lysts (including HBF
4 
[321, 323], CF

3
SO

3
H [324]) gen-

erates as products phenolated triglycerides, cationic 

polymerized oils with chemically attached phenolic 

rings, phenyl esters of fatty acids by transesterifi cation 

of phenol with triglyceride ester bonds (< 10%) and 

unreacted oils (<30%). The study of the phenolation 

of model compounds (9-octadecene, methyl oleate, 

methyl linoleate and triolein) leads to the conclusion 

that the best fatty acid for phenolation reactions is 

oleic [321]. Fatty acids containing two double bonds 

(linoleic acid) and three double bonds (linolenic acid) 

predominantly generate polymeric oils and are less 

active for phenol alkylation [321]. This behavior is 

explained by the transfer reaction of cations with bis 

allylic hydrogens of linoleic and linolenic acids gener-

ating stable allyl cations (conjugated hybrids with pos-

itive charge distributed on three carbon atoms), which 

are much less reactive cations in alkylation reactions 

[321, 323]. Propoxylation of phenolated soybean oil in 

the presence of coordinative catalysts affords hybrid 

aromatic-aliphatic polyols. Further reaction with iso-

cyanates (MDI) leads to polyurethanes with high ten-

sile strength and hardness [320]. Phenolated oil can 

be converted to biobased phenol formaldehyde resins 

after the reaction with paraformaldehyde or hexam-

ethylenetetramine, for applications in laminates with 

excellent electrical properties [325]. Signifi cant atten-

tion was paid to phenolation of oleic acid [325–329]. 

The carboxyl is a tolerant group and does not inter-

fere negatively with alkylation. Alkylation of phenol 

with oleic acid in the presence of methane sulfonic 

acid leads to phenyl ethers, alkylated phenol (major 

compound-82–88%), small quantities of phenyl ester 

(~2%) and estolides (7–12%) [12]. It is interesting that 

in the same reaction carried out with thiophenol the 

only product is the phenylthioether [325, 326]. Cresols 

(ortho and meta) react more effi ciently than phenol, 

due to the higher electron density of the nucleus result-

ing from the presence of electron releasing substituents 

(methyl groups) [327–329]. In phenolation of soybean 

oil around 30–33% of double bonds participated in the 

alkylation reaction while around 65% were involved 

in the alkylation of triolein [321]. The phenolated oils 

are suitable for the preparation of polyols for polyure-

thanes, phenol formaldehyde resins and special anti-

oxidants with fatty acid structure [322]. 

14  SULFUR CONTAINING 
MONOMERS AND POLYMERS 
DERIVED FROM VEGETABLE OILS 

Sulfur derivatives of vegetable oils were synthe sized 

by two main methods: a) photochemical addition of 

hydrogen sulfi de or mercaptans to the double bonds 

of oils [330], and b) ring opening of epoxy groups of 

epoxidized oils with hydrogen sulfi de [331]. Chevron 

Phillips produces on an industrial scale three deriva-

tives of vegetable oils containing thiol groups [331, 

332]. The fi rst compound, having only thiol groups, 

is obtained by the addition of hydrogen sulfi de in the 

presence of UV light to the double bonds of soybean 

oil [330]. The resulting product (Polymercaptan 358) 

has around 2.9 thiol groups per triglyceride [331]. By 

the addition of hydrogen sulfi de to the double bonds 

of castor oil, under the same conditions, an interest-

ing compound having both hydroxyl and thiol groups 

(Polymercaptan 805) is obtained [331]. Ring-opening 

addition of hydrogen sulfi de to epoxidized soybean oil 
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produced a polymercaptan, having on average, four 

hydroxyl groups and four thiol groups per triglycer-

ide (Polymercaptan 407). Thiol groups react with iso-

cyanates leading to thiourethanes. One application of 

all three compounds is in the preparation of polyure-

thanes (foams, coatings). All three compounds with –

SH groups are excellent biobased hardeners for epoxy 

resins. New monomers based on vegetable oils con-

taining sulfur were obtained by thiol-ene “click chem-

istry.” The reaction carried out under mild conditions 

involves the addition of thiols to unsaturated oils. It is 

initiated photochemically with UV light or thermally 

in the presence of radical initiators (most often with 

AIBN) [7, 214, 333–336]. The addition of 2-mercaptoe-

thanol to soybean oil affords in one step a vegetable oil 

polyol, with around three hydroxyl groups per mole [7, 

335, 336]. Cast polyurethanes obtained with this polyol 

and diisocyanates have good mechanical properties. 

The polyol can be used in polyurethane foams, coat-

ings and adhesives. The addition of 2-mercapto etha-

nol to epoxidized soybean oil in the presence of per-

chloric acid as a catalyst, results in a highly functional 

polyol [334]. This compound is a potential monomer 

for rigid polyurethane foams. Due to the presence of 

thioether groups, it has a superior thermo-oxidative 

stability and excellent lubricity [334]. Thioether groups 

tend to decompose hydroperoxides resulting from the 

oxidation of hydrocarbon chains and transform them 

to inert sulfoxides or sulfones in a way that stops the 

degradation chain reactions. It has been proven that all 

derivatives of vegetable oils containing sulfur are more 

resistant to oxidation than the initial oil, possibly as a 

result of the addition of thiol groups to double bonds, 

and thus reduced unsaturation [334]. 

15  MONOMERS AND POLYMERS BY 
CLICK CHEMISTRY

It was mentioned that thio-ene reactions, which 

belong to the group of click chemistry, are utilized 

for preparing some oil-based monomers and poly-

mers. The other important reaction in this group 

involves azides and alkynes in Huisgen cycloaddi-

tion, resulting in the formation of triazoles [337–339]. 

Azide-containing oils (azidated oils) were prepared by 

ring opening of epoxidized oils with NaN
3 

[114, 115, 

340, 341] or by the addition of bromoazide to the dou-

ble bonds [342]. Acylazides were prepared by react-

ing ricinoleic acid with NaN
3 

in the presence of tri-

ethylamine [343]. Alkynated oils or fatty acids can be 

obtained by ring opening of epoxides with propargyl 

alcohol or by transesterifi cation of fatty acids methyl 

esters with propargyl alcohol [115, 344]. The reac-

tion of azidated oils with propargylated oil without 

catalysts produces relatively soft polymer networks, 

but short aromatic azides with alkynated vegetable 

oils give glassy polymers [345]. 

16 METATHESIS PRECURSORS

Metathesis is a very useful method for creating new 

compounds from olefi nic raw materials [346]. Ring-

opening polymerization has been successfully used 

on a commercial scale for reaction injection molding 

of dicyclopentadiene (DCPD) [347]. However, conver-

sion of vegetable oil and fatty acids to useful products 

on a large scale was limited by the catalyst cost. Direct 

metathesis (acyclyc diene metathesis) of vegetable oils 

utilizing Grubbs’ catalyst produced a mixture of low 

molecular and polymeric species [348]. When high 

oleic sunfl ower oil was polymerized via acyclic triene 

metathesis (ATMET) it produced highly branched and 

functionalized polyesters [349]. Useful precursors with 

terminal double bonds are prepared by co-metathesis 

with ethylene [350–353]. Cross-metathesis of fatty 

acid methyl esters with allyl chloride was used to 

make α,ω-difunctional chemical intermediates [354]. 

Cross-metathesis of oils and fatty acids or their methyl 

esters with unsaturated diols and unsaturated diacids 

or vinyl acids introduces functional terminal groups 

useful as precursors for polymers [355–357]. Self-

metathesis of fatty acids can be used to make unsat-

urated diacid [358, 359] or polyhydroxy compounds 

[360]. Technological and economical aspects of the 

metathesis of unsaturated esters were analyzed [361]. 

Attaching DCPD to castor oil and ricinoleic alcohol 

generated compounds which could be polymerized by 

ring-opening metathesis [362]. Ring-opening metath-

esis polymerization (ROMP) of oil-DCPD was carried 

out in the presence of the Grubbs’ 2nd generation cata-

lyst. The resulting materials that were produced were 

rubbery with oil-DCPD and glassy with fatty alcohol-

DCPD. In a similar fashion a commercial adduct of 

DCPD to linseed oil was polymerized by ROMP to 

obtain rubbery materials [363]. Several reviews cover 

metathesis of oils and fatty acids [364–366]. 
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Zoran S Petrović et al.: Biological Oils as Precursors to Novel Polymeric Materials DOI: 10.7569/JRM.2013.634112

186  J. Renew. Mater., Vol. 1, No. 3, July 2013  © 2013 Scrivener Publishing LLC

341. J.O. Metzger and S. Fürmeier, New type of skipped oli-

goaziridines: synthesis of new fatty acid derivatives 

containing aziridine functions. Eur. J. Org. Chem. 

1999(3), 661–664 (1999).

342. V. Avidon and A. Shani, Functionalization at the 

 double-bond region of jojoba oil. 6. Production of amines 

via azides. J. Am. Oil Chem. Soc. 71(9), 993–997 (1994).

343. D.V. Palaskar, A. Boyer, E. Cloutet, C. Alfos, and 

H. Cramail, Synthesis of biobased polyurethane from 

oleic and ricinoleic acids as the renewable resources 

via the AB-type self-condensation approach. Biomacro-
molecules 11(5), 1202–1211 (2010).

344. J. Hong, Q. Luo, X. Wan, Z.S. Petrovic, and B.K. Shah, 

Biopolymers from vegetable oils via catalyst- and 

 solvent-free “Click” chemistry: effects of cross-linking 

density. Biomacromolecules 13(1), 261–266 (2012).

345. J. Hong, B.K. Shah, and Z.S. Petrović, Vegetable oil cast 
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